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Abstract: The significance of precise gold price forecasting is accentuated by its financial attributes,
mirroring global economic conditions, market uncertainties, and investor risk aversion. However,
predicting the gold price is challenging due to its inherent volatility, influenced by multiple factors,
such as COVID-19, financial crises, geopolitical issues, and fluctuations in other metals and energy
prices. These complexities often lead to non-stationary time series, rendering traditional time series
modeling methods inadequate. Our paper presents a multi-objective optimization algorithm that
refines the interval prediction framework with quantile regression deep learning in response to this
issue. This framework comprehensively responds to gold’s financial market dynamics and uncer-
tainties with a screening process of various factors, including pandemic-related indices, geopolitical
indices, the US dollar index, and prices of various commodities. The quantile regression deep-
learning models optimized by multi-objective optimization algorithms deliver robust, interpretable,
and highly accurate predictions for handling non-linear relationships and complex data structures
and enhance the overall predictive performance. The results demonstrate that the QRBiLSTM model,
optimized using the MOALO algorithm, delivers excellent forecasting performance. The composite
indicator AIS reaches −15.6240 and −11.5581 at 90% and 95% confidence levels, respectively. This
underscores the model’s high forecasting accuracy and its potential to provide valuable insights for
assessing future trends in gold prices. The deterministic and probabilistic forecasting framework for
gold prices captures the market dynamics with the new pandemic index and comprehensively sets a
new benchmark for predictive modeling in volatile market commodities like gold.

Keywords: gold price forecasting; quantile regression; probabilistic prediction models; feature
screening; multi-objective optimization algorithms

MSC: 68T07

1. Introduction

With its multifaceted roles, gold is a pivotal actor in the theatre of the global econ-
omy, having intricate interconnections with a spectrum of financial and macroeconomic
elements [1,2]. It is a unique asset, with a repository of inherent value beyond its physical
commodity aspect, and concurrently orchestrates vital financial and monetary functions
within the economic framework [3]. Gold assumes a prominent position in the international
reserves across various nations, augmenting its stature and underscoring its universal ap-
peal and strategic significance. Embodied with a triad of characteristics, gold possesses
monetary, commodity, and financial properties, outlining its distinctive presence in the
economic landscape [4]. During the prevailing dynamism and uncertainties characterizing
the global economic milieu, a compelling necessity arises to delve deeply into the strategic
implications of gold resources. This involves cultivating a nuanced understanding of the
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mechanisms that drive the fluctuations in international gold prices, enhancing the preci-
sion in forecasting these prices’ volatility, and bolstering strategies to safeguard national
economic and financial security [5].

The price of gold, which has both commercial and financial attributes [6], is not
only influenced by the US dollar exchange rate and the prices of other metals but also
by epidemics, geopolitical risks, and other factors [7]. In financial markets, gold has
long been regarded as a bastion of safety amidst turbulent times [8]. This phenomenon is
particularly evident during crises when gold prices often experience significant fluctuations.
For instance, during the Global Financial Crisis of 2008, gold prices saw a notable rise
as investors sought refuge from the volatility of traditional stock markets. Similarly, the
prolonged duration of the COVID-19 pandemic has saturated the investment and business
areas [9–11]. Owing to its substantial effects, governments globally have implemented a
variety of urgent actions at the beginning of the COVID-19 outbreak [12]. The emergence of
the COVID-19 pandemic at the start of 2020 triggered a sharp rise in gold prices, reflecting
the uncertainty and economic instability that characterized the global landscape [13]. These
examples underscore the sensitivity of gold prices to crisis events, highlighting its role as a
“safe-haven” asset during periods of economic and geopolitical distress. This trend offers a
unique insight into investor behavior during crises and underscores the enduring value of
gold in a diversified investment portfolio. Since the factors are coupled and interrelated,
the price fluctuations of non-ferrous metals are highly irregular and non-linear, which
makes accurate and robust price forecasting an arduous job [14].

In recent decades, various techniques have been devised to improve the precision of
forecasting gold prices. However, most of these methods concentrate on point predictions.
Traditional time series models [15], such as ARIMA, require data stationarity and may
struggle with complex trends or seasonal patterns [16]. Machine learning and deep learn-
ing [17] have been extensively and successfully applied to the complexity and non-linearity
of gold price data. Liu et al. (2017) [18] used the random forest (RF) algorithm to analyze the
variables affecting the price of gold and to predict the price of gold. In addition, applying
heuristic algorithms to optimize the model parameters is likewise an efficient way to boost
the model performance. Weng et al. (2020) [19] proposed a Genetic Algorithm Regularized
Online Extreme Learning Machine that can accurately predict the price of gold. Zakaria
et al. (2019) [20] proposed the WOA-NN model using the whale optimization algorithm
(WOA) [21] as an instructor for learning the multilayer perceptron neural networks, which
outperforms the classical NN, particle swarm optimization-neural network [22], genetic
algorithm-neural network [23] and ARIMA models.

All the above models’ point forecasting performance diminishes under extreme uncer-
tainty conditions [24]. In the face of the complex volatility of the gold price, it should not
simply be set to a specific value but to a growth interval that allows more scope for dealing
with future uncertainties [25]. In addition, interval forecasting can accurately measure the
variability in forecasts due to uncertainty and determine a prediction interval at a certain
level of significance that incorporates possible upper and lower bounds on the initial value.
This approach provides fuller information and gives more credibility to the predictions [26].
Quantile regression (QR) has been introduced for deterministic and probabilistic range
predictions [27]. Unlike ordinary regression, QR is highly sensitive and robust to outliers
in the response variable. Also, it exhibits flexibility due to having no strict requirement
for normality and homoscedasticity and offers a comprehensive view of the examined
relationship with highly interpretable results. Due to its robustness to outliers and the
straightforward interpretation of its output parameters through distribution evaluation,
QR has become a powerful tool for interval prediction.

QR and interval forecasting are methods with the advantage of parametric inter-
pretability. However, they rely heavily on specific assumptions regarding how the data
are generated. Utilizing learning techniques allows for a shift away from these models
based heavily on assumptions, moving towards methods more driven by the actual data.
These techniques can capture complex non-linear relationships and identify hidden pat-
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terns and interactions in data. Models based on neural networks have been utilized to
simulate and predict gold prices [28]. Also, Yurtsever et al. (2019) [29] predicted the gold
price using LSTM, bi-directional LSTM (BiLSTM) [30], and gated recurrent unit (GRU) [31]
methods. These models can capture temporal dependencies in the data, learning patterns
over sequences of inputs. However, these intense machine-learning models are frequently
regarded as “black boxes”, which makes them challenging to interpret and comprehend. In-
tegrating QR and machine-learning methods effectively offers enhanced predictive power,
robustness to outliers, the ability to handle complex relationships, and improved inter-
pretability. This fusion provides a comprehensive understanding of data patterns with
superior interpretability, leading to more accurate and reliable models. Combination mod-
els are proficient at identifying complex patterns within sequential data. However, their
predictive performance can be improved further by optimizing the coverage rate and width
of the confidence intervals.

Prediction intervals play a crucial role in interval forecasting models, embodying opti-
mal attributes when they satisfy two fundamental conditions. First, they should guarantee a
dependable coverage rate for finite samples, and second, they should aspire to minimize the
prediction interval width as much as possible [32]. Utilizing multi-objective optimization al-
gorithms to optimize the prediction interval coverage rate and interval width concurrently
enhances the precision and reliability of predictions. These algorithms facilitate a balanced
trade-off by ensuring that the prediction intervals are neither excessively broad nor overly
narrow, allowing for improved accuracy [33]. This approach fosters the development of
prediction models that are both reliable and effective, catering optimally to the intrinsic
complexities and variances within the data.

This study proposes a novel comprehensive framework designed for forecasting the
gold price, emphasizing the pivotal role of gold and its price sensitivity to various deter-
minants such as epidemics, economic flux, and geopolitical uncertainties. The framework
combines QR with advanced deep-learning models and further enhances these models
using multi-objective optimization algorithms to enhance the prediction’s reliability and
resolution. Similarly, to other ensemble machine-learning algorithms, this forecasting
approach achieves high levels of accuracy and stability but with limited interpretability. To
this end, our study incorporates an epidemic index, a geopolitical index, and the US dollar
index within the proposed forecasting framework, aiming to significantly enhance its inter-
pretability and practical utility. Though these indices cover significant ground, it is essential
to acknowledge that there are numerous other factors influencing gold price volatility that
are not currently accounted for in our framework. Looking ahead, our model’s feature
selection module is designed to be adaptable and universal, enabling the incorporation of
additional influential factors in future framework iterations. The forecasting framework
demonstrates remarkable resilience and precision, highlighting its capacity to deliver de-
pendable and actionable insights, which are invaluable for investors and policymakers.
Also, it effectively captures the dynamic nature of the financial market, making it highly
versatile and applicable across a broad spectrum of uses. Key contributions of this research
are delineated as follows:

(1) This research presents a robust method for accurate gold price prediction, which
is essential due to gold’s impact on global commodities and economic indicators
like exchange rates. Our approach enhances financial forecasting and serves as an
early warning system for potential economic crises. It offers valuable insights for
understanding and managing market uncertainties.

(2) Historical crises, with a notable example being the recent pandemic, heavily influence
gold prices, highlighting the importance of carefully choosing index variables in
predictive model construction for precise forecasts. This study introduces a variable
selection method for accurate gold price prediction, accounting for the impact of crises
like the recent pandemic. It effectively incorporates both “hard” indicators (metal
and energy prices) and “soft” indicators (pandemic and geopolitical indices) using
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correlation analysis and economic principles. This approach improves the model’s
interpretability and relevance in economic contexts.

(3) This approach combines QR and deep-learning models to achieve multivariate proba-
bility forecasting. It reaches a balance between interpretability and predictive power.
This method enhances the definition of the dependent variable’s distribution, signifi-
cantly improving prediction accuracy.

(4) A novel interval prediction framework proposes the combination of multi-objective
optimization with quantile deep learning to forecast gold prices. It optimizes the
convergence and width of prediction intervals for enhanced trustworthiness and
precision. Experimental results highlight the improved predictive power of the two
multi-objective optimization algorithms, leading to more reliable interval predictions.

The subsequent sections of this research are as follows: The probabilistic interval
model, evaluation metrics, and MOOA used in this research are presented in Section 2. Two
experiments were carried out in this research, and the analysis of the outcomes is given in
Section 3. Section 4 outlines the conclusions of this research.

2. Methodology

This research develops a comprehensive forecasting framework for precise gold price
predictions by embracing its intrinsic financial characteristics, which have a significant
bearing on major commodities and pivotal financial-economic variables like exchange
rates. The framework serves as an early warning mechanism for potential economic
downturns and a navigator through market uncertainties. Acknowledging the impact
of historical crises on gold prices, with a notable example being the recent pandemic,
this research framework involves meticulous consideration of various factors and the apt
selection of variables. The variable selection methods in this study adeptly select both
“hard” indicators, like prices of different metals and energy, and “soft” indicators, such as
pandemic and geopolitical indices, enhancing the model’s interpretability and relevance in
economics. Utilizing probabilistic forecasting algorithms amplifies the accuracy of interval
predictions, offering a nuanced understanding of fluctuating contributing factors. The
novel framework introduces multi-objective optimization to optimize the convergence and
width of prediction intervals, thereby elevating the reliability and precision of interval
predictions for gold prices. Through the synergy of these innovative approaches, this work
significantly bolsters the accuracy and dependability of forecasting gold prices, contributing
substantial insights for navigating economic conditions and market uncertainties.

2.1. Variable Selection

Variable selection is a pivotal phase in model building and is vital for enhancing the
model’s forecasting accuracy and interpretability. In the realm of gold price forecasting,
variable selection has emerged as a cornerstone, instrumental in cultivating models that
are both potent and precise. Gold prices are susceptible to many influences, such as the
US dollar index, the prices of other metals, the geopolitical index, and the COVID-19
index necessitating a meticulous selection of variables to encapsulate these multifaceted
determinants effectively. Employing techniques such as the least absolute shrinkage and
selection operator (LASSO) and the Pearson correlation coefficient (PCC) has proven essen-
tial. With its prowess in shrinking coefficients and setting them to zero, LASSO facilitates
the exclusion of irrelevant variables, mitigating the curse of dimensionality and enhancing
model interpretability. This becomes particularly pertinent given the plethora of poten-
tial variables that could influence gold prices, ensuring that the model remains robust
and less susceptible to overfitting. On the other hand, the Pearson correlation coefficient
(PCC) unveils the linear relationships between features. Understanding such linear de-
pendencies is invaluable in the context of gold prices, as it allows for the discernment of
variables that significantly sway the prices, ensuring that the model is attuned to the most
influential factors.
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2.1.1. Least Absolute Shrinkage and Selection Operator (LASSO)

LASSO [34] is a technique for shrinking the dimensionality of data based on absolute
coefficients. The essence is to compress the coefficients of the variables by incorporating
a penalty term to the traditional objective function so that the aggregate of their absolute
magnitudes does not exceed a predefined limit. Also, this method allows for the regression
coefficients of specific variables to be set to zero, thus excluding these variables and realizing
the effect of dimensionality reduction. The retained variables are considered significant.
LASSO regression analysis can effectively decrease the dimensionality of the input variables
and solve the multicollinearity problem between variables, thus improving the model’s
efficacy. The designated equation is presented as follows:

Assuming there are n sets of independent variables with Xi (i = 1, 2, · · · , n) and
dependent variables with Yi (i = 1, 2, · · · , n), the equation of LASSO regression is

β̂Lasso = argmin
β

∥Yi − Xiβ∥2 s.t.
n

∑
i=1

|βi| ≤ q, q ≥ 0 (1)

equivalent to

β̂Lasso = argmin
β

(
∥Yi − Xiβ∥2 + λ

n

∑
i=1

|βi|
)

(2)

In Equation (2), q ≥ 0 is the adjustment parameter, which affects the accuracy of the
parameter estimates; βi is the regression coefficient; λ is the non-negative regularization

coefficient; and λ
n
∑

i=1
|βi| is called the penalty term.

2.1.2. Pearson Correlation Coefficient (PCC)

The PCC [35] is a linear correlation coefficient mainly applied to define the extent of
linear correlation between different features. Overall, the following formula allows for the
computation of the correlation coefficient:

ρX,Y =
E((X − EX)(Y − EY))√

Var(X)
√

Var(Y)
(3)

where E represents the mathematical expectation of the variable, i.e., the mean; Var
means the variance of the variable, and

√
D means the standard deviation of the vari-

able; E((X − EX)(Y − EY)) represents the covariance between the random variables X
and Y; and ρX,Y represents the ratio of the covariance and standard deviation between
random variables X and Y.

Estimating the correlation coefficient r amidst X and Y can be obtained by calculating
their covariance and standard deviation as follows:

r =

n
∑

i=1

(
Xi − X

)(
Yi − Y

)
√

n
∑

i=1

(
Xi − X

)2
√

n
∑

i=1

(
Yi − Y

)2
(4)

The value of r ranges from [−1, 1]. The nearer its absolute magnitude is to 1, the
more potent the correlation between the variables, and the closer it is to 0, the weaker the
relationship between the variables.

In conclusion, variable screening using LASSO and the PCC is an effective strategy
in gold price forecasting. LASSO’s dimensionality reduction capability ensures model
refinement to focus on the most influential variables, promoting a nuanced understanding
of gold price influences. Simultaneously, the PCC elucidates the linear interdependencies
among variables, enabling the model to be finely tuned to the intricacies of market dynamics.
The synergistic integration of these variable-screening methods prepares the forecasting
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model, ensuring it can adeptly navigate the complexity and uncertainty of the gold market,
ultimately producing accurate and reliable forecasts.

2.2. Probabilistic Prediction Models

Quantile regression models accurately capture intricate gold price movements and
information sensitive to the various factors affecting the gold price. Deep learning has
increased across diverse sectors, establishing itself as a leading approach for forecasting
the financial market [36]. Our framework merges quantile regression with deep learning
to improve interval forecasting, ensuring precise prediction of interval endpoints. This
synergy, first discussed in seminal works [37], leverages neural networks to sidestep rigid
data distribution assumptions, crucial for tail distribution estimation. This fusion captures
intricate non-linear patterns, enhancing model flexibility and structural determination.
Its significant impact on risk management and financial forecasting is underscored by
compelling numerical results. This section will emphasize the quantile regression long
short-term memory model (QRLSTM) and the quantile regression bidirectional long short-
term memory model (QRBiLSTM), highlighting the integration of QR with various machine-
learning algorithms.

2.2.1. Quantile Regression (QR)

The principle of QR [38] is to split the data into several quantile points based on
the magnitude of the reliant variable and then to study the regression effect on these
quantile points separately. The QR method not only analyzes the conditional expectations
of the explanatory variable but also the correlation between the analytical variable and the
median and quantile of the distribution of the descriptive variable. Median regression is a
specific instance of QR where the minimization of residuals is achieved using symmetric
weights. At the same time, the other conditional QR requires asymmetric weights to solve
the residual minimization. The linear quantile regression model is calculated as follows:

QZt(τ|Λt ) ≜ F
(

Λt,
=
ζ (q)

)
= Λt

=
ζ (q) (5)

where
=
ζ (q) = (ζ0(q), ζ1(q), · · · , ζm(q)) is the regression coefficient matrix, when τ = q, i.e.,

QZt(q|Λt ) represents the conditional quantile of level q. The predicted value
=̂
ζ (q) of

=
ζ (q)

is determined as follows:

=̂
ζ (q) = argmin

(
n

∑
t=1

Ψq

(
Yt − Λt

=
ζ (q)

))
(6)

Ψq

(
Yt − Λt

=
ζ (q)

)
=


(1 − q)

(
Zt − Λt

=
ζ (q)

)
, Zt − Λt

=
ζ (q) < 0

q
(

Zt − Λt
=
ζ (q)

)
, Zt − Λt

=
ζ (q) > 0

(7)

The following expression estimates the q-th conditional quartile of the dependent variable:

QZt(q|Λt ) ∼ Λt
=̂
ζ (q) (8)

2.2.2. Quantile Regression Long Short-Term Memory (QRLSTM)

LSTM is based on recurrent neural networks (RNNs) and has memorability and
parameter sharing features [39]. LSTM neural networks can productively learn long-term
dependencies between different data sequences and better handle the gradient problem
that may exist when training neural networks. Over the years, scholars have made various
improvements to LSTM to provide more scientific analysis results for data exhibiting short-
or long-term dependencies. QRLSTM is a fusion of QR and LSTM that solves the problem
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of non-linearity involving temporal information and quantifies the ambiguity of prediction.
For quantile q, the QRLSTM is calculated as follows:

ML
t,q = ϑ

(
VML

t, q
·
[

Xn,t, IL
t−1,q

])
FL

t,q = ϑ

(
VFL

t, q
·
[

Xn,t, IL
t−1,q

])
AL

t,q = FL
t,q × AL

t−1,q + ML
t,q × tanh

(
VUL ,q ·

[
Xn,t, IL

t−1,q

])
Φt,q = ϑ

(
VΦ,q ·

[
Xn,t, IL

t−1,q

])
IL
t,q = Φt,q × tanh

(
AL

t,q

)
yL

n,t,q = ϑ
(

VL,q · IL
t,q

)
(9)

In Equation (9), [ ] denotes two vectors joined together, the symbol × denotes matrix
multiplication, and · means the product of matrix elements. W· , q denotes a vector of
parameters for a particular cell. ML

t,q and FL
t,q represent the forgetting gate and the input

gate, respectively. ϑ(·) is the sigmoid activation function, and tanh(·) is the tanh activation
function, respectively. Φt,q is the output gate multiplied, and AL

t,q is the storage. IL
t,q

is the final update information obtained using the activation function tanh(·). The last
dense layer absorbs IL

t,q and correlates it with the parameter VL,q, resulting in a quantified
prediction yL

n,t,q.
The integration of QR and LSTM networks enhances the forecasting capabilities; QR is

robust to outliers and captures the central tendency of the predicted distribution, and LSTM
excels in handling continuous data and effectively captures the temporal dynamics. In
particular, QRLSTM utilizes the advantages of LSTM in handling time series data compared
to QR and QRNN and is more suitable for predicting the nuances and uncertainties in
the series.

2.2.3. Quantile Regression Bi-Directional Long Short-Term Memory (QRBiLSTM)

Bi-directional LSTM (BiLSTM) [40] is an enhanced iteration of LSTM that employs
two independent hidden layers, forward and reverse, to process time series data. In this
way, BiLSTM can maximize the use of past and future information for data processing, thus
effectively solving the limitation that LSTM can only process data in one direction. The
calculation steps are as follows:

ft = σ
(

w f xt + w f ht−1 + b f

)
zt = σ(wzxt + wzht−1 + bz)
lt = σ(wlxt + wlht−1 + bl)
ht = lt · tanh(ct)
ŷt = f

(
wyx · ht + by

)
(10)

In Equation (10), ft determines which part of the history information is eliminated,
producing values in the range 0 to 1. zt determines which data should be fed into the
network, making output values in the range of 0 to 1. lt determines which network
outputs are utilized as the final output and which contents of the current cell should be
transmitted to the hidden layer ht, with output values from 0 to 1. ŷt is an expression for
the predicted output.

The output of the BiLSTM model is assumed to be

QYk (Xk) = f (Xk, Ψ) (11)

where Ψ is the parameters of the BiLSTM model. The QRBiLSTM model can be expressed
as follows:

QYk (τ|Xk) = f (Xk, Ψ(τ)) (12)
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Combining QR with BiLSTM networks creates a powerful forecasting model adept at
capturing past and future data dependencies. This union enhances the model’s ability to un-
derstand and leverage temporal sequences in the data. Compared to QRLSTM, QRBiLSTM
utilizes information from both directions in time, improving predictive accuracy.

2.3. Evaluation Metrics

In this study, the prediction interval coverage probability (PICP) is used as a measure
of reliability, the prediction interval normalized average width (PINAW) is used as a
measure of resolution, and the average interval score (AIS) is used as a composite metric to
evaluate the precision of interval prediction comprehensively [41]. Further, this study also
used semi-interval metric (SIM) and quantile loss (QL) to assess the model.

(1) Prediction Interval Coverage Probability (PICP)

PICP refers to the likelihood that the prediction interval contains actual data and
is used to characterize the reliability of the interval prediction result. The equation is
computed in the following manner:

PICP(α) =
1
n

n

∑
i=1

ξ
(α)
i , ξ

(α)
i =

 1, yi ∈
[

L(α)
i , U(α)

i

]
0, yi /∈

[
L(α)

i , U(α)
i

] (13)

In Equation (13), L(α)
i and U(α)

i represent the highest and lowest limits of the
prediction interval, respectively. yi is the observed value. Interval forecasting confi-
dence levels are taken as α = 0.05 and α = 0.1. Therefore, the PINC is expressed as
PINC(α) = (1 − α)× 100%. If PICP > PINC, the interval prediction is considered reliable.

(2) Prediction Interval Normalized Average Width

Prediction interval normalized average width refers to the average distance within
the range of the lowest and highest value of the forecast interval and is used to measure
how much uncertainty is included in the forecast outcome. Also, PICP and PINAW can be
considered in combination to prevent the problem of overly conservative interval widths at
high interval coverage. The calculation formula is as follows:

PINAW(α) =
1

(yt,max − yt,min)n

n

∑
i=1

(
U(α)

i − L(α)
i

)
(14)

(3) Average Interval Score

The AIS is a composite indicator for assessing interval forecasting. The indicator takes
into account both PICP and PINAW. The larger the indicator, the better the quality of the
forecast interval. Interval scores for the i-th interval are

S(α)
i =


−2α

(
U(α)

i − L(α)
i

)
− 4
(

L(α)
i − yi

)
i f yi < L(α)

i

−2α
(

U(α)
i − L(α)

i

)
i f yi ∈

[
L(α)

i , U(α)
i

]
−2α

(
U(α)

i − L(α)
i

)
− 4
(

yi − U(α)
i

)
i f yi > U(α)

i

(15)

Then, the formula for AIS is

AIS(α) =
1
n

n

∑
i=1

S(α)
i (16)

(4) Semi-interval metric
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The equations used to assess the PICP for the upper half of the interval, as well as the
PINAW, are shown below:

PICPsemi
upper(q) =

1
N

N

∑
i=1

ξ
upper
i , ξ lower

i =

{
0 upperquantilei(q) < yi
1 upperquantilei(q) ≥ yi

(17)

PINAWsemi
upper =

1
NR

N

∑
i=1

(upperquantilei(q)− yi) (18)

where N is the extent of the test value, R is the span of test values, and upperquanltilei(q)
is the upper bound at the desired level q;

Similarly, the evaluation indicator equation for the lower bound is

PICPsemi
lower(q) =

1
N

n

∑
i=1

ξ lower
i , ξ

upper
i =

{
0 lowerquantilei(q) < yi
1 lowerquantilei(q) ≥ yi

(19)

PINAWsemi
lower =

1
NR

N

∑
i=1

(lowerquantilei(q)− yi) (20)

(5) Quantile loss (QL)

Quantile loss can be calculated using the following formula:

LP
t (yt, ŷt,q, q) =

{
(ŷt,q − yt)× (1 − q) yt < ŷt,q

(yt − ŷt,q)× q yt ≥ ŷt,q
(21)

where ŷt,q is the conditional quantile of the observed value yt at q quantile, and q is the
desired level.

2.4. Multi-Objective Optimization Algorithm

This study employs multi-objective optimization algorithms to enhance its accuracy.
Regarding probabilistic forecasting, two crucial assessments are important: reliability and
resolution of the prediction intervals. Reliability refers to the consistency and credibility
of the model’s predictions, ensuring that the prediction intervals accurately reflect the
actual uncertainty. Resolution, on the other hand, focuses on the granularity and specificity
of the prediction intervals. Using optimization algorithms, the model gains enhanced
capabilities to handle the complexity and uncertainty in prediction tasks. These algorithms
empower the model to refine its predictions, leading to producing more reliable, accurate,
and detailed results. Therefore, with a known quantile, by optimizing reliability and
resolution simultaneously through multi-objective optimization algorithms, the aim of
the study was to create a more robust and precise probabilistic forecasting model. These
algorithms allow the trade-offs between reliability and resolution to be addressed. This
approach is vital because enhancing one aspect without considering the other could lead
to a model that either overestimates its certainty (high reliability but low resolution) or
provides overly cautious and non-specific predictions (high resolution but low reliability).
The objective function is as follows:

min

{
ZDTinterval = (1 − q)− PICPsemi(q)
ZDTinterval = PINAWsemi ·

[
1 + e(−δ·(PICPsemi(q)−1+q))

] (22)

where δ is the penalty factor, usually taking a value of 0.05, and the value of the quantile is
one of our constraints.

Two multi-objective optimization algorithms, MOALO and MOMVO, were used in
this study. To enhance the interval prediction results of the QR deep-learning model for gold
price forecasting, the gold price data were split into training, testing, and validation sets at
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first. Then, the QR deep-learning model was trained using the training dataset. It then made
interval predictions on the validation for two sets of quantiles (0.05 and 0.95; 0.025 and
0.975), creating lower and upper bounds of the prediction interval. MOALO and MOMVO
algorithms were then employed to optimize the interval predictions from the QR deep-
learning model. The aim was to iteratively search for the optimal “interval modification
factors” constrained in 0–2 that minimize the objective function, which involves addressing
the trade-offs between reliability and resolution. Once the multi-objective optimization
algorithms find the optimal solution, the interval modification factors are multiplied on the
original QR deep-learning interval predictions. This process adjusts the prediction intervals
on the validation set, resulting in optimized intervals that better meet the desired criteria.
After that, the final optimized intervals are generated by applying the interval modification
factor to the prediction interval on the test dataset.

Minimize : ZDTinterval

subject to : q ∈ {0.05, 0.95, 0.025, 0.975}
0 ≤ f ≤ 2

(23)

Let q be the quantile used for interval forecasting and f be the interval modification
factor produced by the optimization algorithms.

In essence, the multi-objective optimization algorithm refines the initial prediction
intervals from the QR deep-learning model by iteratively searching for and applying the
best interval modification factors. This results in more accurate and reliable interval predic-
tions for gold prices. The detailed mathematical principles of multi-objective optimization
algorithms are demonstrated in the following section.

2.4.1. Multi-Objective Ant Lion Optimizer (MOALO)

Antlion optimization (ALO) [42] is an optimization algorithm inspired by the interac-
tion between ants’ hunting behavior and their preferred prey. ALO approximates the global
optimal solution as an optimization issue by generating a random set of solutions stepwise.
The best solution to a given optimization issue is continuously varying the relationship
between ant and colony clusters.

To solve the optimization problem, the ALO algorithm simulates the ants’ random
walking, becoming trapped in an anthill, building an anthill, sliding towards an anthill
beam, capturing prey and reconstructing the anthill, and sliding towards the beam. The
anthill and elitism aspects were reconstructed. The mathematical model is shown below.

Assume that the initial wandering position of the ants is as follows:

A(k) = [0, cumsum(2g(k1)− 1), cumsum(2g(k2)− 1), · · · , cumsum(2g(kn)− 1)] (24)

g(s) =
{

1 i f ρ> 0.5
0 i f ρ ≤ 0.5

(25)

where cumsum denotes accumulation; g is a random function; n denotes the highest number
of iterations, adjusted to 500 in this study, and population size is also set to 500; s denotes
the iteration step size; and ρ is a random number within the span of [0, 1].

Random wandering is normalized to prevent the search space from being exceeded
using the following equation:

Ak
i =

(
Ak

i − ci

)
×
(

bk
i − ak

i

)
(di − ci)

+ ak
i (26)

where ak
i and bk

i denote the smallest and largest values for the random variation in the i-th
variable during the k-th iteration. ci and di represent the minimum and maximum limits of
the i-th variable during the k-th iteration, respectively.
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For changing the random walking behavior around the colony to avoid ants falling
into the trap of the colony pit, the equation is expressed below:

ak
i = Antlionk

j + ak (27)

bk
i = Antlionk

j + bk (28)

where ak and bk are the smallest and largest values of all variables during the k-th iteration,
respectively.

For the ants moving into the colony, according to the following formula, the boundary
of the random walking will be gradually reduced:

ak =
ak

λ
, bk =

bk

λ
(29)

where λ is a ratio.
Then, the ants are captured, and the pit is reconstructed, calculated as follows:

Antlionk
j = Antk

i i f f
(

Antk
i

)
< f

(
Antlionk

j

)
(30)

where Antk
i signifies the location of the i-th ant during the k-th iteration.

The elite operator, affecting all ants, is the last operator in ALO and stores the most
suitable ants formed during optimization. This means that the selected ant colony (chosen
by roulette) and the elite ant colony will attract random walking. Consider the following
equations for both:

Antk
i =

Rk
W + Rk

E
2

(31)

where Rk
W and Rk

E refer to the random fluctuations surrounding the ant that has been chosen
through the roulette method and the random fluctuations around the elite, respectively.

To implement the multi-objective problem [43], Equation (30) in the ALO algorithm is
modified as follows:

Antlionk
j = Antk

i i f f
(

Antk
i

)
≺ f

(
Antlionk

j

)
(32)

Another modification is the choice of random ants and elites in Equation (31). We use
roulette and Equation (32) to select non-dominated solutions from the archives.

2.4.2. Multi-Objective Multiverse Optimization Algorithm (MOMVO)

According to Mirjalili et al., the multiverse optimizer [44] is a metaheuristic algorithm
rooted in the multiverse theory of quantum mechanics. The MVO focuses on three crucial
concepts in the multiverse: black holes, white holes, and wormholes. Typically, population-
based metaheuristic algorithms comprise two primary stages: exploration and exploitation.
In the MVO, the black hole white hole model is used to explore space, and a wormhole is
helpful in exploring space.

In the algorithm, the diverse population of the multiverse is composed as follows:

U =


y1

1 y2
1 · · · yd

1
y1

2 y2
2 · · · yd

2
...

...
...

...
y1

n y2
n · · · yd

n

 (33)

where d is the number of dimensions, fixed as 1, and n is the universe population.
Initially, the universe population was set to 100 in this study and underwent stan-

dardization as part of pre-processing. Then, the pre-processed multiverse population was
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chosen based on random selection probabilities through a method akin to Russian roulette,
yielding the subsequent outcomes:

yj
i =

{
yj

k δ1 < NI(Ui)

yj
i δ1 ≥ NI(Ui)

(34)

In Equation (34), yj
i is the j-th star in the i-th universe, NI(Ui) is the normalized

universe expansion rate for the i-th universe, δ1 is a random number that falls within the
span of [0, 1], and yj

k represents the value of the j-th star in the k-th universe, which is
calculated using the roulette algorithm.

The MVO determines which universe has a white hole using a roulette algorithm.
The Russian roulette algorithm operates based on the normalized expansion rate of each
universe. In this algorithm, a universe with a lower expansion rate is assigned a higher
probability of its stars being transported to other universes via tunnels formed by black
and white holes. When δ1 is less than the normalized universe expansion rate NI(Ui) for
the i-th universe, space-time travel occurs between the i-th universe and the k-th universe,
and the star yj

i at position j in the i-th universe is replaced by the star yj
k selected by the

roulette algorithm.
To ensure that each universe experiences local variations, a high probability of provid-

ing higher expansion rates using the wormholes, in which the tunneling of wormholes is
established, was created between the best universes in the universe. This mechanism is
expressed as

yj
i =


{

Yj + TDR ×
((

ubj − lbj
)
× δ4 + lbj

)
δ3 < 0.5

Yj − TDR ×
((

ubj − lbj
)
× δ4 + lbj

)
δ3 < 0.5

δ2 < WEP

yj
i δ2 ≥ WEP

(35)

In Equation (35), WEP refers to the likelihood of the wormhole’s presence and is
a dynamic parameter; TDR represents the travel distance rate and is also a dynamic
parameter; yj

i is the j-th star in the i-th universe; Yj is the j-th star in the optimal universe at
present; ubj is the higher limit of all stars in the i-th universe; lbj is the lower limit of all
stars in the i-th universe; and δ2, δ3, and δ4 are random values from 0 to 1.

Equation (35) highlights that WEP and TDR are the two most significant factors
establishing the maximum and minimum bounds of individual stars within the universe.
However, whereas WEP remains constant, TDR is refined throughout the iterative process
to facilitate an accurate exploitation of the optimal universe. The adjustable equations for
WEP and TDR are presented below:

WEP = WEPmin + t ×
(

WEPmax − WEPmin

T

)
(36)

TDR = 1 − t1/p

T1/p (37)

In Equation (37), t symbolizes the current iteration count, T is the aggregate quantity
of iterations, and the max number of iterations was set to 200 in this study. WEPmin is the
lower limit of wormhole existence probability, and WEPmax is the lower limit of wormhole
existence probability, which are 0.2 and 1 in this research.

The exploration protocol employed in MOMVO [45] mirrors that of MVO, where
solutions are advanced using white holes, black holes, and wormholes. However, MOMVO
utilizes an additional formula to select options among areas of the archive that contain
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fewer entries for the roulette wheel, thereby improving the distribution of solutions for all
targets within the archive. The formula is as follows:

Pi = c/Ni (38)

in which c is a constant, which exceeds 1, and Ni is the count of results adjacent to the i-th
solution.

The following section provides a comprehensive demonstration of the efficacy of
these algorithms through experimental results. The optimal model optimized by each
probabilistic prediction model and the multi-objective optimization algorithm are evaluated
separately.

3. Experimental Setup and Results Analysis

This experiment employed a meticulously crafted research framework to predict gold
prices (See Figure 1). The aim of our proposed method is to function as an early warning sys-
tem for potential economic challenges, offering guidance amidst market ambiguity. Given
the impact of recent epidemics on gold prices, our framework emphasizes a comprehensive
evaluation of factors and a prudent selection of index variables. To enhance the economic
applicability of the model, two variable selection methods that screen both “hard” and
“soft” indicators were employed in this study. Furthermore, we utilized quantile regression
(QR) and probabilistic forecasting algorithms (QRNN, QRLSTM, QRGRU, QRBiLSTM,
QRBiGRU) for the gold price data. Finally, multi-objective optimization (MOALO and
MOMVO) was integrated with quantile deep learning to fine-tune the convergence and
width of the forecasting interval. The optimized model enhances forecasting accuracy and
significantly improves the credibility of interval forecasting. This approach enhances our
understanding and assessment of economic conditions and market uncertainty.
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3.1. Data Collection

This study utilized a dataset comprising daily gold price data spanning from 1 January
2020 to 9 June 2023, covering 479 trading days. This dataset was divided as follows: 60%
for training, 20% for validation, and 20% for test sets. Following an extensive literature
research, 15 influencing factors were selected for this study, namely, the silver price, copper
price, crude oil price, US Dollar Index, VIX Panic Index, three geopolitical risk factors
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(composite index Geopolitical Risk Index (GPRD), action index Geopolitical Risk Action
Index (GPRD ACT), threat index Geopolitical Risk Threat Index (GPRDT HREAT)), Epi-
demic Deaths Daily, and six epidemic indices (Panic Index, Media Hype Index, Fake News
Index, Sentiment Index, Infodemic Index, and Media Coverage Index). Silver prices, copper
prices, crude oil prices, and the US Dollar Index are “hard” information, typical indicators
of global economic activity. Crude oil prices are often seen as an indicator of the global
economy’s health due to oil’s fundamental role in industrial production and transporta-
tion [46], and a stronger US dollar weakens the purchasing power of gold, leading to a
decline in its price [3]. “Soft” information, which includes the Panic Index, Daily Epidemic
Deaths, the Epidemic Index, and the Geopolitical Risk Index, reflects market uncertainty
and risk perceptions. For example, the VIX Panic Index, which measures expectations of
market volatility, tends to rise with market uncertainty, increasing demand for gold as
a “haven” asset, and the Epidemic Index reflects the impact of global health crises, such
as the new Crown Pneumonia, on the economy and market sentiment. The Geopolitical
Risk Index is a composite, as geopolitical risk affects global economic stability and market
confidence, which affects the price of gold, with political tensions driving investors towards
safer assets such as gold. These factors have traditionally been recognized as important
drivers of gold price dynamics, encompassing a wide range of economic, political, and
market conditions affecting the demand for and supply of gold, thus providing a well-
prepared forecast of gold price trends through a careful understanding and analysis of
these factors. The gold, silver, copper, crude oil, US Dollar, and VIX panic indices are
taken from the EWEB website (https://cn.investing.com/ (accessed on 18 June 2023)), the
Geopolitical Risk Indexes from the geopolitical risk website (Geopolitical Risk (GPR) Index
(matteoiacoviello.com (accessed on 18 June 2023))), and the epidemic indexes from Raven-
Pack (https://coronavirus.ravenpack.com/ (accessed on 18 June 2023)). Figure 2 shows a
trend chart, statistical indicators for the gold price data, and all the influencing factors.

3.2. Variable Selection

Variables that have little effect on the target variable can be filtered out to increase the
precision of the model’s predictions. In addition, a model that includes too many variables
may lead to overfitting, i.e., the model is too complex and takes too much account of noisy
or irrelevant data, resulting in a weakened ability to generalize to new samples. Variable
screening allows the model to be simplified to include only variables with true explanatory
power for the target variable, improving the model’s interpretability and generalization
ability. Therefore, the accurate selection of variables that significantly impact the target
variables is crucial for building a valid and reliable forecasting model, especially for gold
price forecasting.

In this study, LASSO was first chosen for variable screening, which left the variables
of the silver price, Epidemic Deaths Daily, Media Hype Index, US dollar index, Sentiment
Index, Panic Index, Infodemic Index, and GPRD. Then, the PCC was used for variable
screening, which resulted in the price of silver, copper, Sentiment Index, VIX Panic Index,
crude oil, US Dollar Index, GPRD ACT, and GPRD. The common features screened by the
two variable screening methods, i.e., the Sentiment Index, Panic Index, US Dollar Index,
GPRD, and silver price, were fed into the model for prediction. However, another issue
to consider is the presence of multicollinearity between the influencing factors. Therefore,
this study analyzed the correlation between the variables through the PCC methodology.
Figure 3 shows the extent of association between the variables. The correlation between
the Sentiment Index and Panic Index was too high for the characteristics we screened, and
therefore, the Panic Index was disregarded in this study. Thus, the final inputs to the model
in this study were the silver price, the Sentiment Index, the US Dollar Index, and the GPRD.
In addition, the day’s gold price data are also affected by the previous day’s price, and
first-order lagged data were also added as a feature input into the model.

https://cn.investing.com/
https://coronavirus.ravenpack.com/
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In gold price forecasting, variables based on economic principles are of great impor-
tance in selecting predictor variables. To carefully choose variables that can predict the
dynamics of the gold price, a comprehensive review of both established and unselected fac-
tors is necessary. For the variables screened in this study, the Sentiment Index is a measure
of market sentiment and confidence, and in times of negative sentiment, investors tend to
turn to safe assets such as gold to mitigate financial losses due to market volatility. The gold
price is usually denominated in US dollars, and therefore, changes in the US dollar index
directly influence the volatility of the gold price. The Geopolitical Risk Index summarizes
the level of geopolitical tensions globally, and when the risks intensify, investors usually
turn to safe assets such as gold. The precious metal’s role as a store-of-value medium
and market demand in the investment and industrial sectors has led to a close correlation
between the price of silver and the price of gold.

On the other hand, unlike gold and silver, which are generally considered safe-haven
assets, copper and crude oil prices are typically closely tied to the health of the global econ-
omy and industrial demand. The VIX Panic Index, which represents market volatility and
investor sentiment, is not directly considered the price of gold. As a result, their correlation
with gold is weaker. Similarly, although the Pandemic Index and the Geopolitical Risk
Action and Threat Index reflect specific external shocks and global tensions, the broader
Geopolitical Risk Index, which encompasses a more comprehensive range of geopolitical
uncertainties, was chosen instead.
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3.3. Interval Forecasting Module Analysis

In Experiment 1, the performance of five quantile regression models (QRNN, QRL-
STM, QRBiLSTM, QRGRU, and QRBiGRU) in forecasting gold prices was examined. The
evaluation focused on assessing the reliability, utility, interval coverage, and interval width
of these models using four evaluation metrics: Prediction Interval Coverage Probability
(PICP), Prediction Interval Normalized Average Width (PINAW), Quantile Loss Metric,
and Average Interval Score (AIS). The findings are displayed in Table 1 and Figure 4.
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Table 1. Comparison of evaluation metrics for basic probabilistic forecasting models.

PINC = 90%

Models PICP PINAW Quantile Loss
(Upper Bound)

Quantile Loss
(Lower Bound) AIS

QRNN 92.7757 0.0748 8.8672 5.8945 −59.0469
QRLSTM 96.9582 0.0327 1.9920 3.2460 −20.9538

QRBiLSTM 97.3384 0.0274 2.1124 2.1961 −17.2341
QRGRU 95.4373 0.0681 4.4170 6.1954 −42.4498

QRBiGRU 92.0152 0.0253 3.7081 2.3859 −24.3758

PINC = 95%

Models PICP PINAW Quantile Loss
(Upper Bound)

Quantile Loss
(Lower Bound) AIS

QRNN 97.7186 0.0973 5.4903 3.4743 −35.8586
QRLSTM 98.8593 0.0421 1.6091 1.6278 −12.9475

QRBiLSTM 99.6198 0.0429 1.2590 1.8716 −12.5227
QRGRU 96.1977 0.0599 1.9528 3.1812 −20.5361

QRBiGRU 96.5779 0.0315 2.7827 1.2459 −16.1144

Initially, the reliability of the prediction intervals was assessed using the PICP metric.
A PICP value exceeding the nominal confidence level (PINC) indicates reliable forecast-
ing. As shown in Table 1 and Figure 3, all models exhibit PICP values surpassing the
corresponding PINC values, indicating reliable prediction across all models. Notably,
the QRBiLSTM model performs exceptionally well, achieving the highest PICP values at
PINC = 90% and PINC = 95% (97.3384% and 99.6198%, respectively), making it the most
reliable model. The QRLSTM model closely follows, with PICP values of 96.9582% and
98.8593% at PINC = 90% and PINC = 95%, respectively.

Furthermore, the PINAW metric provides insights into the resolution and information
content of the prediction intervals. A lower PINAW value indicates a narrower interval,
offering a more detailed understanding of uncertainty. In this regard, the QRBiGRU model
excels, achieving PINAW values of 0.0253 (PINC = 90%) and 0.0315 (PINC = 95%). The
QRBiLSTM model secures the second position, with PINAW values of 0.0274 (PINC = 90%)
and 0.0429 (PINC = 95%), and the QRNN model lags with the highest PINAW values of
0.0748 (PINC = 90%) and 0.0973 (PINC = 95%).

Lastly, a comprehensive assessment was conducted using the AIS and Quantile Loss
metrics, considering both interval coverage and width. The evaluation reveals that the
QRBiLSTM model achieves the lowest quantile loss value, closely followed by the QRL-
STM model. Regarding AIS, the QRBiLSTM model demonstrates the highest values of
−17.2341 and −12.5227 for PINC = 90% and PINC = 95%, respectively, with the QRLSTM
model trailing slightly with AIS values of −20.9538 and −12.9475 for PINC = 90% and
PINC = 95%. Considering the results from all interval evaluation metrics, it is evident that
the QRBiLSTM model is the superior interval prediction model.

3.4. Optimization Module Analysis

In Experiment 2, the QRBiLSTM model, which demonstrated superior performance,
was optimized using two metaheuristic algorithms: MOALO and MOMVO. The results
obtained from these optimizations were compared with the pre-optimization outcomes.
The findings are presented in Table 2 and Figure 5. For both the pre- and post-optimization
models, the PICP values exceeded the designated PINC values, indicating reliable predic-
tion intervals. When the nominal confidence level (PINC) was set at 90%, both optimization
algorithms improved the PICP metrics. However, only the results optimized with the
MOALO algorithm showed improvements in the PINAW value, quantile loss, and AIS.
Specifically, the MOALO-optimized QRBiLSTM model achieved a PICP of 98.0989, a
PINAW of 0.0254, an upper quartile loss of 2.2235, a lower quartile loss of 1.6824, and an
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AIS of −15.6240. This marks a significant improvement over the pre-optimized QRBiL-
STM model, which had a PICP of 97.3384, a PINAW of 0.0274, an upper quartile loss of
2.1124, a lower quartile loss of 2.1961, and an AIS of −17.2341. At PINC = 95%, QRBiL-
STM optimized by MOALO resulted in a slight decrease in the PICP value to 95.0570 (but
still higher than the PINC value), a slight improvement in the PINAW to 0.0421, better
interquartile loss values of 1.3737 (upper bound) and 1.9935 (lower bound), and an AIS of
−11.5581, which is an improvement of 0.9646 compared with the QRBiLSTM. However, the
PINAW value of the QRBiLSTM model corrected for the MOMVO optimization error did
not decrease but increased, and although the PICP value was slightly larger compared to
the MOALO optimized result, the combined PICP and PINAW, i.e., the combined metrics
AIS, were taken into account in the interval prediction, and the AIS value was not only
better than that of the MOALO-QRBiLSTM but also smaller than the value of QRBiLSTM
before optimization, and the prediction results were not improved. In conclusion, the
MOALO-optimized QRBiLSTM model (i.e., MOALO- QRBiLSTM) performs well and is
the best-performing model among the probabilistic prediction models.
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Table 2. Comparison of evaluation indicators for optimization models.

PINC = 90%

Models PICP PINAW Quantile Loss
(Upper Bound)

Quantile Loss
(Lower Bound) AIS

MOALO-
QRBiLSTM 98.0989 0.0254 2.2235 1.6824 −15.6240

MOMVO-
QRBiLSTM 99.6189 0.0319 2.6110 2.1689 −19.1196

QRBiLSTM 97.3384 0.0274 2.1124 2.1961 −17.2341

PINC = 95%

Models PICP PINAW Quantile Loss
(Upper Bound)

Quantile Loss
(Lower Bound) AIS

MOALO-
QRBiLSTM 95.0570 0.0421 1.3737 1.9935 −11.5581

MOMVO-
QRBiLSTM 99.2395 0.0493 1.5760 2.0169 −14.3715

QRBiLSTM 99.6198 0.0429 1.2590 1.8716 −12.5227

4. Conclusions

In recent years, gold prices have undergone significant volatility, influenced by a
complex web of factors, including trade tensions, global pandemics, geopolitical unrest, and
economic crises. Gold is a crucial barometer of economic health, with its price fluctuations
resonating deeply across the global economy. The stability and dynamics of the gold market
are intricately linked to the broader economic vitality, impacting not only investment
markets but also the macroeconomic stability and economic security of nations heavily
invested in gold.

This study introduces a novel interval prediction framework for gold price forecasting.
This framework, integrating multi-objective optimization with quantile deep learning, aims
to improve the precision of gold price forecasts. The methodology unfolds in three phases:
First, the study employed dimensionality reduction and variable selection methods to
identify key factors influencing gold prices. Second, it leveraged QR deep-learning models
for probabilistic and interval forecasting, thereby improving prediction accuracy and en-
compassing the uncertainty inherent in gold price movements. Then, fusing multi-objective
optimization with quantile deep-learning methods, the convergence and width of predic-
tion intervals were optimized simultaneously. This forecasting framework significantly
boosts the accurate and reliable prediction of gold prices in a complex and often uncertain
environment. The forecasts generated are not only robust but also highly precise, high-
lighting the effectiveness of our framework in delivering dependable and valuable insights
for market analysts and economic strategists. Focusing on robustness and precision, our
approach stands out in financial forecasting, providing a substantial edge.

This study substantially contributes to gold price forecasting and lays a foundation
for further exploration and innovation in various domains requiring advanced predictive
modeling. Future research could focus on tailoring this framework to specific market
dynamics and exploring its adaptability in diverse environments, from commodities to
other critical areas. This comprehensive approach sets a new benchmark for predictive
modeling, especially in volatile market commodities like gold.
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