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Abstract: New possibilities of Gramian computation, by means of canonical transformations into
diagonal, controllable, and observable canonical forms, are shown. Using such a technique, the
Gramian matrices can be represented as products of the Hadamard matrices of multipliers and
the matrices of the transformed right-hand sides of Lyapunov equations. It is shown that these
multiplier matrices are invariant under various canonical transformations of linear continuous
systems. The modal Lyapunov equations for continuous SISO LTI systems in diagonal form are
obtained, and their new solutions based on Hadamard decomposition are proposed. New algorithms
for the element-by-element computation of Gramian matrices for stable, continuous MIMO LTI
systems are developed. New algorithms for the computation of controllability Gramians in the
form of Xiao matrices are developed for continuous SISO LTI systems, given by the equations of
state in the controllable and observable canonical forms. The application of transformations to the
canonical forms of controllability and observability allowed us to simplify the formulas of the spectral
decompositions of the Gramians. In this paper, new spectral expansions in the form of Hadamard
products for solutions to the algebraic and differential Sylvester equations of MIMO LTI systems
are obtained, including spectral expansions of the finite and infinite cross-Gramians of continuous
MIMO LTI systems. Recommendations on the use of the obtained results are given.

Keywords: spectral decompositions; linear continuous systems; Gramians; Sylvester and Lyapunov
equations; Xiao matrices; Hadamard product
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1. Introduction

The first Gramian spectral decompositions for linear continuous and discrete systems
with simple spectra were obtained in [1] by the spectral decomposition of the integral
representation of the solution to the Lyapunov or Sylvester equations. It is well-known that
Gramians are solutions to the Sylvester and Lyapunov equations, to which a great number
of scientific papers have been devoted, among which we note [2–13]. These equations
also play a fundamental role in control theory. Research in the field of linear control
systems is closely related to the problem of lowering the model order by constructing
an approximating model of lower dimensionality. Even in the case of linear systems
of high dimensionality, the use of projection methods allows us to significantly reduce
the dimensionality of the approximating model [6,10]. Among such methods, we note
balanced truncation, singular value decomposition, the Krylov subspace method, methods
for constructing a simplified model based on the Gramian H2-norm, optimal methods,
and hybrid methods. Iterative algorithms for their realization have been developed for
most of the methods. The Sylvester and Lyapunov matrix equations in applied problems
of control theory were studied in [12,13]. In recent years, there has been an interest in
developing methods for computing various energy metrics to analyze the stability and
degree of controllability, reachability, and observability of these systems. A number of
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papers proposed such metrics for linear and unstable linear systems [14–21]. In another
paper [16], simplified models of large networks based on controllability Gramians were
proposed, allowing the computation of energy metrics. Some further papers considered the
important problem of the optimal placement of sensors and actuators based on different
energy functionals [15,17,18,20]. In [17], a general approach to solving the problem of
the optimal placement of sensors and actuators for multivariable control systems was
formulated, which is based on the decomposition of the system into stable and unstable
subsystems. It is shown that the degree of controllability of the system is determined on
the basis of energy metrics based on the use of finite and infinite controllability Gramians.
A general method for computing the inverse Gramian of controllability for the equations of
state given in the canonical forms of controllability is proposed. In [18], a method for the
optimal placement of virtual inertia devices on the graph of an energy system is proposed.
This method is based on the use of the energy metrics of the coherence of generators and
the square of the H2-norm of the system transfer function, which is given by a standard
dynamic model in the state space. The problem is formalized as a nonconvex optimization
problem with constraints in the form of the values of the observability Gramians. It is
known that energy-efficient control problems are also solved using Gramians. In recent
years, these approaches have been developed for complex energy systems, as well as social,
transportation, and biological networks in [17–19]. In [16,17], it was shown that the closer
the eigenvalues of the dynamics matrix are located to the imaginary axis, the less energy
is required to make the system or network fully controllable. In [19–21], these ideas were
developed for digital ecosystems, vibroacoustic control systems, and thermal plant control
systems. Thus, the degree of controllability (reachability) of a network is related to the
minimum amount of energy, which allows us to introduce new metrics in the form of the
minimum eigenvalue of the controllability Gramian and the maximum eigenvalue of its
inverse Gramian, as well as the traces of these Gramians. Note that most of the mentioned
works use the spectrum of the system dynamics matrix, which makes it quite natural to
apply spectral analysis methods to solve the above problems. The use of canonical forms of
controllability previously gave rise to a new approach to Gramian computation based on the
use of Rouse–Gurwitz tables and Xiao matrices [22–26]. Almost 30 years ago, a paper [23]
appeared in which a method and algorithm for computing solutions to Lyapunov equations
are proposed for the case when the equations of state of a linear system are given in the
canonical form of controllability or observability. It was shown that the solution matrices
of the Lyapunov equations can be computed in a new way based on the use of Rouse tables
that depends only on the coefficients of the characteristic equation of the dynamic matrix
of the system. In recent years, due to the rapid growth of renewable generation in electric
power systems, serious problems of controlling the modes of these systems have arisen
due to the integration of renewable generation with conventional generation based on
the use of conventional synchronous generators [27–30]. One of the directions for solving
the problems of ensuring the stability of the modes of electric power systems is the use
of virtual inertia devices in distributed power systems [27–29]. The main idea of virtual
inertia is to use the synchronous generator model to stabilize the frequency control modes
of distributed power systems. In [27], a method and algorithm for the optimal control
of the grid frequency based on the use of a simplified synchronous generator model for
a reduced-order model based on the model optimization criterion using the H2-norm of
the transfer functions of the full and simplified models were proposed. It is well-known
that the Gramian method [1,6] is used to solve this problem. In [30], a new method for the
simultaneous estimation of unbalanced power and generation based on the inertia index of
the system was developed. A mathematical model of a virtual inertia device was proposed,
which guarantees accurate power imbalance estimation. The effectiveness of the proposed
solutions was confirmed by the fact that the approach takes into account uncertainties
in measurement errors, signal delays when using GPS networks, and telecommunication
system failures. In large dynamical systems subject to noise or forced oscillations, the
stability under small perturbations is determined by their energy that is stored in the power
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system [31]. To analyze this perturbation energy, this paper proposes a new physically
motivated modal Lyapunov analysis (LMA), which combines selective modal analysis
with spectral decompositions of specially selected Lyapunov stability indicators. New
modal indicators are proposed that characterize individual modes and modal interactions
and their relationships with specific state variables. These indicators estimate the integral
energy associated with states and signals over an infinite or finite time interval. The new
indicators characterize the pairwise interaction between modals in terms of their mutual
actions produced in the states of the system over time. It is shown that the proposed modal
indicators characterize the stability of individual modes and resonant modal interactions in
linear systems with a variable parameter. In this paper, the application of these indices to
analyze the stability of a two-zone model of a power system is investigated. This approach
is based on the application of the Gramian method in power engineering and is innovative.

Main Contribution

In Section 2, the formulation of the problems of computing Gramian controllability
and observability is considered within the framework of a unified concept. An important
feature of the concept of this paper is the consideration of Hadamard products for spectral
Gramian decompositions, which allows us to reduce the computation of sub-Gramian and
Gramian matrices to the computation of numerical sequences of their elements. In this
article we propose to improve this approach using Gramian spectral decompositions by
extending its application to multidimensional linear control systems given by a standard
(A,B,C) representation of the state space. In Section 3, we introduce modal Lyapunov
equations of the second type for the state equations of MIMO LTI systems in diagonal
canonical form. These equations allow us to compute various sub-Gramians in closed
form. They obtain their spectral decompositions in the form of Hadamard products
and derive formulas for the multiplier matrices. These equations also obtain spectral
decompositions for the SISO LTI system in the canonical forms of controllability and
observability. The multiplier matrices of these spectral decompositions, which also are
Xiao matrices, play an important role in the following presentation. These equations allow
us to compute various sub-Gramians in closed form. Their spectral decompositions in
the form of Hadamard products are obtained, and formulas for the multiplier matrices
are derived. It is proved that for stable systems the Xiao matrices are positively defined
and invariant under similarity transformations. In the rest of this section, we consider the
general case of linear continuous MIMO LTI systems represented by (A,B,C)-equations of
state. New spectral decompositions of controllability and observability Gramians in the
form of Hadamard products are obtained. It is shown that the multiplier matrices are the
same in both the MIMO LTI and SISO LTI cases, provided that the system is stable, fully
controllable, and observable for both the simple and the pairwise spectra of the dynamics
matrix. A new analysis of the properties of multiplier matrices is given. An important
property of multiplier matrices is their positive definiteness, which manifests itself in
the positivity of the energy metric associated with this property [15,16]. In Section 4, the
obtained results are developed to construct spectral decompositions of solutions to a wide
class of matrix Sylvester differential equations. In particular, we obtain closed formulas for
the Hadamard products of the spectral expansions matrices of cross-Gramian MIMO LTI
systems, as well as their traces and diagonal elements.

2. Discussion of the Results and Problem Statement

We consider the Lyapunov equations for a continuous stationary MIMO LTI in diago-
nal canonical form

AP + PAT = −BBT ,

AT P + PA = −CTC.

xd = Tx,
.
xd = Adxd + Bdu, yd = Cdxd,

Ad = TAT−1, Bd = TB, Cd = CT−1,
(1)
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or

A =
[
u1 u2 · · · un

]
s1 0 0 0
0 s2 0 0
. . . . . . . . . . . .
0 0 . . . sn




ν∗1
ν∗2
...
ν∗n

,

where the matrix T is composed of the right eigenvector sui, and the matrix T−1 is composed
of the left eigenvectors ν∗i , corresponding to the eigenvalue si. Let us introduce the notations

βij = eiTBBTT∗eT
j , γij = ei(CT−1)

∗
CT−1eT

j .

Let us further consider the SISO LTI systems in controllability canonical form [9]

xc(t) = RF
c x(t),

.
xc(t) = AF

c xc(t) + bFu(t), xc(0) = 0, (2)

yc(t) = cF
c xc(t),

AF
c =


0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1

,bF =
[

0 0 .. 0 1
]T,

cF =
[

ξ0 ξ1 .. ξn−2 ξn−1
]
.

The following relations are valid [15]

RF
c A

(
RF

c

)−1
= AF

c , RF
c b = bF

γ, c
(

RF
c

)−1
= cF,

Pc =
(

RF
c

)−1
P

F

c
(
(

RF
c

)−1
)

T
,

where the matrix Pc is a solution of the corresponding Lyapunov equation. With respect
to systems (1) and (2), we assume that various structural conditions for the stability,
controllability, observability, and spectrum properties of the dynamic matrix are fulfilled.
In [26], the following spectral decomposition of the controllability Gramian was obtained:

PF
c = ∑n

k=1 ∑n−1
η=0 ∑n−1

j=0

sj
k(−sk)

η

.
N(sk)N(−sk)

1j+1η+1.

Let us consider the further SISO LTI of a linear system in observability canonical
form [9]. In this case, the following formulas are valid:

xo(t) = RF
o x(t)

.
xo(t) = AF

o xo(t) + bF
o u(t), xo(0) = 0,yF

o (t) = cF
o xo(t),

According to the principle of duality, we obtain the expressions [26]

PF
o = ∑n

k=1 ∑n−1
η=0 ∑n−1

j=0

sj
k(−sk)

η

.
N(sk)N(−sk)

1j+1η+1,

In addition,

Po =
(

RF
o

)T
PF

o RF
o .
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Let us call the Xiao matrix (zero plaid structure) a matrix of the form [23]

Y =


y1 0 −y2 0 y3
0 y2 0 −y3 0
−y2 0 y3 0 . . .
0 −y3 0 . . . 0
y3 0 . . . 0 yn

. (3)

The corresponding matrix elements are calculated by the formulas

yjη =

0, i f j + η = 2k + 1, k = 1, 2 . . . n;

(−1)
j−η

2 , i f j + η = 2k, k = 1, 2 . . . n.
(4)

The aim of this article is to develop a general approach and study the properties of
spectral decompositions of solutions to differential and algebraic Sylvester and Lyapunov
equations in the form of Hadamard products, including modal equations.

3. Main Results

Spectral Gramian decompositions allow us to represent the Gramian matrix as a
sum of summands containing multiples of different indices. The role of indices can be
different. Some indices play the role of leading indices, others play the role of slave indices.
The distribution of the indices’ roles is determined by the specifics of the applied tasks
of monitoring and controlling the system state. In addition, computations in the real or
complex domain require a different approach to the choice of method and algorithm for
computing or analyzing Gramian properties. The main idea of the derivation of modal
Lyapunov equations is to decompose the matrix of the right-hand side of the Lyapunov
equation into the sum of matrices corresponding to the individual eigenvalues of the
dynamics matrix or their combinations and to transform the matrices of the left-hand side
accordingly. The main types of spectral decompositions are decompositions by simple,
multiple, or Raman (pairwise) spectra. The Gramian matrix is, in general, a complex
Hermite matrix, which can be represented as the sum of a symmetric matrix and a oblique
symmetric matrix. Many applications of the Lyapunov equations are based on the use of
dynamics matrices, input–output matrices, and Faddeev matrices, and, in this case, the
matrices of Gramian spectral expansions are valid [30].

AT Pi + Pi A = −1
2
(R∗

i Q+QRi), (5)

APi + Pi AT = −1
2
(R∗

i Q+QRi), (6)

or
AT Pij + Pij A = −1

2
(R∗

i QRj+R∗
j QRi), (7)

APij + Pij AT = −1
2
(R∗

i QRj+R∗
j QRi), (8)

where Q is the matrix of the right-hand side of the Lyapunov equations, Ri, Rj are residues
of the dynamics matrix, their resolvent in its corresponding eigenvalue. Let us call
Equations (5)–(8) modal Lyapunov equations of the first type. In contrast, there are appli-
cations in which it is possible to use complex matrices of Lyapunov equation solutions

AT Pi + Pi A = −R∗
i Q, (9)

APi + Pi AT = −R∗
i Q, (10)

or
AT Pij + Pij A = −R∗

i QRj, (11)
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APij + Pij AT = −R∗
i QRj, (12)

Let us call Equations (9)–(12) modal Lyapunov equations of the second type.

Theorem 1 ([32]). Consider the modal Lyapunov equations of the second type for a continuous
stationary MIMO LTI system in diagonal canonical form.

AdPcij + Pcij A∗
d = −βijeieT

j ,

AdPci + Pci A∗
d = −∑n

j=1 βijeieT
j

(13)

AdPci + Pci A∗
d = −∑n

j=1 βijeieT
j ,

AdPoi + Poi A∗
d = −∑n

j=1 γijeieT
j

(14)

Above, the corresponding unit vectors are denoted by ei, eT
j . Suppose that the system is stable

and has a simple spectrum. Then, the controllability and observability Gramians exist, are singular,
and can be represented in the form of Hadamard products as

Pc = Ωc ◦ Ψc,Po = Ωo ◦ Ψo, (15)

Ψc =
[
βij

]
n×n, Ωc =

[
− 1

λi+λj

]
n×n

,

Ψo =
[
γij

]
n×n, Ωo =

[
− 1

λi+λj

]
n×n

,

Pcij = Ωc ◦ Ψcij, Ψcij = ei
[
βij

]
n×neT

j ,

Pci = ∑n
j=1 Ωc ◦ Ψcij,

(16)

If, in addition, the pair (A,B) is controllable and the pair (A,C) is observable, then the matrices
of multipliers Ωc and Ωo are definitely positive, and their diagonal elements and traces are positive
numbers. The Hermite components of the Gramians have the form [2]

PH
c =

1
2
(Pc + P∗

c ), PH
o =

1
2
(Po + P∗

o ).

For Gramians and sub-Gramians of controllability and observability in the form of Hadamard’s
products, the next formulas are valid

PH
cjη = ΩH

cjη ◦ ΨH
cjη , PH

ojη = ΩH
ojη ◦ ΨH

ojη , (17)

ΩH
cjη = ΩH

ojη = ∑n−1
j=0 ∑n−1

η=0 Re
[
− 1

λi + λη

]
ej+1eT

η+1,

ΨH
cjη = 1

2
(

β jη + β jη
∗), ΨH

ojη = 1
2
(
γjη + γjη

∗), (18)

PH
c = ∑n

j=1 ∑n
η=1 PH

cjη , PH
o = ∑n

j=1 ∑n
η=1 PH

ojη . (19)

Proof. The proof of the general formulas is based on the results of [32], taking into
account the separability properties of spectral expansion ns of Gramians. The validity of
the formulas of the modal Lyapunov Equations (16)–(19) is established by substituting the
formulas into the original Lyapunov equations and taking into account the equalities

Pc = ∑n
i=1 ∑n

j=1 Pcij, Po = ∑n
i=1 ∑n

j=1 Poij,

Pc = ∑n
i=1 Pci, Po = ∑n

i=1 Poi
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In [26], the general formulas for computing the spectral expansion of Gramians are
derived, which are also applicable to the modal equations of MIMO LTI systems

Pc = ∑n−1
j=0 ∑n−1

η=0 ∑n
k=1 ∑n

ρ=1
−1

λρ + λk

λ
j
kλ

η
ρ

.
N(sk)

.
N
(
sρ

) AjBBT(Aη)
T . (20)

Pc = ∑n−1
j=0 ∑n−1

ρ=0 ∑n
k=1

λ
j
k(−λk)

ρ

.
N(λk)N(−λk)

AjBBT AT
ρ , (21)

Po = ∑n−1
j=0 ∑n−1

η=0 ∑n
k=1 ∑n

ρ=1
−1

λρ + λk

λ
j
kλ

η
ρ

.
N(sk)

.
N
(
sρ

) AjCTC(Aη)
T . (22)

Po = ∑n−1
j=0 ∑n−1

ρ=0 ∑n
k=1

λ
j
k(−λk)

ρ

.
N(λk)N(−λk)

AjCTCAT
ρ , (23)

Above, Aj denotes the Faddeev matrices, which are expressed through linear combina-
tions of the products of the coefficients of the characteristic equations and the degree of the
dynamics matrix of the system [33,34]. When performing the transformations, it should be
taken into account that the residues of the resolvent of the dynamics matrix in its eigenval-
ues for the diagonal canonical form are strongly simplified: Res

[
(Is − Ad)

−1, λk

]
= ekeT

k .
Therefore, Formulas (20)–(23) pass to the following formulas:

Pc = ∑n−1
j=0 ∑n−1

η=0 ∑n
k=1 ∑n

ρ=1
−1

λρ+λk

λ
j
kλ

η
ρ

.
N(sk)

.
N(sρ)

ejBBTeT
η .

Pc = ∑n−1
j=0 ∑n−1

η=0 ∑n
k=1

λ
j
k(−λk)

ρ

.
N(λk)N(−λk)

ejBBTeT
η ,

Po = ∑n−1
j=0 ∑n−1

η=0 ∑n
k=1 ∑n

ρ=1
−1

λρ+λk

λ
j
kλ

η
ρ

.
N(sk)

.
N(sρ)

ejCTCeT
η ,

□

Theorem 2. Consider the modal Lyapunov equations for a continuous stationary SISO LTI system
in the canonical forms of controllability and observability,

AFPcij + Pcij
(

AF)T
= −eieT

j ,

(AF)
T Poij + Poij AF = −eieT

j ,
(24)

AFPci + Pci
(

AF)T
= −∑n

j=1 eieT
j ,

(AF)
T Poi + Poi AF = −∑n

j=1 eieT
j ,

(25)

Suppose that the system is stable and has a simple spectrum; then, pair (A,B) is controllable,
and pair (A,C) is observable.

Then, the modal Gramians of controllability and observability exist and are singular. The modal
Gramians of controllability for equations of state in the canonical form of controllability coincide
with the Gramians of observability for equations of state in the canonical form of observability. The
following decompositions of the Gramian matrices in the form of Hadamard’s products are valid:

Pc = Ω̃o ◦ Ψ̃c, Po = Ω̃o ◦ Ψ̃o, (26)
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The Hadamard decomposition on the pair and simple spectrum has the form

Ψ̃c = ∑n
i=1 ∑n

j=1 eieT
j ,

Ω̃c =

[
∑n

k=1 ∑n
ρ=1

−1
λρ+λk

λ
j
kλ

η
ρ

.
N(λk)

.
N(sρ)

]
n×n

=

[
∑n

k=1
λ

j
k(−λk)

η

.
N(λk)N(−λk)

]
n×n

(27)

Ψ̃o = ∑n
i=1 ∑n

j=1 eieT
j ,Ω̃o = Ω̃c, (28)

The Hadamard decomposition of the controllability and observability sub-Gramians over a
simple spectrum has the form

Pci = ∑n
j=1 Ω̃c ◦ Ψ̃cij, Poi = ∑n

j=1 Ω̃o ◦ Ψ̃oij. (29)

Hadamard products are invariant under the similarity transformations.

Remark 1. The upper sign of the wave is used in the matrices of the co-multipliers in the Hadamard
decomposition for the modal Gramians of controllability and observability for a continuous stationary
SISO LTI system.

Proof. The singularity of solutions to modal equations follows from the stability of these
equations. The coincidence of the solution matrices of the modal equations follows from
the coincidence of the solution matrices of the original equations Pc and Po [26]. In this
article, analytical expressions of the solution matrices in the form of spectral expansions for
a simple spectrum were derived as

Pc = Po = ∑n
k=1 ∑n−1

j=0 ∑n−1
η=0

λk
j
k(−λk)

η

.
N(λk)N(−λk)

1j+1η+1,

And, for a pair spectrum, in the form

Pc = Po = ∑n
k=1 ∑n

ρ=1 ∑n−1
j=0 ∑n−1

η=0
−1

λρ + λk

λ
j
kλρ

η

.
N(λk)

.
N
(
λρ

) 1j+1η+1,

Let us represent the matrix factors of the Hadamard decomposition in the form

Ψ̃c = ∑n
i=1 ∑n

j=1 eieT
j Ψ̃o = ∑n

i=1 ∑n
j=1 eieT

j .

We have scalar matrices of multipliers in the form

Ω̃o =

[
∑n

k=1 ∑n
ρ=1

−1
λρ + λk

λ
j
kλ

η
ρ

.
N(λk)

.
N
(
sρ

)
]

n×n

=

[
∑n

k=1

λ
j
k(−λk)

η

.
N(λk)N(−λk)

]
n×n

.

Hence, Formulas (24)–(29) follow. Since multiplier matrices are the known functions of
eigenvalues that serve as invariants under similarity transformations, multiplier matrices
and Hadamard products are invariants under these transformations. □

Corollary 1. The controllability and observability Gramians for the equations of state in the
canonical forms of controllability and observability are Xiao matrices that are invariants under
similarity transformations. The Xiao matrix is positively defined.

Proof. The following formulas are valid

Pc = Ω̃c ◦ Ψ̃c, Po = Ω̃o ◦ Ψ̃o, (30)
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Pc = Ω̃c ◦


1 1 1 1 ..1
1 1 1 1 ..1
1 1 1 1 ..1
1 1 1 1 ..1
1 1 1 1 ..1

, Po = Ω̃o ◦


1 1 1 1 ..1
1 1 1 1 ..1
1 1 1 1 ..1
1 1 1 1 ..1
1 1 1 1 ..1

,

Let us prove the fulfillment of the first property of Xiao matrices (3). The fulfillment
for zero elements of matrices is proved in [26]. The alternation of signs of the side diagonal
elements passing through diagonal element pjj follows from the sequence of these elements
in the form

∑n
k=1

sj+2
k (−sk)

j−2

.
N(sk)N1(−sk)

,

∑n
k=1

sj+1
k (−sk)

j−1

.
N(sk)N1(−sk)

,

∑n
k=1

sj
k(−sk)

j
.

N(sk)N1(−sk)
,

∑n
k=1

sj−1
k (−sk)

j+1

.
N(sk)N1(−sk)

The fulfillment of property (4) is similarly checked. Since the multiplier matrices are
known functions of the eigenvalues, the Xiao matrices are invariant under the similarity
transformation. We show the validity of this statement for its controllability Gramians. The
transformation matrix RF

c can be represented as the product of the Kalman controllability
matrix and the Hankel matrix [9,24]

RF
c =

[
en AF

c en . . . . . .
(

AF
c
)n−1en

]
Hc,

Hc =


an−1 . . . a1 ao ..1

... a1 ao 1 ..0
a1 ao 1 0 ..0
ao 1 0 0 ..0
1 0 0 0 ..0

,

A substitution when calculating the controllability matrix leads to the equality[
en AF

c en . . . . . .
(

AF
c
)n−1en

]
= H−1

c .

It follows that the controllability matrix is nondegenerate when transforming state
equations into the canonical form of controllability or observability. So the multiplier
matrix, which is the Xiao matrix, is positively defined. □

Theorem 3. Let us consider the spectral decompositions of solutions to the equations of linear
continuous stationary MIMO LTI systems. Suppose that the system is stable, matrices A, B, C are
real, matrix A has a simple spectrum, the pair (A,B) is controllable, and the pair (A,C) is observable.
Then, the following statements are true.

1. Spectral decompositions of its controllability and observability Gramians and controllability
or observability sub-Gramians in the form of Hadamard products for the case of pair spectrum
of the dynamics matrix have the following form

Pcjη = Ω̃cjη ◦ Ψcjη , Ψcjη = AjBBT(Aη)
T ,Pc = Ω̃c ◦ Ψc, (31)

Ω̃c = ∑n−1
j=0 ∑n−1

η=0 Ω̃cjη = ∑n−1
j=0 ∑n−1

η=0 ω(n, λk, λρ, j, η)ej+1eT
η+1 (32)
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ω
(
n, λk, λρ, j, η

)
= ∑n

k=1 ∑n
ρ=1

−1
λρ+λk

λ
j
kλρ

η

.
N(λk)

.
N(λρ)

,

Ψcjη = ∑n
ν=1 ∑n

µ=1 β
(jη)
νµ eνeT

µ ,

(33)

eν AjBBT(Aη)TeT
µ =

[
β
(jη)
νµ

]
n×n

,

eν AT
j CTCAηeT

µ
=

[
γ
(jη)
νµ

]
n×n

,
(34)

Ψc = ∑n−1
j=0 ∑n−1

η=0 ∑n
ν=1 ∑n

µ=1 β
(jη)
νµ eνeT

µ (35)

2. For the case of the decomposition of the controllability Gramian by a simple spectrum of the
dynamics matrix in the form of Hadamard products, we obtain the same Formulas (32)–(35),
except for the formulas of the multiplier matrix Ω̃c, which takes the form

Ω̃c = ∑n−1
j=0 ∑n−1

η=0 Ω̃cjη = ∑n−1
j=0 ∑n−1

η=0 ω(λk,−λk, j, η)ej+1eT
η+1 (36)

ω(λk,−λk, j, η) = ∑n
k=1

λ
j
k(−λk)

η

.
N(λk)N(−λk)

(37)

3. Exactly the same formulas as (31)–(35) are valid for the observability Gramians in the form of
Hadamard products. Only the formulas for the matrices Ψo are changing:

Po = Ω̃c ◦ Ψo, Ψo = ∑n−1
j=0 ∑n−1

η=0 ∑n
ν=1 ∑n

µ=1 γ
(jη)
νµ eνeT

µ . (38)

4. The Hermite component of the controllability and observability Gramians has the form [2]

PH
c =

1
2
(Pc + P∗

c ), PH
o =

1
2
(Po + P∗

o ), (39)

PH
cjη =

1
2

(
Pcjη + P∗

cjη

)
, PH

ojη =
1
2

(
Pojη + P∗

ojη

)
, (40)

Spectral decompositions of the Hermite components of the controllability and observability
Gramians have the form of Hadamard matrices

PH
cjη = ΩH

cjη ◦ ΨH
cjη , PH

ojη = ΩH
ojη ◦ ΨH

ojη , (41)

ΩH
cjη = ∑n−1

j=0 ∑n−1
η=0 Re

[
ω(n, λk, λρ, j, η)

]
ej+1eT

η+1

= ∑n−1
j=0 ∑n−1

η=0 Re[ω(n, λk,−λk, j, η)
]
ej+1eT

η+1,
(42)

ΨH
cjη = 1

2

(
AjBBT AT

η + Aη BBT AT
j

)
,

ΨH
ojη = 1

2

(
AT

j CTCAη + AηCTCAT
j

)
,

(43)

ΨH
ojη = 1

2

(
AT

j CTCAη + AηCTCAT
j

)
,

ΩH
ojη = ∑n−1

j=0 ∑n−1
η=0 Re

[
ω(n, λk, λρ, j, η)

]
ej+1eT

η+1,
(44)

ΨH
ojη = 1

2

(
AT

j CTCAη + AηCTCAT
j

)
,

PH
c = ∑n

j=1 ∑n
η=1 PH

cjη , PH
o = ∑n

j=1 ∑n
η=1 PH

ojη ,
(45)

PH
c = ∑n

j=1 ∑n
η=1 PH

cjη ,

PH
o = ∑n

j=1 ∑n
η=1 PH

ojη ,
(46)
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The multiplier matrices in all Gramian decompositions are Xiao matrices.

Proof. Let us return to the general formulas for Gramian spectral expansions (20)–(23). Let
us first consider pairwise Gramian spectral expansions. We divide the summation indices
into two groups: the first group covers the summation over the “j,η” indices of the resolvent
decompositions into Faddeev series, and the second group covers the summation of the
“j,η” indices over the pair spectrum. Let us distinguish the controllability sub-Gramian Pcjη
and represent its spectral decomposition as

Pcjη = Ω̃cjη ◦ Ψcjη , Ψcjη = AjBBT(Aη)
T (47)

Ω̃c = ∑n−1
j=0 ∑n−1

η=0 Ω̃cjη = ∑n−1
j=0 ∑n−1

η=0 ω(n,λk, λρ, j, η)ej+1eT
η+1 (48)

ω(n, λk, λρ, j, η) = ∑n
k=1 ∑n

ρ=1
−1

λρ + λk

λ
j
kλρ

η

.
N(λk)

.
N
(
λρ

) . (49)

Taking into account the designation

eν AjBBT(Aη)
TeT

µ =
[

β
(jη)
νµ

]
n×n

, eν AT
j CTCAηeT

µ
=

[
γ
(jη)
νµ

]
n×n

,

we have
Ψcjη = ∑n

ν=1 ∑n
µ=1 β

(jη)
νµ eνeT

µ (50)

Taking into account the previous calculations, we obtain the spectral decomposition of
the controllability Gramian of the system in the form

Pc = Ω̃c ◦ Ψc, Ψc = ∑n−1
j=0 ∑n−1

η=0 ∑n
ν=1 ∑n

µ=1 β
(jη)
νµ eνeT

µ (51)

Repeating similar reasoning for the case of the decomposition of the controllabil-
ity Gramian over the simple spectrum of the dynamics matrix, we obtain the same
Formulas (47)–(51) as in the previous case, except for the formulas for the matrix Ω̃c

Ω̃c = ∑n−1
j=0 ∑n−1

η=0 Ω̃cjη = ∑n−1
j=0 ∑n−1

η=0 ω(λk,−λk, j, η)ej+1eT
η+1 (52)

ω(n, λk,−λk, j, η) = ∑n
k=1

λ
j
k(−λk)

η

.
N(λk)N(−λk)

.

In [27], it is proved that the multiplier matrices Ω̃c are Xiao matrices. They coincide
with Formulas (27) and (28) of Theorem 2. It is easy to find that exactly the same formulas
are true for the observability Gramian’s multipliers if the conditions of the theorem are
preserved. Only the formulas for the matrices Ψo are changing

Po = Ω̃c ◦ Ψo, Ψo = ∑n−1
j=0 ∑n−1

η=0 ∑n
ν=1 ∑n

µ=1 γ
(jη)
νµ eνeT

µ .

Note that the developed method and algorithms for computing Gramians in the form
of Hadamard products provide a convenient way to compute and subsequently analyze
elements of Gramian matrices, which is an advantage when computing diagonal elements
and traces of Gramians and sub-Gramians as well as spectral decompositions of energy
functionals [31].

In all the cases discussed above, we are talking about the complex Gramians and
sub-Gramians of controllability and observability. Under the conditions of the theorem, the
controllability and observability Gramians are always real matrices, but the sub-Gramians



Mathematics 2024, 12, 36 12 of 20

can be complex. As can be seen from the last expressions, when calculating the Hermite
components of the Hadamard products of sub-Gramians, we obtain the formulas

PH
cjη =

1
2

(
Pcjη + P∗

cjη

)
, PH

ojη =
1
2

(
Pojη + P∗

ojη

)
,

Therefore, the matrix part of the sub-Gramians in the form of the Hadamard product
becomes a symmetric matrix, and its multiplier matrix becomes a real matrix. As a result of
these transformations, we obtain Formulas (41)–(46). □

4. Spectral Expansions of Solutions to Sylvester Differential Equations on a
Finite Interval

Let us consider two linear stationary continuous MIMO LTI dynamic systems of
the form

.
x(t) = Ax(t) + Bu(t), x(0) = 0, (53)

y(t) = Cx(t),

where x(t) ∈ Rn, u(t) ∈ Rd, y(t) ∈ Rd. We consider real matrices of corresponding sizes
A, B, C. Let us assume that system (53) is stable, unless otherwise stated, completely
controllable, and observable, and all eigenvalues of matrix A are different.

xm(t) = Amxm(t) + Bmu(t), xm(0) = 0, (54)

ym(t) = Cmxm(t),

where xm(t) ∈ Rn1 , u(t) ∈ Rd, ym(t) ∈ Rd. We consider real matrices of corresponding
sizes A, B, C, Am, Bm, Cm. Let us assume that system (54) is stable, unless otherwise stated,
completely controllable, and observable, and all eigenvalues of matrix Am are different and
do not coincide with the eigenvalues of matrix A. Following [27], consider the following
continuous differential equations associated with these systems of the form

dP(t)
dt

= AP(t) + P(t)AT + R, P(0) = 0n×n, (55)

dP(t)
dt

= AmP(t) + P(t)Bm + R1, P(0) = 0n×n, (56)

where R1 is a real matrix of size (n × n1). This section focuses on the Sylvester differential
equation. The main method for constructing a solution and its spectral expansions is
operational calculus and the expansion of the resolvents of dynamics matrices Am and Bm
into the Faddeev–Leverrier series. The latter have the form [33,34]

(Is − Am)
−1 = ∑n−1

j=0 Amjsj[Nm(s)]
−1, Amj = ∑n

i=j+1 ami A
i−j+1
m ,

(Is − Bm)
−1 = ∑n1

j=0 Bmjsj[Nm(s)]
−1, Bmj = ∑n1

i=j+1 bmiB
i−j+1
m ,

where Amj, Bmj are Faddeev matrices constructed for resolvent matrices Am, Bm using
the Faddeev–Leverrier algorithm; Nm(s), Nm1(s)—are the characteristic polynomials of
matrices Am, Bm; ami, bmi are the coefficients of these polynomials.

The first method for spectral expansions of solutions to Sylvester differential equations
is based on the following lemma:

Lemma 1 ([32]). Let us consider solving equations on a finite interval [0,t) ∈ [0,T]. Let us assume
that systems (53) and (54) are stable, matrices Am, Bm, R, R1 are real, matrices Am, Bm have a
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simple spectrum, their eigenvalues sk, sρ are different, they do not belong to the imaginary axis of
the eigenvalue plane, and the conditions are valid.

sk + sρ ̸= 0, k = 1, n; ρ = 1, n; sk ∈ spec Am, sρ ∈ spec Bm.

Let us transform the dynamics matrices to diagonal form

Amd = diag{. . . sk . . .} = Q1 AmQ−1
1 , Bmd = diag

{
. . . sρ . . .

}
= Q2BmQ−1

2 ,

where Q1, Q2 are matrices of dimensions [n × n] u [n1 × n1].
Then, the Sylvester differential equation solution on finite interval [0,t) ∈ [0, T] has the form

Pd(t) =
[

pdjη(t)
]
,

pdjη(t) =
rdjηe(sj+sη )t

sj+sη
+ pdjη , pdjη = − rdjη

sj+sη
,

P(t) = Q−1
1 Pd(t)(Q

T
2 )

−1
.

The second method of spectral decompositions of solutions to the Sylvester differential
equations is based on using the Laplace transform to compute the Lyapunov integral and
decomposing the resolvents of dynamics matrices Am and Bm into a Faddeev–Leverier series.

Theorem 4. Let us consider spectral expansions of solutions to Sylvester differential equations for
MIMO LTI systems (53) and (54). Let us assume that these systems are stable, matrices Am, Bm
and R1 are real, have a simple spectrum, their eigenvalues smk, smρ are different, they do not belong
to the imaginary axis of the eigenvalue plane, and the conditions are met.

smk + smρ ̸= 0, k = 1, n; ρ = 1, n1; smk ∈ spec Am, smρ ∈ spec Bm.

Then, the following statements are true.

1. Spectral expansions of solutions to Sylvester differential Equation (56) in the form of Hadamard
products for the case of the combination spectrum of dynamics matrices have the form

Pjη(t) = Ωjη(t) ◦ Ψjη , Ψjη = AmjR1Bmη , (57)

Pjη(t) = ∑n
k=1 ∑n1

ρ=1

sj
mksmρ

η

.
N(smk)

.
N
(
smρ

)
[

1 − exp
(
smk + smρ

)
t

smk + smρ

]
AmjR1Bmη , (58)

Ωjη(t) = ∑n
k=1 ∑n1

ρ=1
sj

mksmρ
η

.
N(smk)

.
N(smρ)

[
1−exp(smk+smρ)t

smk+smρ

]
,

P(t) = Ω(t) ◦ Ψ,

Ψ = ∑n−1
j=0 ∑n1−1

η=0 AmjR1Bmη ,

Ω(t) = ∑n
k=1 ∑n

ρ=1 ∑n−1
j=0 ∑n1−1

η=0
sj

mksmρ
η

.
N(smk)

.
N(smρ)

[
1−exp(smk+smρ)t

smk+smρ

]
ejeT

η .

2. For the case of the expansion of solutions to Sylvester’s differential equations over the simple
spectrum of the dynamics matrix, the same Formulas (57) and (58) are valid, but with new
multiplier matrices:

Pjη(t) = ∑n
k=1

sj
mk(−smk)

η

.
N(smk)N1(−smk)

(expsmkt − 1)AmjR1Bmη = Ωjη(t) ◦ Ψjη (59)
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Ωjη(t) = ∑n
k=1

sj
mk(−smk)

η

.
N(smk)N1(−smk)

(expsmkt − 1), Ψjη = AmjR1Bmη , (60)

P(t) = Ω(t) ◦ Ψ, Ψ = ∑n−1
j=0 ∑n1−1

η=0 AmjR1Bmη (61)

Ω(t) = ∑n
k=1 ∑n−1

j=0 ∑n1−1
η=0

sj
mk(−smk)

η

.
N(smk)N1(−smk)

(expsmkt − 1) (62)

The Hermitian component of spectral expansions of solutions to the Sylvester equations has
the form

PH(t)=
1
2
(P(t) + P∗(t)), PH

jη (t) =
1
2
(

Pjη(t) + Pjη
∗(t)

)
,

where the spectral decompositions of matrices P, P∗, Pjη , Pjη
∗ are determined by Formulas (59)–(62).

Proof. The solution to the differential equation (56) is an integral of the form [1,3]:

P(t) =
∫ t

o
eAmτ ReBmτdτ.

Let us apply the Laplace transform to both sides of the equation, considering the initial
conditions to be zero and using the theorem on the Laplace transform of the product of real
functions of time, the image of which is a fractional–rational algebraic fraction. In our case,
this fraction contains one zero pole, and all other poles are simple. In this case, the direct
transformation has the form

f (s)
sF(s)

=
f (0)

sF(0)
+ ∑q

i=1
f (si)

siF(si)
, (63)

where functions f (0)
sF(0)and F(s) have the form

f (0)
sF(0) =

1
s

[
∑n

k=1 ∑n1
ρ=1 ∑n−1

j=0 ∑n1−1
η=0

−1
smk+smρ

sj
mksmρ

η

.
N(sk)

.
N(smρ)

AmjR1Bmη

]
,

F(s) = ∑n
k=1 ∑n1

ρ=1 ∑n−1
j=0 ∑n1−1

η=0
−1

smk+smρ

sj
mksmρ

η

.
N(smk)

.
N(smρ)

1
s−smk−smρ

.

Substituting these expressions into (63), we obtain an image of the expansion of the
solution to Sylvester’s differential Equation (56), in terms of the combination spectrum of
the dynamics matrices, in the form

P(s) =

∑n
k=1 ∑n1

ρ=1 ∑n−1
j=0 ∑n1−1

η=0
−1

smk+smρ

sj
mksmρ

η

.
N(smk)

.
N(smρ)

AmjR1Bmη+

∑n
k=1 ∑n1

ρ=1 ∑n−1
j=0 ∑n1−1

η=0
−1

smk+smρ

sj
mksmρ

η

.
N(smk)

.
N(smρ)

AmjR1Bmη
1

s−smk−smρ
.

Having performed the inverse transformation, we obtain the spectral expansion of
the solution to the Sylvester differential Equation (56), in the combination spectrum of the
dynamics matrices, in the time domain:

Pjη(t) = ∑n
k=1 ∑n1

ρ=1

sj
mksmρ

η

.
N(smk)

.
N
(
smρ

)[ −1
smk + smρ

]
AmjR1Bmη = Ωjη(t) ◦ Ψjη ,

Ωjη(t) = ∑n
k=1 ∑n1

ρ=1

sj
mksmρ

η

.
N(sk)

.
N
(
smρ

)[exp (smk + smρ)t − 1
smk + smρ

]
, Ψjη = AmjR1Bmη ,
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Ω(t) = ∑n
k=1 ∑n1

ρ=1 ∑n−1
j=0 ∑n1−1

η=0

sj
mksmρ

η

.
N(smk)

.
N
(
smρ

) sj
mksmρ

η

.
N(smk)

.
N
(
smρ

) [exp(smk + smρ)t − 1
smk + smρ

]
ejeT

η ,

P(t) = Ω(t) ◦ Ψ, (64)

Equality (64) expresses the spectral expansion of the Sylvester differential equations’
solutions in the combination spectrum of matrices Am and Bm. This proves the first
statement of the theorem.

Using the identity

∑n
k=1 ∑n1

ρ=1
−1

smk + smρ

sj
mksmρ

η

.
N(smk)

.
N
(
smρ

) ≡ ∑n
k=1

sj
mk(−smk)

η

.
N(smk)N(−smk)

(65)

one can obtain similar expansions for the simple spectrum of matrix Am:

Pjη(t) = ∑n
k=1

sj
mk(−smk)

η

.
N(smk)N1(−smk)

(expsmkt − 1)AmjR1Bmη = Ωjη(t) ◦ Ψjη ,

Ωjη(t) = ∑n
k=1

sj
mk(−smk)

η

.
N(smk)N1(−smk)

(expsmkt − 1) = Ωjη(t) ◦ Ψjη ,

Ψjη = AmjR1Bmη ,

P(t) = Ω(t) ◦ Ψ,

(66)

Ψ = ∑n−1
j=0 ∑n−1

η=0 AmjR1Bmη , (67)

The resulting expansions prove the second statement of the theorem. The third
statement follows from statements 1 and 2. Equality (66) expresses the spectral expansion
of solutions to the Sylvester equations in the simple spectrum of matrix Am. □

Let us apply the results of the theorem to the calculation of spectral decompositions of
the finite cross-Gramian of a continuous stable MIMO LTI system,

.
x(t) = Ax(t) + Bu(t), x(0) = 0, (68)

y(t) = Cx(t),

which is a solution to the simple Sylvester differential equation

dP(t)
dt

= AP(t) + P(t)A + BC, P(0) = 0. (69)

Corollary 2. Let us consider the spectral expansions of solutions to Sylvester differential equations
and renumber for the MIMO LTI system (69). Let us assume that the system is stable, matrix A, B
and C, are real, their dimensions have been harmonized, matrix A has a simple spectrum, and the
conditions are met.

sk + sρ ̸= 0, k = 1, n; sk ∈ spec A.

Then the following statements are true.

1. The spectral decomposition of the cross-Gramian image has the form

P(s) = ∑n
k=1 ∑n

ρ=1 ∑n−1
j=0 ∑n−1

η=0
−1

sk+sρ

sj
ksρ

η

.
N(sk)

.
N(sρ)

AjBCAη
1

s−sk−sρ
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2. The spectral decomposition of the cross-Gramian over the pair spectrum of matrix A in the
time domain has the form

P(t) = ∑n
k=1 ∑n

ρ=1 ∑n−1
j=0 ∑n−1

η=0
−1

sk+sρ

sj
ksρ

η

.
N(sk)

.
N(sρ)

[
exp (sk + sρ)t − 1

sk + sρ

]
The Hadamard decomposition for a finite cross-Gramian has the form

P(t) = Ωcr(t) ◦ Ψcr, Ωcr(t)

Ωcr(t) = ∑n
k=1 ∑n

ρ=1 ∑n−1
j=0 ∑n−1

η=0
sj

ksρ
η

.
N(sk)

.
N(sρ)

AjBCBj

[
exp (sk+sρ)t−1

sk+sρ

]
Ψcr = ∑n−1

j=0 ∑n−1
η=0 AjBCBη ,

3. The diagonal terms and trace of the cross-Gramian have the for

pjj(t) = ∑n
k=1 ∑n

ρ=1
sj−1

k sρ
j−1

.
N(sk)

.
N(sρ)

[
e(sk+sρ)t−1

sk+sρ

]
Aj−1BCAj−1, j = 1, n.

trP(t) = tr∑n
k=1 ∑n

ρ=1 ∑n−1
j=0

sj
ksρ

j
.

N(sk)
.

N(sρ)

[
exp (sk+sρ)t−1

sk+sρ

]
AjBCAη .

Example 1. Let us consider the linear stationary continuous SISO LTI dynamic system of the form

.
x(t) = Ax(t) + Bu(t), x(0) = 0, (70)

y(t) = Cx(t),

where

A =

[
−0.5 0

0 −1

]
, b =

[
0.5
1

]
, c =

[
0 1

]
.

Let us, then, obtain spectral expansions of the cross-Gramian in Hadamard form for the system
(70). In this case, it is possible to calculate the expressions:

N(s) = a2s2 + a1s + a0 = (s − s1)(s − s2),

s1 = −0.5, s2 = −1,

a2 = 1, a1 = 1.5, a0 = 0.5,

.
N(s) = 2s + 1.5,

(Is − A)−1 = (A1s + A0), N−1(s),[
s + 5 0

0 s + 1

]−1

=

[
s + 1 0

0 s + 0.5

]
N−1(s),

A1 =

[
1 0
0 1

]
, A0 =

[
1 0
0 0.5

]
,

bc =
[

0 0.5
0 1

]
,

.
N(s1) = 0.5,

.
N(s2) = −0.5, N(−s1) = 1.5,

N(−s2) = 3,

AP + PA + bc = 0, dP
dt = AP + PA + bc, P(0) = 0,

P(∞) = ∑n−1
j=0 ∑n−1

η=0 ∑n
k=1

sj
k(−sk)

η

.
N(sk)N(−sk)

AjbcAη ,
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Ψ00 = A0bcA0=

[
0 0.25
0 0.25

]
, Ψ01 = A0bcA1=

[
0 0.5
0 0.5

]
,

Ψ10 = A1bcA0=

[
0 0.25
0 0.5

]
, Ψ11 = A1bcA1=

[
0 0.5
0 1

]
.

Let us calculate multiplier matrices Ωjη = ∑2
k=1 ω(1,sk,−sk, j, η)ej+1eT

η+1, k = 1, 2.

ω(1, s1,−s1, j, η) :

ω(1, s1,−s1, 0, 0) = 4
3 , ω(1, s1,−s1, 1, 0) = − 2

3 ,

ω(1, s1,−s1, 0, 1) = 2
3 , ω(1, s1,−s1, 1, 1) = − 1

3 ,

ω(1, s2,−s2, j, η) :

ω(1, s2,−s2, 0, 0) = − 2
3 , ω(1, s2,−s2, 1, 0) = 2

3 ,

ω(1, s2,−s2, 0, 1) = − 2
3 , ω(1, s2,−s2, 1, 1) = 2

3 .

Finally, we obtain the spectral decomposition of the cross-Gramian in Hadamard form:

Pjη(∞) = Ωjη ◦ Ψjη ,

Ω00 =
2
3

[
1 1
1 1

]
Ω01 = 0, Ω10 = 0, Ω11 =

1
3

[
1 1
1 1

]
. (71)

P(∞) =

[
0 1

3
0 1

2

]
. (72)

It is easy to see that this matrix is a solution to the original algebraic Sylvester equation.
Note that the multiplier matrix is the Xiao matrix. Let us proceed to consider solutions to the
Sylvester differential equations that are finite cross-Gramians. Consider spectral decompositions
of cross-Gramians over the simple spectrum of the dynamics matrix A. For this purpose, we use
Formulas (59)–(62).

Pjη(t) = Ωjη (t) ◦ Ψjη ,

Ωjη (t) = ∑2
k=1{ω(1, sk,−sk, j, η)[1 − exp(skt)]

}
ej+1eT

η+1,

Ω00(t) =
2
3∑2

k=1[1 − exp(skt)]e1eT
1 =

[
2
3
− 4

3
exp(−0.5t)− 2

3
exp(−t)

]
, (73)

Ω01(t) = 0, Ω10(t) = 0, (74)

Ω11(t) =
1
3∑2

k=1[1 − exp(skt)]e2eT
2 =

[
1
3
+

1
3

exp(−0.5t)− 2
3

exp(−t)
]

, (75)

Finally, we obtain the formulas of the finite cross-Gramian in Hadamard form:

P(t) = ∑1
j=0 ∑1

η=0 {ω(1, s1,−s1, j, η[1 − exp(s1t)]}+ {ω(1, s2,−s2, j, η[1 − exp(s2t)]}AjbcAη .

The matrices of multipliers of finite cross-Gramians preserve the structure of Xiao matrices of
infinite controllability and observability Gramians (zero plaid structure [23–25]), but their elements
depend not only on the eigenvalues of the dynamics matrix but also on time. Therefore, such matrices
can be called generalized Xiao matrices, in contrast to the controllability and observability Gramians
defined in [23–25].

Limit formulas are valid for the elements of matrices multipliers of finite and infinite cross-
Gramians defined by Formula (72):

lim
t→∞

Ωjη (t) = Ωjη (∞), ∀i, j = 1, 2, ∀t ∈ [0, ∞).
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Note that, unlike the controllability and observability Gramians of the original system,
the cross-Gramians matrix is not symmetric, although the matrices of their multipliers
are symmetric.

5. Conclusions

This paper shows that the Gramians’ Hadamard decomposition and their multiplier
matrices play an important role in the problems of analyzing structural properties for
a wide class of continuous linear dynamical systems given by their different equations
of state. In the Introduction, we noted the important role of the scientific direction of
works [22–27] based on the use of Rouse tables and Xiao matrices to compute finite and
infinite Gramians by transforming the equations of state into canonical forms. Let us discuss
the question, what is the difference between the methods and algorithms developed in this
paper and those of the first direction? In [23], iterative procedures for computing solutions
to algebraic Lyapunov equations using elements of Rouse tables and coefficients of the
system’s characteristic equation, leading to a Gramian representation in the form of Xiao
matrices, are proposed. The methods and algorithms developed in this paper are based
on direct methods for computing Gramian elements in closed form, for which Hadamard
products and expansions of the resolvent dynamics matrix into the Faddeev–Leverrier
series are used. Spectral expansions of infinite Gramians for the cases of simple and pair
spectra were first obtained in the monograph [1]. In the monograph [25], there appeared
formulas for computing the elements of the controllability Gramian for a system in which
the equations of state are represented in diagonal canonical form. A similar result was
previously obtained, by a different method in [32], for computing the controllability and
observability Gramians in a broader setting, taking into account the multiplicity of the
eigenvalues of the dynamics matrix. It is shown that Gramian matrices are pseudo-Hankel
matrices—Xiao matrices. The advantages of this approach are obvious:

• Rouse tables are easier to compute compared to computing the eigenvalues of the
matrix;

• the computation of Gramians using spectral decompositions leads to cumbersome ex-
pressions for the multiple spectra of the dynamics matrix, which makes it problematic
to apply this method for high-dimensional systems, while in the first direction such
problems do not arise;

• the computation of inverse controllability Gramians is reduced to solving systems of
linear algebraic equations [24];

• the method can be used not only to compute Gramians but also to analyze the stability
of the system according to the Rouse–Gurwitz criterion.

The disadvantage of the method is its limited application: it is recommended for use in
systems of small and medium dimensionalities [24]. The works of the first direction did not
use the Hadamard decomposition of Gramian matrices, the decomposition of the resolvent
of the dynamics matrix into the Faddeev–Leverrier series, or the Laplace transform for
computing Gramians. The results obtained in this paper also present a new method for
computing Xiao matrices in closed form based on the information of the spectrum of the
dynamics matrix and its characteristic equation. The decomposition of the Hadamard
for Gramians and cross-Gramians of continuous systems given by equations of state in
basic canonical forms changes the very paradigm of computation from the computation of
matrices to the computation of their elements. This is a useful technique for computing the
Gramians of weakly filled dynamics matrices and computing mixed Gramians for unstable
systems [35]. Another advantage of the Hadamard decomposition: the proposed method
gets rid of Faddeev matrices in spectral decompositions by transforming the equations
of state into canonical forms of controllability and observability. The disadvantage of
the second direction method compared to the first one is the cumbersome formulas of
Gramian spectral decompositions for the case of the multiple spectra of the dynamics
matrix. New possibilities of Gramian computation by using canonical transformations into
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diagonal, controllable, and observable canonical forms are shown in this article. In this case,
Gramian matrices can be represented as the Hadamard product matrices of the multiplier
matrices and matrices of the transformed right-hand side of the Lyapunov equations. It is
shown that the multiplier matrices are invariant under various canonical transformations
of linear continuous systems. We obtain modal Lyapunov equations for continuous SISO
LTI systems in diagonal form and new algorithms for the elementwise computation of
Gramian matrices for stable continuous MIMO LTI systems. We develop new algorithms
for the computation of controllability Gramians and their traces in the form of Hadamard
products of Xiao matrices for continuous SISO LTI systems in controllable and observable
canonical forms. The use of transformations into canonical forms of controllability and
observability made it possible to simplify the formulas of spectral decompositions in the
form of Xiao matrices and simplify the calculations of Gramians. This article obtains new
spectral expansions in Hadamard form for solutions to algebraic and differential Sylvester
equations and spectral expansions of finite and infinite cross-Gramians of continuous
MIMO LTI systems. The obtained results can be used for the optimal selection of locations
for sensors and actuators in multivariable control systems and dynamic networks, for
calculations and analysis of empirical Gramians, for assessing the risk of loss of stability
in electric power systems, and in problems of analysis and synthesis of modal control
systems [23].
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Nomenclature

SISO LTI system a linear time invariant system with one input and one output
MIMO LTI system a linear time invariant system with many inputs and many outputs

Xiao matrix
a pseudo-Hankel matrix depending on the coefficients of the
characteristic polynomial of the dynamics matrix [23,24]

Faddeev matrix
a matrix arising from the decomposition of the resolvent of the dynamics
matrix of a linear dynamical system [33,34]

Faddeev’s series
a recursive method for computing the coefficients of the characteristic
polynomial of a matrix [33,34]

Kalman
controllability matrix

a matrix used in Kalman decomposition to transform the system state
equations into the canonical form of controllability [8,9]

Gramian a matrix that is a solution of a special kind of Lyapunov equation [1]

Sub-Gramian
a matrix that is a summand of the sum of matrices in the spectral
decomposition of the Gramian matrix [1,4,6]

Hadamard’s product
a matrix whose every element is the product of the corresponding
elements of the input matrices (wiki) [2,4,6]

Hermite component
a matrix that is a complex square matrix equal to its conjugate transpose
matrix [2]
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