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Abstract: Several research papers have attempted to describe the dynamics of COVID-19 based on
systems of differential equations. These systems have taken into account quarantined or isolated cases,
vaccinations, control measures, and demographic parameters, presenting propositions regarding
theoretical results that often investigate the asymptotic behavior of the system. In this paper, we
discuss issues that concern the theoretical results proposed in the paper “An Extended SEIR Model
with Vaccination for Forecasting the COVID-19 Pandemic in Saudi Arabia Using an Ensemble Kalman
Filter”. We propose detailed explanations regarding the resolution of these issues. Additionally, this
paper focuses on extending the local stability analysis of the disease-free equilibrium, as presented
in the aforementioned paper, while emphasizing the derivation of theorems that validate the global
stability of both epidemic equilibria. Emphasis is placed on the basic reproduction number R0, which
determines the asymptotic behavior of the system. This index represents the expected number of
secondary infections that are generated from an already infected case in a population where almost
all individuals are susceptible. The derived propositions can inform health authorities about the long-
term behavior of the phenomenon, potentially leading to more precise and efficient public measures.
Finally, it is worth noting that the examined paper still presents an interesting epidemiological scheme,
and the utilization of the Kalman filtering approach remains one of the state-of-the-art methods for
modeling epidemic phenomena.

Keywords: dynamical systems; stability analysis; asymptotic behavior; Kalman filters; epidemiological
modelling; COVID-19

MSC: 65P40; 62P10; 37N35; 34D20

1. Introduction

The authors in [1] propose a compartmental model that contains a system of seven
differential equations with the aim of describing the changing dynamics of the spread of
COVID-19. The model divides the population into smaller parts, considering susceptible
(S), exposed (E), infected (I), quarantined (Q), recovered (R), deceased (D), and vaccinated
(V) cases. The first part of the aforementioned paper is dedicated to the proposal of
theoretical results regarding the non-negativity of model’s states, the boundedness of the
total population, and the existence and local stability of the disease-free equilibrium (DFE),
based on the basic reproduction number, R0.

However, there are certain issues regarding the presented proofs and formulas. In
the present analysis, we aim to introduce the existing errors, providing detailed comments
that rectify them. Moreover, emphasis is placed on proposing theorems concerning the
global stability analysis of epidemic equilibria, in accordance with the above-mentioned
scheme. In this way, we extend the theoretical results displayed in [1], while providing
valuable information regarding the asymptotic behavior of the epidemiological system.
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This information can be employed for the establishment of more accurate measures that
can facilitate the limiting of the virus’s transmission.

Typically, the spread of infectious diseases is explained through compartmental mod-
els, among which the SIR model—representing susceptible-infected-recovered—is the most
recognized [2]. Consequently, numerous studies delve into the dynamics of COVID-19
relying on the SIR model or its adaptations like SIRS [3], SEIR, or the SEIRD models [4].
Furthermore, Malkov [5] proposed a deterministic SEIRS model that incorporates time-
varying transmission rates for the description of the transmission of COVID-19. Other
compartmental extensions can be found in [6–11]. All the abovementioned endeavors are
based on systems of differential equations that can be numerically solved.

Several techniques have been proposed in the literature to establish numerically stable
methodologies for solving systems of differential equations. Many papers employ Runge–
Kutta methodologies, with the 4th-order Runge–Kutta being the most widely known [12,13].
Several extensions have been proposed in the articles of Kalogiratou and Monovasilis,
which refer to two-derivative Runge–Kutta methods with optimal phase properties [14],
optimized dispersion and dissipation error [15], and constant and frequency dependent
coefficients [16]. Moreover, additional advanced techniques for solving systems of partial
differential equations have been proposed in [17–19].

In summary, the present paper provides valuable corrections concerning the theoretical
results displayed in [1] that pertain to the non-negativity and boundedness of a system of
seven differential equations, which describe the transition of COVID-19 after the onset of
the vaccination period. These modifications are crucial in validating the suitability of the
epidemiological model for accurately describing the spread of COVID-19. More importantly,
we provide novel properties regarding the global asymptotic stability of both the disease-free
and endemic equilibria based on the values of the basic reproduction number (R0). These
theoretical aspects are more crucial than the local stability analysis, offering insights into
long-term behavior when the system approaches the aforementioned equilibria. Finally, a
novel addition to the literature is the computation of the convergence rate to the endemic
equilibria, offering a more comprehensive understanding of the system’s asymptotic behavior.
Using real values for the basic reproduction number derived from experimental data, we can
evaluate the severity of the phenomenon and validate previous predictions about the future
course of the pandemic in the literature.

The rest of the article is structured as follows: In Section 2, we present a series of
issues regarding the non-negativity and boundedness theorems that are proposed in [1],
while Sections 3 and 4 are dedicated to the rectification of issues concerning the local
stability of the disease-free equilibrium and the existence and uniqueness of the endemic
equilibrium, respectively. Finally, in Section 5, we present novel results regarding the global
stability of the epidemic equilibria, while in Section 6, we conclude with the advantages of
epidemiological modeling, emphasizing the main contribution of the present paper.

2. Non-Negativity of Model’s States and Boundedness of the Total Population

To begin, the authors in [1] have proposed an ODE system of seven equations to describe
the transmission of COVID-19 after the opening of the vaccination period. As a result, the
examined population has been split into seven compartments (classes) based on the state of
the population’s members; Equation (1) displays the transitions between these classes, namely

dS(t)
dt = Λ− βS(t)I(t)− aS(t)− µS(t),

dE(t)
dt = βS(t)I(t)− γE(t) + σβV(t)I(t)− µE(t),

dI(t)
dt = γE(t)− δI(t)− µI(t),

dQ(t)
dt = δI(t)− (1− κ)λQ(t)− κρQ(t)− µQ(t),

dR(t)
dt = (1− κ)λQ(t)− µR(t),

dD(t)
dt = κρQ(t),

dV(t)
dt = αS(t)− σβV(t)I(t)− µV(t),

(1)
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with non-negative initial conditions. In Table 1, we present the definition of the system’s
states and parameters.

Table 1. Parameter and state definition of the proposed SEIHCRDV model.

Symbol Definition of Parameter/State

S Susceptible
E Exposed
I Infectious
Q Quarantined
R Recovered
D Deceased
V Vaccinated
Λ New births and new residents
a Vaccination rate
β Transmission rate
γ Incubation rate
δ Infection rate
λ Recovery rate
κ Case fatality rate
µ Natural death rate
ρ Death rate
σ Vaccine inefficacy

In the first theorem of [1], the authors aim to prove the non-negativity of the system’s
states based on the proposed system of differential equations. More specifically, an attempt
to prove the non-negativity of the number of susceptible cases S(t), ∀t ≥ 0, when S0 > 0 is
displayed. This attempt leads to

S(t) ≥ S0e−µt ≥ 0 . (2)

However, this inequality does not seem to hold true when considering the first differ-
ential equation of the system. Equation

dS(t)
dt

= Λ− βS(t)I(t)− aS(t)− µS(t) > −µS(t) , (3)

holds true only when Λ > βS(t)I(t) + aS(t). It is evident that there are several instances of
parameter selections where the aforementioned expression is not satisfied. We note that
all system’s parameters are assumed to be positive constants, as they represent ingoing or
outgoing transition rates of the system’s states. Therefore, a modification of (2) is required
to lead to the desired outcome. Specifically, we take

dS(t)
dt = Λ− βS(t)I(t)− aS(t)− µS(t) > −βS(t)I(t)− aS(t)− µS(t)

= −(βI(t) + a + µ)S(t) ≥ −
(

β max
t∈[0,∞)

I(t) + a + µ

)
S(t) .

Using the infinity norm ‖I(t)‖∞ = max
t∈[0,∞)

I(t), we obtain

d ln(S(t))
dt

≥ −(β‖I(t)‖∞ + a + µ).

Consequently, by integrating the above expression with respect to t, and substituting
t = 0, we result in

S(t) ≥ S0e−(β‖I(t)‖∞+a+µ)t ≥ 0 , ∀t ≥ 0 . (4)

Notice that ‖I(t)‖∞ < ∞, as we refer to a finite population function, N(t). We believe
that this approach now rectifies the proof of Theorem 1. The utilization of the infinity norm
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can be employed for proving the non-negativity of vaccinated cases, too, while the proof
for the remaining states is omitted for the sake of brevity.

In the second theorem of [1], the authors aim to prove the boundedness of the total
population function N(t), ∀t ≥ 0. They claim that since N(t) = S(t) + E(t) + I(t) + Q(t) +
R(t) + D(t) + V(t), for the derivative with respect to time, we have

dN(t)
dt

=
dS(t)

dt
+

dE(t)
dt

+
dI(t)

dt
+

dQ(t)
dt

+
dR(t)

dt
+

dD(t)
dt

+
dV(t)

dt
, (5)

which leads to
dN(t)

dt
= Λ− µN(t), ∀t ≥ 0 . (6)

However, Equation (6) does not hold based on the proposed epidemiological system,
which is presented in Equation (1). This derives from the inclusion of the deceased cases,
D(t), in the total population. The above expression should be rectified as

dN(t)
dt

= Λ− µ(S(t) + E(t) + I(t) + Q(t) + R(t) + V(t)) = Λ− µN(t) + µD(t), (7)

after the summation of all equations of the ODE system, as dN(t)
dt = dS(t)

dt + dE(t)
dt + dI(t)

dt +
dQ(t)

dt + dR(t)
dt + dD(t)

dt + dV(t)
dt . Thus, after moving µN(t) to the left side, we lead to

dN(t)
dt

+ µN(t) = Λ + µD(t),

or
deµtN(t)

dt
= (Λ + µD(t))eµt

and integrating with respect to t, we obtain

eµtN(t)− N0 =
Λ
µ

(
eµt − 1

)
+ µ

∫ t

0
D(s)eµsds, (8)

or

N(t) =
Λ
µ
+

(
N0 −

Λ
µ

)
e−µt + µe−µt

∫ t

0
D(s)eµsds. (9)

As a result, N(t) is bounded if and only if
∫ t

0 D(s)eµsds is bounded for all t > 0.
Moreover, there is another major issue in the proof of Theorem 2 in [1]. The authors

claim that N(t) ≤ Λ
µ for all t > 0, regardless of the system’s parameters. According to

Expression (6), which as we mentioned earlier is not true, the authors lead to

N(t) =
Λ
µ
+

(
N0 −

Λ
µ

)
e−µt, ∀t > 0 . (10)

Apparently, N(t) ≤ Λ
µ is not true for every parametric set. Based on Equation (10),

this is valid for all t > 0, only when N0 < Λ
µ .

Finally based on (9) for t→ ∞ , we lead to

lim
t→∞

N(t) =
Λ
µ

, (11)

in case lim
t→∞

e−µt ∫ t
0 D(s)eµsds = 0.

As a result, it becomes evident that the authors’ proof for Theorem 2 does not validate
the theorem’s statement.
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3. Local Stability of the Disease-Free Equilibrium (DFE)

Moving on to Theorem 3, the authors claim that the disease-free equilibrium (DFE)
is locally asymptotically stable if R0 < 1 and unstable when R0 > 1. First, we notice that
during the computation of R0, the vector W(X) of Section 3.3 in [1] should be rectified to
W(X) = ((µ + δ)E,−γE + (µ + δ)I)T , since the number of infected cases is missing from
the second component of the vector. This modification does not alter the final formula for
R0, where

R0 =
βγΛ(µ + ασ)

µ(µ + γ)(µ + δ)(µ + α)
. (12)

To prove the local asymptotic stability of the DFE X0, the respective Jacobian matrix of
the epidemiological system is employed. Equilibrium X0 is locally asymptotically stable
when all six eigenvalues of the Jacobian J

(
X0) are negative. So, it is claimed that there are

two eigenvalues λ5, λ6, where

λ5 = −1
2

(
ε2 + ε3 +

√
(ε2 − ε3)

2 + 4ε2ε3R0

)
, (13)

and

λ6 = −1
2

(
ε2 + ε3 −

√
(ε2 − ε3)

2 + 4ε2ε3R0

)
. (14)

with ε2 = −(α + µ) and ε3 = −(δ + µ). While λ6 is indeed smaller than 0 when R0 < 1,
the same does not hold true for Expression (13). More specifically, we have√

(ε2 − ε3)
2 + 4ε2ε3R0 <

√
(ε2 − ε3)

2 + 4ε2ε3 = |ε2 + ε3| = −(ε2 + ε3),

or
ε2 + ε3 +

√
(ε2 − ε3)

2 + 4ε2ε3R0 < 0 ,

or

−1
2

(
ε2 + ε3 +

√
(ε2 − ε3)

2 + 4ε2ε3R0

)
> 0 ,

leading to λ5 > 0. According to the above, the DFE becomes asymptotically unstable
when R0 < 1, which contradicts with the statement of Theorem 3. Moreover, this outcome
opposes several analyses in literature [6,8,9,12,20–26]. On the other hand, when R0 is
greater than 1, the DFE becomes asymptotically unstable as λ5 < 0 and λ6 > 0.

The aforementioned issues possibly derive from the form of the Jacobin matrix J
(
X0),

which is presented in [1] (Equation (20), Section 3.3), as there are several mistakes concern-
ing the signs of the elements that take place on the matrix diagonal. The authors’ proof for
Theorem 3 does not validate the theorem’s statement.

4. Existence and Uniqueness of the Endemic Equilibrium

Following the theorem that concerns the local stability of the DFE, the authors empha-
size the existence and uniqueness of an endemic equilibrium, denoted by X∗. To begin with,
the expression of the endemic equilibrium should be rectified to X∗ = (S∗, E∗, I∗, Q∗, R∗, V∗),
as the number of diseased cases—and the respective differential equation—are excluded
from the determination of the equilibrium.

At the first part of the proof, the authors in [1] describe the components of X∗ with re-
spect to I∗ after adding the second and sixth equation of the system evaluated on the endemic
equilibrium. In Section 3.4 of [1], the authors use the notations ε1 = µ + α, ε3 = µ + δ and
ε4 = µ + λ(1− κ) + κρ, and lead to expression

V∗ =
ΛβγI + Λαγ− ε2ε3(βI + ε1)I

µγ(βI + ε1)
, (15)
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which represents the number of vaccinated cases when the system has entered the endemic
equilibrium. The endemic equilibrium is obtained after setting all derivatives of system (1)
to zero. After solving with respect to V∗, we reach Expression (15).

First, the I symbols should be replaced with I∗, as the system has to be evaluated at
the endemic equilibrium X∗ to describe V∗. Also, considering the notation in Section 3.3
of [1], where ε2 = −(γ + µ), the minus sign of the numerator must be replaced with a
plus sign.

Afterwards, the statement that a2 is always positive and a0 is negative when R0 > 1
contradicts Formula (26) in that paper. It should be emphasized that the opposite behavior
holds for these two quantities, namely a2 < 0 and a0 > 0.

Finally, we notice that an alternative, simpler formula can be derived for the number
of vaccinated cases at the equilibrium. Using the sixth equation of the system evaluated at
X∗, we culminate in V∗ = aS∗

µ+σβI∗ =
αΛ

(µ+σβI∗)(βI∗+µ+α)
.

5. Global Stability Analysis of Epidemic Equilibria

At this point we emphasize the extension of the results concerning the stability analysis
of epidemic equilibria. Global stability analysis provides information about the behavior of
a system across its entire state space. Therefore, it determines the stability of the system
for all initial conditions. Thus, it offers a comprehensive view of the system’s behavior in
contrast to the local stability analysis, which can provide insights only around the equilibria.

Theorem 1. The DFE X0, is globally asymptotically stable if and only if R0 < 1.

Proof of Theorem 1. Based on the LaSalle’s invariance principle, we choose a Lyapunov function L(t)
that is positive semidefinite in the feasible region Ω = {(S, E, I, Q, R, V) | S, E, I, Q, R, V ≥ 0} =
R6
+, while its derivative is negative definite in the same region. Let

L(t) =
1
2

[(
S− S0

)2
+ E2 + I2 + Q2 + R2 +

(
V −V0

)2
]
=

1
2

XTX ≥ 0, (16)

where X =
(
S− S0, E, I, Q, R, V −V0)T , as E0 = I0 = Q0 = R0 = 0. Function L(t)

becomes 0 only on X0. For the derivate, we obtain

dL
dt =

(
S− S0) dS

dt + E dE
dt + I dI

dt + Q dQ
dt + R dR

dt +
(
V −V0) dV

dt
=

(
S− S0)[Λ− β

(
S− S0)I − βS0 I − (α + µ)

(
S− S0)− (α + µ)S0]

+E
[
−(γ + µ)E + β

(
S− S0)I + βS0 I + σβ(V −V0)I + σβV0 I

]
+I[γE− (δ + µ)I] + Q[δI − ((1− κ)λ + κρ + µ)Q] + R[(1− κ)λQ− µR]
+
(
V −V0)[a(S− S0)+ aS0 − µ

(
V −V0)− µV0 − σβ(V −V0)I + σβV0 I]

= −β
(
S− S0)2 I − βS0(S− S0)I − (α + µ)

(
S− S0)2

−(γ + µ)E2 + β
(
S− S0)EI + σβ

(
V −V0)EI + βS0EI + σβV0EI

+γIE− (δ + µ)I2 + δQI − ((1− κ)λ + κρ + µ)Q2 + (1− κ)λRQ− µR2

+α
(
V −V0)(S− S0)− µ

(
V −V0)2 − σβI

(
V −V0)2

+ σβV0(V −V0)I
= XTAX = XTA1X + XTA2X,

(17)

where

A1 =



−(α + µ) 0 −βS0 0 0 0
0 −(γ + µ) β

(
S0 + σV0) 0 0 0

0 γ −(δ + µ) 0 0 0
0 0 δ −((1− κ)λ + κρ + µ) 0 0
0 0 0 (1− κ)λ −µ 0
α 0 −σβV0 0 0 −µ

,



Mathematics 2024, 12, 55 7 of 12

and

A2 =



−βI 0 0 0 0 0 0
βI 0 0 0 0 0 σβI
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −σβI

,

where A2 is a polynomial matrix. We have dropped the (t) notation for the sake of sim-
plicity. Furthermore, we notice that Λ− (α + µ)S0 = 0 and aS0 − µV0 = 0. Quantities
β
(
S− S0)IE, σβ

(
V −V0)IE, −σβI

(
V −V0)2 and −β

(
S− S0)2 I are matched with A2.

The characteristic polynomial of the 6 × 6 matrix A1 is

p(x) = det(xI6 −A1) = (x + α + µ)(x + µ)2(x + ((1− κ)λ + κρ + µ))(
x2 + (γ + δ + 2µ)x + (µ + δ)(µ + γ)− βγ

(
S0 + σV0)) = 0,

(18)

leading to 4 negative eigenvalues. Now, for the second-order polynomial in (18), we imple-
ment the 2nd-order Routh–Hurwitz criterion, where the roots of the polynomial, lay on the
left-hand side of the complex plane when coefficients (γ + δ + 2µ) and (µ + δ)(µ + γ)−
βγ
(
S0 + σV0) are both positive. Apparently, (γ + δ + 2µ) > 0. Then the Routh–Hurwitz

criterion is satisfied when (µ + δ)(µ + γ)− βγ
(
S0 + σV0) > 0, and based on the R0 for-

mula displayed in [1], this inequality is true if and only if R0 < 1.
Ultimately, the eigenvalues of A2 are all non-positive due to I(t) being non-negative,

(non-negativity of system’s states). In parallel, the eigenvalues of A1 are all negative if
and only if R0 < 1. According to the above observations we get that XTA1X < 0, and
XTA2X ≤ 0. To summarize, dL

dt = XTAX < 0, if and only if R0 < 1, which proves the global
asymptotic stability of the DFE. �

Theorem 2. The endemic equilibrium X∗, is globally asymptotically stable when R0 > 1.

Proof of Theorem 2. Following a similar approach to that of the previous theorem, we note
that according to [1] the endemic equilibrium exists only when R0 is greater than 1. We
choose the quadratic Lyapunov function,

L(t) =
1
2

[
(S− S∗)2 + (E− E∗)2 + (I − I∗)2 + (Q−Q∗)2 + (R− R∗)2 + (V −V∗)2

]
=

1
2

YTY ≥ 0, (19)

where Y = (S− S∗, E− E∗, I − I∗, Q−Q∗, R− R∗, V −V∗)T , and L(X∗) = 0. Employ-
ing the second equation of the proposed system of differential equations evaluated on the
endemic equilibrium, we get

βS∗ I∗ + σβV∗ I∗ − γE∗ − µE∗ = 0 ,

or

β(S∗ + σV∗) =
(γ + µ)E∗

I∗
=

(γ + µ)(δ + µ)

γ
(20)

.
For the derivative of the selected Lyapunov function, we have

dL
dt

= (S− S∗)
dS
dt

+ (E− E∗)
dE
dt

+ (I − I∗)
dI
dt

+ (Q−Q∗)
dQ
dt

+ (R− R∗)
dR
dt

+ (V −V∗)
dV
dt

, (21)

and after some algebraic manipulations we obtain
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dL
dt = (S− S∗)[−(a + µ)(S− S∗)− β(S− S∗)I − βS∗(I − I∗)]

+(E− E∗)[−(a + δ)(E− E∗) + σβ(V −V∗)I + β(S− S∗)I − β(S∗ + σV∗)I∗]
+(I − I∗)[γ(E− E∗)− (δ + µ)(I − I∗)]
+(Q−Q∗)[δ(I − I∗)− ((1− κ)λ + κρ + µ)(Q−Q∗)]
+(R− R∗)[(1− κ)λ(Q−Q∗)− µ(R− R∗)]
+(V −V∗)[α(S− S∗)− µ(V −V∗)− σβ(V −V∗)I − σβV∗(I − I∗)],

(22)

since according to [1] it holds that E∗ = δ+µ
γ I∗, Q∗ = δ

(1−κ)λ+κρ+µ
I∗, R∗ = (1−κ)λδ

µ((1−κ)λ+κρ+µ)
I∗,

and S∗ = Λ
βI∗+µ+α . Additionally, we notice that Λ− (α + µ)S∗+ βS∗ I∗ = 0, β(S∗ + σV∗)I∗−

(γ + µ)E∗ = 0, and αS∗ − σβV∗ I∗ − µV∗ = 0, which derive from Equation (22) of [1]
(Section 3.4), leading to our Equation (22).

Now, Expression (22) can be represented in matrix form as

dL
dt

= XTBX = XTB1X + XTB2X, (23)

where

B1 =



−(α + µ) 0 −βS∗ 0 0 0
0 −(γ + µ) 0 0 0 0
0 γ −(δ + µ) 0 0 0
0 0 δ −((1− κ)λ + κρ + µ) 0 0
0 0 0 λ(1− κ) −µ 0
α 0 −σβV∗ 0 0 −µ

,

and

B2 =



−βI 0 0 0 0 0 0
βI 0 (γ+µ)(δ+µ)

γ 0 0 0 σβI
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −σβI


.

Hence, the model’s endemic equilibrium is globally asymptotically stable when R0 > 1.
The eigenvalues of B2 are all non-positive due to I(t) being non-negative, while all eigen-
values of B1 lie on the left complex plain since they represent negative real numbers.
Consequently, we obtain XTB1X < 0, and XTB2X ≤ 0. Thus, dL

dt = XTBX < 0, when
R0 > 1, proving the global stability of the endemic equilibrium. �

Theorem 3. When R0 < 1, the extended SEIR model converges exponentially to the DFE according
to the maximum eigenvalue of matrix A. On the other hand, in case R0 > 1, the system converges
to the endemic equilibrium based on the maximum eigenvalue of matrix B.

Proof of Theorem 3. In order to determine the convergence rate of the suggested epidemi-
ological model to the DFE, it is necessary to find a positive value for the parameter k that
fulfills the inequality

dL(t)
dt
≤ −kL(t), (24)

where L(t) still represents the Lyapunov function. Based on the above, we can lead
to the epidemic system’s convergence rate, which is determined by k

2 . The distinction
of the two cases, R0 < 1 and R0 > 1, is included to ensure that the existence of the
two examined endemic equilibria is satisfied, before we proceed to the investigation of
their convergence rates. We require the most appropriate k value that satisfies Expression
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(24). After substituting the formulas for L(t) and its derivate with respect to time, we obtain

XTAX ≤ −k
1
2

XTX, (25)

XT
(

A +
k
2

I
)

X ≤ 0, (26)

leading to the conclusion that matrix A + k
2 I must be negative semidefinite. For R0 < 1, the

eigenvalues (λi) of A are all negative. Our goal is to determine the value of k, for which the
eigenvalues

(
λi +

k
2

)
of matrix A + k

2 I are also negative.

As a result, we culminate in λi +
k
2 ≤ 0, when k ≤ −2λi for i = 1, . . . , 6, which leads to

the selection of k = −2max{λi, i = 1, . . . , 6} > 0. This validates that the convergence rate
to DFE is equal to −max{λi, i = 1, . . . , 6} > 0. Similarly, in case R0 > 1 the convergence
rate of the epidemiological model to the endemic equilibrium is based on the positive
equivalent of the maximum eigenvalue of matrix B. �

6. Conclusions

In this paper, we have identified several issues regarding the theoretical results that
are presented in [1] and accounted for the non-negativity, boundedness, existence, and
local stability of epidemic equilibria. Moreover, special emphasis is placed on examining
the global stability analysis of the produced equilibria based on the LaSalle’s invariance
principle, extending the theoretical investigation of the aforementioned paper.

It is important to underline that the global stability analysis can provide insights into
the entire state space’s stability, not just a neighborhood around an equilibrium point.
Global stability analysis is often more robust to uncertainties and parameter variations.
It can reveal whether a system remains stable under a wide range of conditions, making
it particularly valuable in fields like control theory and engineering, where parameter
variations are common. More importantly, it reveals the long-term behavior of the system
regardless of the initial condition.

At this point, we should emphasize that despite the aforementioned issues, the sta-
tistical methodology proposed in [1], has an important role in the field of mathematical
modelling in epidemiology. Kalman filtering provides the best linear unbiased estimate
of a system’s states in the presence of noise and uncertainty, while it optimally combines
measurements and a priori system predictions [12,27,28]. It can adapt to changing system
dynamics by adjusting the filter’s parameters. This makes it suitable for systems with time-
varying characteristics. Additionally, Kalman filters are computationally efficient, making
them applicable in real-time systems. Like the traditional Kalman filter, Ensemble Kalman
filtering provides estimates of state uncertainty and consistency, aiding in decision-making
processes. Also, by sampling from the state space it accomplishes the capturing of complex
nonlinear dynamics and avoids filter divergence.

Global stability analysis of COVID-19 models provides crucial insights that are im-
mensely valuable for practical applications. It helps in predicting the long-term behavior
of the disease spread. Understanding the stability of the model equilibria allows for pro-
jections about the disease trajectory, aiding in preparedness and resource allocation. Also,
by analyzing the stability of different equilibria within the models, researchers can assess
the effectiveness of various intervention strategies. This insight guides policymakers in
implementing control measures such as vaccination drives, social distancing, or lockdowns.
It assists in resource allocation by estimating the potential severity and duration of the out-
break. Hospitals, medical supplies, and personnel can be strategically deployed based on
the projected stability of the disease dynamics. Finally, analyzing the stability of the model
against real-world data allows for model validation. Insights gained from the analysis can
also contribute to refining the model by identifying areas where the model might deviate
from observed patterns.
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There are several analyses in the literature that propose the utilization of statistical
methodologies like Kalman filters, aiming to provide estimations about the future state of
the COVID-19 pandemic [1,12,29–31]. The employed statistical methodology holds promise
in steering decisions concerning the short-term trajectory of the pandemic. Conversely, the
stability analysis provided in our study furnishes insights into the extended patterns of the
phenomenon, augmenting awareness around this public health concern in the long run.
Therefore, we argue that both analyses present valuable insights into the pandemic, each
offering unique viewpoints.

In future work, we find it intriguing to explore a hybrid epidemiological particle filter.
This approach handles the uncertainty inherent in pandemic phenomena by integrating
particle filtering, which offers an alternative way to address the uncertainties present in
both the equations defining the state and the observations of such phenomena. Moreover,
delving into the disease’s evolution using various stochastic methods like discrete or
continuous time Markov chains holds significant promise aiming to examine interesting
stochastic descriptors [32]. Finally, numerical methods for the computationally efficient
solving of the ODE system can be investigated [33], as the establishment of methodologies
of low complexity is always of interest in mathematical modelling [34–36].

Finally, in the case of COVID-19, given the ongoing circumstances, it remains difficult
to curtail the transmission of the virus in the foreseeable future. The R0 decreases during
periods of lockdown, although it rises right after the easing of restrictions to values which
are far higher than unity [37,38]. Also, even after the initialization of the vaccination
campaigns, variants like omicron continue to spread rapidly [39,40].

Several variants have emerged even after the onset of the vaccination period, with the
most widely known being the alpha, delta, and omicron variants, while the corresponding
values for the delta variant ranged between 3.2 and 8 with a mean of 5.08 [41,42]. Moreover,
according to the review of Liu and Rocklöv [43], the basic reproduction number for the omi-
cron variant is 2.5 times greater than the respective reproduction number of the delta variant.
Hence, according to the above comments, it becomes evident that the transmissibility of the
virus will persist for quite a long-time interval. This perspective was strongly supported
by many researchers even during the early stages of the pandemic [44,45]. Neither the
establishment of lockdowns nor the vaccination campaigns, reduced the reproduction
values less than unity for sufficiently long periods. Therefore, the eradication of the disease
seems almost impossible.

As a result, public authorities may emphasize the reduction of severe infections,
hospitalizations, and deaths as these are the main issues of concern for the entire population.
Until now, this policy has shown a significant improvement of the confrontation against
the pandemic’s drawbacks. Without a doubt, the systematic and timely vaccination of the
population plays a pivotal role in realizing this objective.
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