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Abstract: This research deals with precision calculations of stationary magnetic fields of volumetric
bodies. The electrostatics analogy allows for the use of a scalar magnetic potential, which reformulates
the original task as a boundary value problem for the Laplace equation. We approach this with the
boundary element method, specifically in distance ranges close to the magnetized surface, where
existing standard numerical methods are known to struggle. This work presents an approach based
on the improved quadrature formulas for the simple layer potential and its normal derivative.
Numerical tests confirm significant improvements in calculating the field at any distance from the
surface of the magnet.

Keywords: boundary element method; magnetic fields; numerical integration; Laplace equation;
Fredholm integral equation
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1. Introduction

In order to accurately simulate and control a magnetic system, one needs a reliable
way of obtaining the values of the fields involved. This research deals with calculations of
stationary magnetic fields at close proximity to a magnetized object. Standard numerical
methods in the 3D case are known to struggle when the point of interest shifts towards
the surface of the object. In order to achieve an adequate representation of the field under
such conditions, one may need to heavily reduce the size of mesh elements, which greatly
increases computational costs. The boundary element method approach is a valid choice,
since it is known to yield a significant benefit because of the unit reduction in the dimensions
of the original system of equations. Here, we aim to develop a calculation approach that
provides uniform convergence and uniform approximation of stationary magnetic fields,
that is, at any distance from the surface.

Magnetic fields are used in various physical applications [1]. Coil design is crucial in
magnetic resonance imaging [2]. In transcranial magnetic stimulation, coils are used for
individualized field targeting. A magnetically induced electric field is adopted to modulate
brain tissue activity as a means of non-invasive scanning technology. Computational opti-
mization of coil placement improves the performance of such medical imaging systems [3].
Linearized models are widely used to determine controller parameters of magnetic systems.
However, the settings of a model usually fluctuate in relation to the operating point. A
robust closed-loop control strategy for systems with active magnetic bearings requires
calculations of the mentioned parameters over the entirety of the operating range [4]. Preci-
sion calculations of magnetic fields are required to successfully implement complicated
magnetic phenomena, like magnetic levitation [5,6]. A more detailed expression of the
magnetic force is an important optimization approach to controlling open-loop unstable
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magnetic systems [5]. Overall, magnets are parts of various mechanical systems and are
still studied with new methods [7,8].

All these devices go through a design stage where it is in the best interest of the
developer to find out more about the future performance of magnetic components. This is
the reason why various calculation techniques are used in magnetism, like the finite element
method, variational computing, the boundary element method and so on. For simple
surfaces and volumetric bodies, quite often, there exist explicit expressions for the magnetic
fields of such objects. A symmetry axis, for example, reduces the dimensions of the problem
and thus makes it much easier to acquire an exact formula. An infinite dimension of a
body like the infinitely long cylinder often used in theoretical endeavors allows for a limit
passage. Real magnetic objects, on the other hand, often possess complicated geometries.
For this reason, numerical methods are the only means of calculation in such situations.
But even in numerical calculations, one can see that standard quadrature formulas have
their limitations and may diverge under certain conditions [9]. Therefore, the development
of numerical methods that provide uniform approximation is important.

The Boundary Element Method

When modeling a physical process, the main efforts are usually aimed at solving dif-
ferential equations that characterize a physical system in a specific area, whose boundaries
may have a complex shape. The presence of complex boundaries in practice does not allow
for the construction of an explicit solution to the problem, so numerical methods have
become the only means of obtaining sufficient results. Standard numerical methods often
consider differential equations directly in the form in which they are obtained, without
special mathematical transformations [10]. In the finite difference method (FDR), differ-
ential operators are approximated by simpler algebraic (difference) operators acting in
a sequence of nodes located in the region of interest. The finite element method (FEM)
approximates the desired solution in the area under consideration by a sum of elements
that are not infinitely small. However, there is a range of tasks in which these approaches
face certain difficulties. Since accuracy directly depends on the density of the grid that
determines the nodal points, a need to discretize an entire region of interest may lead to a
large number of finite elements [11]. The resulting systems of a high order may be too large
even for modern computers. This is especially noticeable in external three-dimensional
problems, for example, in acoustic wave scattering [12].

The boundary element method (BEM) is viewed by many as a bit rarer alternative to
the dominating approaches, like FEM and FDR. It is a collection of numerical methods for
solving various boundary value problems for differential and integral equations [13]. A
layer potential transforms the original problem into a boundary integral equation, which
means that we only have to discretize the boundaries of the area of interest. Since a
numerical solution to a boundary integral equation is usually found as a solution to a
system of algebraic equations, the dimensions of the problem are reduced by one. When
using the BEM for external boundary value problems, one does not need to stretch the
calculation mesh for large distances, as it satisfies the conditions at infinity by default. This
decrease in many applied problems has a decisive influence on the choice of this solution
method [1,14,15]. Some researchers aim to combine, where possible, the benefits of both
finite and boundary element methods [16,17].

The BEM is also know as the potential or the boundary integral equation method.
It uses the principle of superposition. Simple and double layer potentials are used to
prove the existence of solutions to boundary value problems for the Laplace and Helmholtz
equations in simply connected domains [18,19]. It is a process of transition from the original
problem to the integral Fredholm equation of the second kind [20]. The numerical algorithm
for solving boundary value problems with layer potentials consists of two stages. First,
we need to find the values of the potential density on the surface. These values are the
numerical solutions to the boundary integral equation. Next, they are substituted into a
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quadrature formula for the designated layer potential; thus, we find the solution to the
boundary value problem at any point in space.

Standard quadrature formulas for the simple layer potential for the Laplace equation
do not provide uniform approximation and convergence. When reaching the surface where
the potential density is defined, the values of the simple layer potential tend to infinity,
wherein the simple layer potential is a continuous function everywhere, including the
surface itself. Thus, the property of boundedness and continuity of the potential on the
surface [9] is not satisfied. The insufficient accuracy in calculating potentials near the
surface using standard quadrature formulas is called the boundary layer effect [21]. The
problem of calculating surface potentials near singularity points is widely known [22,23].
The article [24] discusses the need to move from standard numerical integration formulas
to more advanced ones when calculating surface potentials near the surface on which the
potential density is specified.

In [25], a quadrature formula for the simple layer potential which preserves the
property of continuity was obtained. Unlike standard formulas of numerical integration,
the developed method provides uniform convergence and uniform approximation when
moving the point of interest through a given surface. This provides additional accuracy at
close proximity without the need for mesh refinement. In [26], this approach was applied
to obtain a quadrature formula for the direct value of the normal derivative of the simple
layer potential. It can be applied to solving boundary integral equations that occur when
dealing with various problems in mathematical physics. This research applies these results
to the physical task of determining stationary magnetic fields in a three-dimensional case.
We are going to see if these formulas should be used to numerically determine the magnetic
potential at any point in 3D space.

2. Materials and Methods
2.1. Electrostatics Analogy: A Scalar Magnetic Potential

A permanent magnet can be viewed as a collection of the so-called imaginary mag-
netic charges. The idea behind it is the analogy between the electrostatic and magne-
tostatic fields [1]. If the area of interest does not possess conduction currents, ∑ j = 0,
then div B = 0, and

B = µ0(H + M), (1)

where B is the magnetic flux density vector, µ0 is the vacuum permeability, H is the
magnetic field strength vector and M is the magnetization vector. Then, the density of
imaginary magnetic charges ρm can be formally introduced as

div B = µ0(div H − ρm) = 0. (2)

Since rot H = j and j = 0, {
div H = −div M = ρm,
rot H = 0.

(3)

Now, let us compare (3) with the electrostatic equations{
div E =

ρ

ϵ0
,

rot E = 0,
(4)

where ρ is the density of electrical charges and ϵ0 is the dielectric permeability of vacuum.
There is an analogy between Equations (3) and (4). The original magnetostatic problem
can be addressed as an equivalent problem of electrostatics. The solution to (4) with
constitutions E → H and ρ/ϵ0 → ρm is the solution to the original problem in (3).

If magnetization vector M is constant, then ρm = 0. However, one also needs to
consider the surface imaginary magnetic charge density (σm). It can be defined as

σm = (n, M2 − M1), (5)
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where M1 and M2 are the magnetization vectors of media 1 and 2, with n being the normal
vector from the first to the second area (see Figure 1).

Figure 1. The normal vector (n) between the two magnetized media (M1 and M2).

So, if surface magnetization is presented in this method, we also have to formally
constitute σ/ϵ0 → σm, where σ is the density of the surface electric charges. Also, if in
the electrostatic solution we also estimate polarization vector P, then P/ϵ0 → M is also
required. The same formal procedure can be constructed for a magnetic field induced by
stationary currents.

After solving the analogous electrostatic problem, the formal substitution is in place:
E → H,
ρ/ϵ0 → ρm,
σ/ϵ0 → σm,
P/ϵ0 → M

(6)

which gives the solution to the original magnetostatic problem.
Let us assume the absence of free currents and that the electric fields (E) (if any)

present in the area of interest are constant. A scalar magnetic potential (u) is analogous
to an electric potential. It is used to determine the field of a permanent magnet when its
magnetization is known. Potential u uniquely provides the magnetic field at a given point
in space. In a magnetic levitation train, for example, the field is determined in the vicinity of
the accelerating channel [27]. A scalar magnetic potential (u) is introduced, so the magnetic
field is found as

B = − grad u. (7)

This is appropriate when the free currents and the gradient of electric field E are absent or
can be neglected.

2.2. Exterior Neumann Boundary Value Problem for the Laplace Equation in a
Three-Dimensional Domain

Let us introduce in space the Cartesian coordinate system x = (x1, x2, x3) ∈ R3. We
consider a simple, smooth, closed surface Γ of class C2 enclosing a simply connected inner
region D. Let the electric fields (if any) in region D be constant. The normal component
of the magnetic flux vector (Bn) is set as a boundary condition and is assumed to be a
continuous function on Γ. Let us study an exterior Neumann boundary value problem for
the Laplace equation.

∆u = 0, u ∈ C1(R3 \ D) ∩ C2(R3 \ D),
∂u(x)

∂n

∣∣∣∣
Γ
= f (x), x ∈ Γ, f (x) ∈ C1(Γ),

u = O
(

1
|x|

)
, |x| → +∞,

(8)

where ∂/∂n is the normal derivative [20] on surface Γ from the outside at a point x. We
assume that u(x) has a normal derivative on Γ. The solution is found in the form of a
simple layer potential V0[µ](x).

V0[µ](x) =
1

4π

∫
y∈Γ

µ(y)
1

|x − y|dSy, (9)
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where µ = µ(y) ∈ C0(Γ) is the potential density. The simple layer potential V0[µ](x) is a
harmonic function in the region R3 \ D.

The normal derivative from the outside of surface Γ is given by the expression [20,26]

1
2

µ(x) +
∂V0[µ](x)

∂nx

∣∣∣∣
Γ
, x ∈ Γ, (10)

where
∂V0[µ](x)

∂nx
=

1
4π

∫
Γ

µ(y)
∂

∂nx

1
|x − y|dSy (11)

is the direct value of the normal derivative of the simple layer potential for the Laplace
equation at a point x ∈ Γ, while nx is a unit normal directed inwardly. By equating this
expression to the function defined on Γ, we obtain the following equation for the values of
the potential density (µ(x)):

1
2

µ(x) +
∂V0[µ](x)

∂nx

∣∣∣∣
Γ
= f (x), x ∈ Γ. (12)

Equation (12) is a linear Fredholm integral equation of the second kind, which, under given
assumptions, is known to be uniquely solvable [20,28].

2.3. Surface Parametrization

Consider the following parametrization of surface Γ:

y = (y1, y2, y3) ∈ Γ, y1 = y1(u, v), y2 = y2(u, v), y3 = y3(u, v);

u ∈ [0, A], v ∈ [0, B];

yj(u, v) ∈ C2([0, A]× [0, B]), j = 1, 2, 3. (13)

Let us introduce N points un with step h on the segment [0, A] and M points vm
with step H on the segment [0, B] and consider a partition of the rectangle [0, A]× [0, B]
(see Figure 2):

A = Nh, B = MH, un = (n + 1/2)h, n = 0, ..., N − 1;

vm = (m + 1/2)H, m = 0, ..., M − 1. (14)

Figure 2. The rectangle [0, A]× [0, B] is divided into N × M small rectangles, whose centers
are denoted as (un, vm) and are used as reference points in Equation (12).

Let us introduce the continuous numbering of all of the small rectangles sized h × H:

p = mN + n, (15)

then, 0 ≤ p ≤ NM − 1. If the number p is defined, then n, m are uniquely found as follows:

m = [p/N], n = p − [p/N]N, (16)
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where [·] denotes the integer part of a non-negative real number. Under yp = y(un, vm), p =
0, 1, ...NM − 1, we shall consider a central point of a small rectangle (un, vm), where n and
m are determined by (16).

It is known that at a point y = (y1, y2, y3) ∈ Γ, the components of a non-unit
normal vector η(y) = (η1(y), η2(y), η3(y)) can be expressed as matrix determinants by
the expressions

η1 =

∣∣∣∣ (y2)u (y3)u

(y2)v (y3)v

∣∣∣∣, η2 =

∣∣∣∣ (y3)u (y1)u

(y3)v (y1)v

∣∣∣∣, η3 =

∣∣∣∣ (y1)u (y2)u

(y1)v (y2)v

∣∣∣∣. (17)

Let |η(y)| =
√
(η1(y))2 + (η2(y))2 + (η3(y))2. For a surface integral of the first kind, it is

known that ∫
Γ

F(y)dsy =
∫ A

0
du

∫ B

0
F(y(u, v))|η(y(u, v))|dv. (18)

Note that if |η(y(u, v))| = 0 at some point, then the function |η(y(u, v))| may be non-
differentiable at this point. Therefore, we additionally require that

|η(y(u, v))| ∈ C2([0, A]× [0, B]). (19)

In addition, we require that

|η(y(u, v))| > 0, ∀ (u, v) ∈ ((0, A)× (0, B)). (20)

With such parametrization of surface Γ, the simple layer potential with density µ(y) ∈
C0(Γ) is expressed as

V0[µ](x) =
1

4π

∫
Γ

µ(y)
|x − y|dSy =

1
4π

∫ A

0
du

∫ B

0

µ(y(u, v))
|x − y(u, v)| |η(y(u, v))|dv =

=
1

4π

N−1

∑
n=0

M−1

∑
m=0

∫ un+h/2

un−h/2

∫ vm+H/2

vm−H/2

µ(y(u, v))
|x − y(u, v)| |η(y(u, v))|dudv, (21)

where

|x − y(u, v)| =
√
(x1 − y1(u, v))2 + (x2 − y2(u, v))2 + (x3 − y3(u, v))2.

On the other hand, the direct value of the normal derivative of the simple layer potential is
expressed as

∂V0[µ](x)
∂nx

=
1

4π

∫
Γ

µ(y)
∂

∂nx

1
|x − y|dsy = − 1

4π|η(x)|×

×
∫ A

0
du

∫ B

0
µ(y(u, v))|η(y(u, v))|

3

∑
j=1

ηj(x)(xj − yj(u, v))
|x − y(u, v)|3 dv =

= − 1
4π|η(x)|

N−1

∑
n=0

M−1

∑
m=0

∫ un+h/2

un−h/2
du

∫ vm+H/2

vm−H/2
µ(y(u, v))|η(y(u, v))|×

×
3

∑
j=1

ηj(x)(xj − yj(u, v))
|x − y(u, v)|3 dv. (22)

The double integrals in (21) and (22) are referred to as the canonical integrals. The numerical
calculation of these expressions is the subject of rigorous research. In most applications,
standard quadrature formulas of numerical integration are used for this task. But, as stated
above, this approach struggles in ranges close to surface Γ. In this work, we are going to
apply certain results in numerical methods [25,26] to the solution to the boundary value
problem for the Laplace equation, which originates from the problem of finding the scalar
magnetic potential. However, we shall use the standard formulas of numerical integration
as a means of comparison.
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2.4. Application of the Standard Quadrature Formulas for the Simple Layer Potential and Its
Normal Derivative

The standard quadrature formula for the direct value of the simple layer potential on
surface Γ is often used in applied calculations (Chapter 2, [9]) It is obtained by replacing
the canonical integrals at points x ̸= y(un̂, vm̂) with their approximate values at the centers
of the corresponding rectangles while zeroing the canonical integral over a piece of surface
Γ centered at the point x = y(un̂, vm̂)

∂V0[µ](x)
∂nx

∣∣∣∣
x=y(un̂ ,vm̂)∈Γ

≈ 1
4π|ηn̂m̂|

n=N−1, m=M−1

∑
n=0, m=0

(n,m) ̸=(n̂,m̂)

µnm|ηnm|Bnm(x), (23)

where

Bnm(x) = hH
3

∑
j=1

ηj(x)(yj(un, vm)− xj)

|x − y(un, vm)|3
. (24)

Using continuous numbering (15), Formula (23) takes the form

∂V0[µ](x)
∂nx

∣∣∣∣
x=y(un̂ ,vm̂)∈Γ

≈ 1
4π|ηp̂|

NM−1

∑
p=0
p ̸= p̂

µp|ηp|Bp(x), (25)

where µp = µ(yp) = µnm are the potential density values at the centers of small rectangles
yp and Bp(x) = Bnm(x).

Thus, for a given parametrization of surface Γ, integral Equation (12) is reduced to a
system of linear algebraic equations with respect to N · M values of the unknown potential
density function µ(yp) = µp at points yp = y(un, vm).

1
2

µ p̂ +
1

4π|ηp̂|
NM−1

∑
p=0
p ̸= p̂

µp|ηp|B p̂
p = f p̂, p̂ = 0, 1, 2, ..., NM − 1, (26)

where f p̂ = f (y p̂) are the values of the boundary condition function on surface Γ and

Bp(x) = Bp(y(un̂, vm̂)) = Bp(y p̂) = B p̂
p . Let us multiply system (26) by 4π and write it in

the general form NM−1

∑
p=0

(
2π∆ p̂

p +
|ηp|
|ηp̂|

B p̂
p

(
1 − ∆ p̂

p

))
µp = 4π f p̂, (27)

where p̂ = 0, 1, 2, ..., NM − 1 and

∆ p̂
p =

{
1, if p = p̂,
0, if p ̸= p̂.

We multiply each p̂-th equation of the system by |ηp̂|

NM−1

∑
p=0

(
2π|ηp̂|∆

p̂
p + |ηp|B p̂

p

(
1 − ∆ p̂

p

))
µp = 4π|ηp̂| f p̂, (28)

where p̂ = 0, 1, 2, ..., NM − 1. Equation (28) can be written in matrix form as seen in (A1)
in Appendix A. From this system of equations, we obtain the values of the potential
density µ p̂ = µ(y p̂) at the centers of small rectangles y p̂, which will then be used to calcu-
late the simple layer potential everywhere outside Γ, thus solving the original boundary
value problem.

To calculate the potential itself, as a means of comparison, we are going use the
standard quadrature formula:

V0[µ](x) ≈ 1
4π

n=N−1,
m=M−1

∑
n=0, m=0

µnmDnm(x) =
1

4π

NM−1

∑
p=0

µpDp(x), (29)
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where

Dnm =
hH|η(y(un, vm))|
|x − y(un, vm)|

and Dp(x) = Dnm(x). It is obtained by replacing the canonical integrals at points y(un, vm) ∈ Γ
to its approximate values at the centers of the corresponding rectangles. This formula, as we
are going to see in the Results and Discussion section, tends to infinity when point x tends
to the surface. In this case, the same is often true about more complex numerical integration
formulas [9,24]. Thus, one of the ways to reduce the calculation error is the reduction in
steps h, H which leads to a large number of boundary elements. This eliminates the main
benefit of the boundary element method in close proximity to a surface [9].

2.5. Application of the Improved Quadrature Formulas for the Simple Layer Potential and Its
Normal Derivative

In [26], a quadrature formula for the direct value of the normal derivative of the simple
layer potential on surface Γ was explicitly obtained.

∂Vk[µ](x)
∂nx

∣∣∣∣
x=y(un̂ ,vm̂)∈Γ

≈ 1
4π

µn̂m̂Jn̂m̂ +
1

4π|η(x)|× (30)

×
n=N−1, m=M−1

∑
n=0, m=0

(n,m) ̸=(n̂,m̂)

µnm|η(y(un, vm))|Tnm(x),

where the integrals Jn̂m̂ and Tnm(x) are calculated explicitly in [26]. Using continuous
numbering (15), Formula (30) becomes

∂V0[µ](x)
∂nx

∣∣∣∣
x=y(un̂ ,vm̂)∈Γ

≈ 1
4π

µn̂m̂Jn̂m̂ +
1

4π|ηn̂m̂|

n=N−1, m=M−1

∑
n=0, m=0

(n,m) ̸=(n̂,m̂)

µnm|ηnm|Tnm(x) =

=
1

4π
µ p̂J p̂ +

1
4π|ηp̂|

NM−1

∑
p=0
p ̸= p̂

µp|ηp|Tp(x), (31)

where µp = µ(yp) = µnm are the values of the potential density at the centers of small
rectangles yp, Tp(x) = Tnm(x) and |ηp| = |η(yp)| = |ηnm| are the absolute values of the
normal vector at yp. The integral J p̂ = Jn̂m̂, the density value µ p̂ = µ(y p̂) = µn̂m̂ and the
absolute value of the normal vector |ηp̂| = |η(y p̂)| = ηn̂m̂ correspond to the case when
point x lies in the region of integration. In this case, the integration is carried out over
a small rectangle centered at the point (un̂, vm̂), to which the dot y p̂ = y(un̂, vm̂) = x on
surface Γ corresponds.

Therefore, with the given parametrization of surface Γ, integral Equation (12) is
reduced to the system of linear algebraic equations for N · M values of the unknown
potential density function µ(yp) = µp at the points yp = y(un, vm).

1
2

µ p̂ +
1

4π
µ p̂J p̂ +

1
4π|ηp̂|

NM−1

∑
p=0
p ̸= p̂

µp|ηp|T p̂
p = f p̂, p̂ = 0, 1, 2, ..., NM − 1, (32)

where f p̂ = f (y p̂) are the values of the boundary condition function given on surface Γ,

while Tp(x) = Tp(y(un̂, vm̂)) = Tp(y p̂) = T p̂
p . Here, we multiply system (32) by 4π and

write it in a general form:
NM−1

∑
p=0

((
J p̂ + 2π

)
∆ p̂

p +
|ηp|
|ηp̂|

T p̂
p

(
1 − ∆ p̂

p

))
µp = 4π f p̂, (33)

where p̂ = 0, 1, 2, ..., NM − 1 and
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∆ p̂
p =

{
1, if p = p̂,
0, if p ̸= p̂.

Next, each p̂-th equation of system (33) is multiplied by |ηp̂|.
NM−1

∑
p=0

(
|ηp̂|

(
J p̂ + 2π

)
∆ p̂

p + |ηp|T p̂
p

(
1 − ∆ p̂

p

))
µp = 4π|ηp̂| f p̂, (34)

where p̂ = 0, 1, 2, ..., NM − 1. Equation (34) can be written in matrix form as seen in (A2) in
Appendix A. By reversing the matrix on the left side of the equality in (A2) and multiplying
the inverse matrix on the left by the column with the values of the boundary condition
function, we obtain the density value capacity µ p̂ = µ(y p̂) at the centers of small rectangles
y p̂, which will then be used to calculate the simple layer potential everywhere outside Γ,
thereby solving the original boundary value problem.

To calculate the simple layer potential, we use the quadrature formula obtained in [25]

V0[µ](x) ≈ 1
4π

N−1

∑
n=0

M−1

∑
m=0

µnmθnm(x), (35)

where the integral θnm(x) is explicitly derived in [25]. This formula preserves the property
of continuity of the simple layer potential and approximates this function uniformly.

3. Results and Discussion

In [25], a quadrature formula for the simple layer potential which provides uniform
approximation was obtained. A quadrature formula for the normal derivative of the simple
layer potential with improved accuracy over standard numerical integration was suggested
in [26]. We adopt these results to solve a particular magnetostatics problem, which is an
external Neumann boundary value problem for the values of a scalar magnetic potential.

3.1. Numerical Tests

Testing was carried out for the case where surface Γ is a sphere of unit radius which is
given parametrically by

y1(u, v) = cos u sin v, y2(u, v) = sin u sin v, y3(u, v) = cos v, (36)

where (u, v) ∈ [0, 2π]× [0, π].
Test 1. Under a boundary condition of the form f (x) = 3/5 · P2(cos ϑ), x ∈ Γ, the

solution to the external Neumann boundary value problem for the Laplace equation is
known and is given by the expression

u(x) =
P2(cos ϑ)

5|x|2 when |x| > 1. (37)

In this case, the density of the simple layer potential is equal to

µ(x) = P2(cos ϑ), x ∈ Γ, (38)

where ϑ is the zenith angle in spherical coordinates centered at the origin and

P2(cos ϑ) =
3 cos2 ϑ − 1

2

is a Legendre polynomial.
Test 2. Under a boundary condition of the form f (x) = 4/7 · P3(cos ϑ), x ∈ Γ, the

solution to the external Neumann boundary value problem for the Laplace equation is
known and is given by the expression

u(x) =
P3(cos ϑ)

7|x|3 when |x| > 1. (39)
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In this case, the density of the simple layer potential is equal to

µ(x) = P3(cos ϑ), x ∈ Γ, (40)

where ϑ is the zenith angle in spherical coordinates centered at the origin and

P3(cos ϑ) =
5 cos3 ϑ − 3 cos ϑ

2

is a Legendre polynomial.
Test 3. Under a boundary condition of the form f (x) = 5/9 · P4(cos ϑ), x ∈ Γ, the

solution to the external Neumann boundary value problem for the Laplace equation is
known and is given by the expression

u(x) =
P4(cos ϑ)

9|x|4 when |x| > 1. (41)

In this case, the density of the simple layer potential is equal to

µ(x) = P4(cos ϑ), x ∈ Γ, (42)

where ϑ is the zenith angle in spherical coordinates centered at the origin and

P4(cos ϑ) =
35 cos4 ϑ − 30 cos2 ϑ + 3

8

is a Legendre polynomial.
Test 4. Under a boundary condition of the form f (x) = 3/5 · cos 2φ sin2 ϑ, x ∈ Γ, the

solution to the external Neumann boundary value problem for the Laplace equation is
known and is given by the expression

u(x) =
cos 2φ sin2 ϑ

5|x|2 when |x| > 1. (43)

In this case, the density of the simple layer potential is equal to

µ(x) = cos 2φ sin2 ϑ, x ∈ Γ, (44)

where ϑ and φ are the zenith and azimuth angles in spherical coordinates centered at
the origin.

Test 5. Under a boundary condition of the form f (x) = 4/7 · cos 3φ sin3 ϑ, x ∈ Γ, the
solution to the external Neumann boundary value problem for the Laplace equation is
known and is given by the expression

u(x) =
cos 3φ sin3 ϑ

7|x|3 when |x| > 1. (45)

In this case, the density of the simple layer potential is equal to

µ(x) = cos 3φ sin3 ϑ, x ∈ Γ, (46)

where ϑ and φ are the zenith and azimuth angles in spherical coordinates centered at
the origin.

Test 6. Under a boundary condition of the form f (x) = 5/9 · cos 4φ sin4 ϑ, x ∈ Γ, the
solution to the external Neumann boundary value problem for the Laplace equation is
known and is given by the expression

u(x) =
cos 4φ sin4 ϑ

9|x|4 when |x| > 1. (47)

In this case, the density of the simple layer potential is equal to

µ(x) = cos 4φ sin4 ϑ, x ∈ Γ, (48)
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where ϑ and φ are the zenith and azimuth angles in spherical coordinates centered at
the origin.

3.2. Calculations of the Potential Density

The solution to the external Neumann boundary value problem by the described
method consists of two stages. In the first stage, using one of the two given quadrature
formulas for the direct value of the normal derivative of the simple layer potential, we
obtain the values of the potential density µp, p = 0, 1, ..., NM − 1, at the centers of small
rectangles, solving the corresponding system of linear algebraic equations. This can be
either quadrature Formula (31), constructed in [26], or the standard quadrature formula for
the normal derivative of the simple layer potential in (25). The point coordinates that were
used to estimate the maximum absolute error are (see Figure 3)

xql
j = yj(uq, vl), j = 1, 2, 3,

uq =
2π

2N
q, q = 0, . . . , 2N; vl =

π

2M
l, l = 1, . . . , 2M − 1, (49)

where yj(u, v) is determined by the expressions in (36). That is, these points are located on
the unit sphere at the centers of the small rectangles (see Figure 2), the midpoints of the
boundaries between them and the intersections of these boundaries. Note that these points
are distributed over the entire unit sphere.

The calculations were carried out for various values of M and N. The step values
are determined as h = 2π/N, H = π/M. If N/2 = M = 10, then h = H ≈ 0.31; if
N/2 = M = 20, then h = H ≈ 0.16; if N/2 = M = 40, then h = H ≈ 0.079.

First, let us consider the calculation error of potential density. The first number in the
cells of Table 1 is the maximum absolute value of error of potential density µp, acquired
with the standard quadrature Formula (25) for the normal derivative of the simple layer
potential. The second number after the semicolon is the maximum absolute value of error
of potential density µp, acquired with the improved quadrature Formula (31) for the normal
derivative [26].

Table 1. The maximum absolute error of potential density in tests 1–3.

Test Number N/2 = M = 10 N/2 = M = 20 N/2 = M = 40

Test 1 0.039; 0.015 0.021; 0.0096 0.019; 0.0057
Test 2 0.038; 0.014 0.02; 0.0091 0.018; 0.0055
Test 3 0.031; 0.014 0.019; 0.0088 0.018; 0.0054
Test 4 0.081; 0.0035 0.042; 0.0011 0.021; 0.0003
Test 5 0.087; 0.0038 0.044; 0.0014 0.022; 0.00039
Test 6 0.088; 0.0037 0.043; 0.0015 0.022; 0.00047

Let us also consider the average absolute error over all reference points (15) in
Equation (12). The first number in the cells of Table 2 is the mean absolute error of potential
density µp, acquired with the standard quadrature Formula (25). The second number
(after the semicolon) is the mean absolute error of potential density µp, acquired with the
improved quadrature Formula (31).

Table 2. The mean absolute error of potential density in tests 1–3.

Test Number N/2 = M = 10 N/2 = M = 20 N/2 = M = 40

Test 1 0.023; 0.0043 0.013; 0.0014 0.0066; 0.00047
Test 2 0.02; 0.0041 0.012; 0.0013 0.0059; 0.00045
Test 3 0.018; 0.0045 0.01; 0.0014 0.0053; 0.00046
Test 4 0.024; 0.0012 0.012; 0.00035 0.0059; 9.5 × 10−5

Test 5 0.023; 0.0011 0.011; 0.00036 0.0054; 9.9 × 10−5

Test 6 0.021; 0.001 0.0099; 0.00036 0.0051; 0.00011
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3.3. Calculations of the Potential—The Solution to the Neumann Problem

In the second stage, the obtained values of potential density µp are used to calculate
the simple layer potential at any point in the region R3 \ D using one of the two formulas.
It can be either (35) from [25] or the standard quadrature formula for the simple layer
potential (29).

In the numerical tests, the values of potential density µp, obtained using the improved
Formula (31), are only used in Formula (35). Similarly, the values of the potential density
µp obtained using the standard Formula (25) we will use only in Formula (29).

The calculations of the simple layer potential solutions of the original external Neu-
mann boundary value problem were carried out at some points on the auxiliary spheres
with centers at the origin and radii R = 1 + ∆R. Thus, the auxiliary spheres are outside
of the sphere of unit radius, on which the boundary condition or the potential density is
given, at a distance ∆R from it. Then, the values of absolute errors at these points were
calculated. For each auxiliary sphere the maximum values of these errors are determined.

The point coordinates that were used to estimate the maximum absolute error are
(see Figure 3)

xql
j = Ryj(uq, vl), j = 1, 2, 3,

uq =
2π

2N
q, q = 0, . . . , 2N; vl =

π

2M
l, l = 1, . . . , 2M − 1, (50)

where yj(u, v) is determined by the expressions in (36) and R is the auxiliary sphere radius.

Figure 3. Points x on the test spheres of radii equal to 1 + ∆R are chosen according to (50).
The maximum values of absolute error of the simple layer potential among all of these
points are used in Tables 3–8. If ∆R = 0, then it is the first stage of the numerical solution,
which is the determination of the potential density values (µp).

That is, these points are located at a distance ∆R outside of the unit sphere above the
centers of the small rectangles (see Figure 2), the midpoints of the boundaries between
them and the intersections of these boundaries. Note that these points are distributed over
the entire sphere.

Table 3. Maximum absolute values of error of quadrature formulas in test 1.

∆R N/2 = M = 10 N/2 = M = 20 N/2 = M = 40

0.1 0.018; 0.013 0.0047; 0.0056 0.0021; 0.0018
0.06 0.039; 0.015 0.0077; 0.0077 0.0024; 0.0029
0.03 0.098; 0.016 0.02; 0.0094 0.004; 0.0045
0.01 0.35; 0.016 0.083; 0.01 0.017; 0.0056
0.001 3.86; 0.016 0.98; 0.01 0.24; 0.0058

0.0001 38.9; 0.016 9.97; 0.01 2.48; 0.0058
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Table 4. Maximum absolute values of error of quadrature formulas in test 2.

∆R N/2 = M = 10 N/2 = M = 20 N/2 = M = 40

0.1 0.017; 0.011 0.0040; 0.0050 0.0010; 0.0016
0.06 0.030; 0.013 0.0069; 0.0070 0.0017; 0.0027
0.03 0.082; 0.014 0.015; 0.0087 0.0034; 0.0042
0.01 0.30; 0.014 0.066; 0.0094 0.013; 0.0054
0.001 3.36; 0.014 0.80; 0.0094 0.19; 0.0056

0.0001 33.9; 0.014 8.18; 0.0094 2.01; 0.0056

Table 5. Maximum absolute values of error of quadrature formulas in test 3.

∆R N/2 = M = 10 N/2 = M = 20 N/2 = M = 40

0.1 0.017; 0.011 0.0036; 0.0047 0.00076; 0.0015
0.06 0.028; 0.013 0.0065; 0.0067 0.0014; 0.0026
0.03 0.059; 0.014 0.014; 0.0083 0.0031; 0.0041
0.01 0.22; 0.014 0.058; 0.0090 0.012; 0.0053
0.001 2.4; 0.014 0.70; 0.0090 0.18; 0.0055

0.0001 24.2; 0.014 7.19; 0.0090 1.84; 0.0055

Table 6. Maximum absolute values of error of quadrature formulas in test 4.

∆R N/2 = M = 10 N/2 = M = 20 N/2 = M = 40

0.1 0.020; 0.015 0.0098; 0.015 0.012; 0.015
0.06 0.065; 0.010 0.0067; 0.010 0.0069; 0.010
0.03 0.19; 0.0068 0.033; 0.0057 0.0035; 0.0055
0.01 0.70; 0.010 0.16; 0.0026 0.032; 0.0021
0.001 7.74; 0.015 1.96; 0.0035 0.48; 0.00044

0.0001 78.2; 0.016 20; 0.0041 4.96; 0.00097

Table 7. Maximum absolute values of error of quadrature formulas in test 5.

∆R N/2 = M = 10 N/2 = M = 20 N/2 = M = 40

0.1 0.022; 0.012 0.0065; 0.01 0.0077; 0.0099
0.06 0.067; 0.0095 0.0055; 0.0073 0.0046; 0.0069
0.03 0.19; 0.0072 0.033; 0.0045 0.0028; 0.0039
0.01 0.72; 0.013 0.16; 0.0024 0.031; 0.0016
0.001 7.97; 0.018 1.98; 0.0041 0.48; 0.00049

0.0001 80.5; 0.019 20.1; 0.0047 4.97; 0.0011

Table 8. Maximum absolute values of error of quadrature formulas in test 6.

∆R N/2 = M = 10 N/2 = M = 20 N/2 = M = 40

0.1 0.020; 0.019 0.012; 0.015 0.013; 0.015
0.06 0.062; 0.016 0.010; 0.011 0.0086; 0.010
0.03 0.19; 0.013 0.028; 0.0069 0.0055; 0.0061
0.01 0.72; 0.017 0.15; 0.0034 0.030; 0.0024
0.001 7.98; 0.022 1.88; 0.0049 0.47; 0.00067

0.0001 80.6; 0.022 19.2; 0.0055 4.92; 0.0013

The calculations were carried out for various values of M and N. The step values
were determined as h = 2π/N, H = π/M. If N/2 = M = 10, then h = H ≈ 0.31; if
N/2 = M = 20, then h = H ≈ 0.16; if N/2 = M = 40, then h = H ≈ 0.079.

Now, let us consider the calculation error of the solution to the external Neumann
boundary problem. The first numbers in the cells of Tables 3–8 are the maximum absolute
values of error of the solution, acquired with the standard quadrature formula for the simple
layer potential (29). The second numbers after the semicolon are the maximum absolute
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values of error of the solution, acquired with the improved quadrature Formula (35) for
the simple layer potential [25].

Table 1 shows that the maximum absolute values of error of potential density µp,
acquired with the improved quadrature Formula (31) from [26], are a few times lower
than those of the standard quadrature Formula (25). The same can be observed about the
mean absolute values of error of potential density in Table 2, while in tests 4-6, the values
acquired with the improved quadrature Formula (31) are lower by an order of magnitude.
In both tables, Formula (31) shows the first order of convergence in H for tests 1-3 and the
third order of convergence in H for tests 4–6.

Let us perform an estimate of the maximum absolute value of error of the numerical
solution to the original problem in tests 1–6 from Tables 3–8. From them, it follows
that the standard Formula (29) for the simple layer potential does not provide uniform
approximation and uniform convergence of the solution in the form of the simple layer
potential, since at a fixed step H, the error tends to infinity when approaching surface Γ.
That is why this formula is not the priority choice for solving boundary value problems for
the Laplace equation near a surface Γ.

Quadrature Formula (35) provides uniform approximation of the solution to the
original problem. This remains true even for increasingly oscillating test functions, like in
test 3 or 6. Therefore, Formula (35) retains the property of continuity of the simple layer
potential while heading towards surface Γ. This is why both Formulas (31) and (35) should
be used for numerically solving various boundary value problems for the Laplace equation,
like the scalar magnetic potential.

4. Conclusions

1. In this work, a new method for determining three-dimensional stationary magnetic
fields is proposed. Based on the conception of a magnetic potential, this task can
be formulated as a boundary value problem for the Laplace equation with a Neu-
mann condition on a magnetized surface. This work presents a full solution using
the boundary element method (BEM). With the use of a simple layer potential, a
three-dimensional magnetostatic problem is reduced to a two-dimensional boundary
Fredholm integral equation that is uniquely solvable.

2. While, in an external boundary value problem, the BEM automatically satisfies the
conditions at infinity, it is known to struggle in close proximity to the boundary.
The non-integrable singularity is addressed by applying the improved quadrature
formulas for the simple layer potential (35) and its normal derivative (31) [25,26].
For the values of the potential density, a system of linear algebraic equations was
constructed, the matrix form of which can be seen in Appendix A. For the same task,
standard quadrature Formulas of numerical integration were used as a reference.

3. With the mean and maximum absolute values of error of the potential density being
significantly lower (up to an order of magnitude) than that, when acquired with the
standard approach, Formula (31) shows improved accuracy. The improved Formula
(35) for the simple layer potential provides uniform approximation of the solution,
unlike the standard Formula (29), which tends to infinity. The developed approach
provides improved accuracy and approximates to the solution uniformly at any
distance from the surface, as was confirmed with numerical tests. This remains true
even for increasingly oscillating test functions. Therefore, the developed approach can
be used to solve the magnetostatic problem at any distance from a volumetric body.
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Appendix A

Here, we write system (28) in matrix form:



2π|η0| |η1|B0
1 · · · |ηp̂−1|B0

p̂−1 |ηp̂|B0
p̂ |ηp̂+1|B0

p̂+1 · · · |ηNM−1|B0
NM−1

|η0|B1
0 2π|η1| · · · |ηp̂−1|B1

p̂−1 |ηp̂|B1
p̂ |ηp̂+1|B1

p̂+1 · · · |ηNM−1|B1
NM−1

...
...

. . .
...

...
...

...
...

...
...

...
. . .

...
...

...
...

|η0|B
p̂
0 |η1|B

p̂
1 · · · |ηp̂−1|B

p̂
p̂−1 2π|ηp̂| |ηp̂+1|B

p̂
p̂+1 · · · |ηNM−1|B

p̂
NM−1

|η0|B
p̂+1
0 |η1|B

p̂+1
1 · · · |ηp̂−1|B

p̂+1
p̂−1 |ηp̂|B

p̂+1
p̂ 2π|ηp̂+1| · · · |ηNM−1|B

p̂+1
NM−1

...
...

...
...

...
...

. . .
...

|η0|BNM−1
0 |η1|BNM−1

1 · · · |ηp̂−1|BNM−1
p̂−1 |ηp̂|BNM−1

p̂ |ηp̂+1|BNM−1
p̂+1 · · · 2π|ηNM−1|


×

×


µ0
µ1
...

µNM−1

 = 4π


|η0| f0
|η1| f1

...
|ηNM−1| fNM−1

. (A1)

Also, let us write system (34) in matrix form:



|η0|(J 0 + 2π) |η1|T0
1 · · · |ηp̂−1|T0

p̂−1 |ηp̂|T0
p̂ |ηp̂+1|T0

p̂+1 · · · |ηNM−1|T0
NM−1

|η0|T1
0 |η1|(J 1 + 2π) · · · |ηp̂−1|T1

p̂−1 |ηp̂|T1
p̂ |ηp̂+1|T1

p̂+1 · · · |ηNM−1|T1
NM−1

...
...

. . .
...

...
...

...
...

...
...

...
. . .

...
...

...
...

|η0|T
p̂
0 |η1|T

p̂
1 · · · |ηp̂−1|T

p̂
p̂−1 |ηp̂|(J p̂ + 2π) |ηp̂+1|T

p̂
p̂+1 · · · |ηNM−1|T

p̂
NM−1

|η0|T
p̂+1
0 |η1|T

p̂+1
1 · · · |ηp̂−1|T

p̂+1
p̂−1 |ηp̂|T

p̂+1
p̂ |ηp̂+1|(J p̂+1 + 2π) · · · |ηNM−1|T

p̂+1
NM−1

...
...

...
...

...
...

. . .
...

|η0|TNM−1
0 |η1|TNM−1

1 · · · |ηp̂−1|TNM−1
p̂−1 |ηp̂|TNM−1

p̂ |ηp̂+1|TNM−1
p̂+1 · · · |ηNM−1|(J NM−1 + 2π)



×

×


µ0

µ1

...
µNM−1

 = 4π


|η0| f0

|η1| f1

...
|ηNM−1| fNM−1

. (A2)
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