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Abstract: Short-term load forecasting (STLF) is crucial for the daily operation of power grids. How-
ever, the non-linearity, non-stationarity, and randomness characterizing electricity demand time
series renders STLF a challenging task. Various forecasting approaches have been proposed for
improving STLF, including neural network (NN) models which are trained using data from multiple
electricity demand series that may not necessarily include the target series. In the present study, we
investigate the performance of a special case of STLF, namely transfer learning (TL), by considering a
set of 27 time series that represent the national day-ahead electricity demand of indicative European
countries. We employ a popular and easy-to-implement feed-forward NN model and perform a
clustering analysis to identify similar patterns among the load series and enhance TL. In this context,
two different TL approaches, with and without the clustering step, are compiled and compared
against each other as well as a typical NN training setup. Our results demonstrate that TL can
outperform the conventional approach, especially when clustering techniques are considered.

Keywords: short-term load forecasting; multi-layer perceptron; national energy demand; deep
learning; transfer learning; time series forecasting; ensembling

MSC: 68T07

1. Introduction
1.1. Background

From generation to transmission and distribution, the operation of electricity systems has
to be carefully designed and planned. In this context, load forecasting is critical to properly
control the operation of electricity systems and support decisions about fuel allocation, person-
nel management, and voltage regulation, among others. The negative implications of forecast
inaccuracies in such settings have been widely explored and discussed in the literature [1–3].
Therefore, there is an increasing need for highly accurate load forecasting models which has
resulted in numerous forecasting approaches through the years.

The present study focuses on short-term load forecasting (STLF) which is most relevant
for the day-to-day operation of electricity systems but also supports the decisions of utilities
and companies participating in electricity markets. STLF involves day- to week-ahead
forecasts, while the resolution of said forecasts ranges from 15 min to one hour. STLF
is considered a challenging task as electricity load time series are characterized by non-
linearity, non-stationarity, randomness, and multiple seasonal patterns [4]. This is because
electrical power demand originates from various electrical loads that, in turn, depend
on numerous external variables, including weather and calendar factors. Additionally,
the necessity for higher penetration of renewable energy sources demands more accurate
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forecasts that effectively adapt to the flexibility and demand response requirements posed
within transmission and distribution systems [5]. As a result, STLF has been investigated
in a variety of recent research studies [6] and projects [7–9].

Conventional STLF approaches involve the selection of a proper forecasting model
and its training using historical data of the target time series (e.g., national electricity
demand), often accompanied by key explanatory variables [10–13]. Although such models
are theoretically focused on a single time series, in practice, they may also be capable of
accurately forecasting other series, provided that said series exhibit a sufficient level of
similarity with the ones used for originally training the models. This process of “trans-
ferring” the knowledge gained from solving a certain learning problem (source task) to
another, usually related problem (target task) [14], is commonly referred to in the literature
as transfer learning (TL). The fact that TL enables the development of reusable, generalized
models that can be used directly and with a minimal cost for forecasting multiple new
series has popularized the research and development of TL. This has been particularly true
in applications that involve the utilization of computationally expensive models, such as
deep neural networks (NNs), or the prediction of relatively small data sets. In the first
case, TL can be exploited to democratize the use of sophisticated models by making them
widely available to the public, while in the second case to support forecasting tasks where
limited data availability would have introduced several modeling challenges. Effectively,
the application of TL in the STLF domain offers the opportunity to generate accurate fore-
casts using the concept of pre-trained, global forecasting models [15] that, with little or no
retraining, can be adapted to the needs of a previously unseen (not included in the training
set—zero-shot forecasting) or slightly seen (included in the training set among many other
time series—few-shot forecasting) time series.

Although the research done on TL in STLF applications has been relatively limited,
the concept of TL has been extensively studied in the fields of computer vision and image
recognition [16–18]. The main objective of TL in such settings has been the transfer of
existing knowledge, representations, or patterns learned from one context and applying
that knowledge to improve performance in a different context [19]. In contrast to traditional
machine learning (ML) techniques, which require past (training) and future (testing) data
to have the same domain, TL allows learning from different tasks, domains, or feature
spaces. This element of TL offers immense flexibility when it comes to the source, nature,
and context of the source/target data. There are various TL approaches [20] that can be
distinct based on the nature of knowledge that is being transferred, namely, (a) instance
transfer, (b) feature representation transfer, (c) parameter transfer, and (d) relational knowl-
edge transfer. Depending on the approach, different techniques have been proposed in the
literature: from simply reusing data from the source domain as part of the target domain
in a process called “re-weighing” (instance transfer) [21] to more complicated ones, such
as “warm-start” (parameter transfer) [22–25], “freezing/fine-tuning” (feature representa-
tion) [23,24], and “head replacement” (parameter transfer) [26]. Note that TL techniques
are not mutually exclusive. In fact, they can be blended, addressing different aspects of the
forecasting problem.

1.2. Motivation and Goal of the Study

Given the benefits of TL and the limited attention it has attracted in the area of
STLF, this study focuses on TL approaches for day-ahead forecasting on 27 net aggregated
load time series that are available at the ENTSO-E transparency platform [27]. Our main
objective is to investigate the potential accuracy improvements that knowledge transfer
can offer to conventional NNs for STLF currently used by transmission system operators
(TSOs) in Europe for forecasting the national day-ahead electricity demand, especially
within countries that share similar load patterns. This is of high interest for electrical power
and energy system stakeholders as it can enable better regulation of the balance between
electricity production and consumption, reduce operational costs, and enhance the safety
and robustness of the systems.



Mathematics 2024, 12, 19 3 of 24

We apply TL by considering an approach which combines the warm-start and fine-
tuning techniques. The former technique involves copying the weights and biases from
the source task model and using them to initialize the weights of the target task’s models,
while the latter involves adjusting said weights and biases on the target task. Following this
approach, the time and target data needed to train the respective forecasting models are
significantly decreased, since a significant part of the solution has already been established
from the source task’s solution. To assess the performance of the proposed TL approach,
we consider three different experimental setups. In the first setup, the forecasting models
are optimized, trained, and evaluated for each country individually, i.e., in a conventional
fashion and without using any TL operation, thus serving as a baseline. The second setup
involves transferring information from a model trained on the 26 countries of the data set
to a model tasked with generating forecasts for the respective remaining country. Finally,
the third setup applies the same TL approach to the above on subsets of the data set that
have been constructed using a clustering algorithm so that information is exchanged within
countries of similar electricity demand patterns.

1.3. Related Work

There has been abundant research on NNs and their variations in energy forecasting
applications. Multi-layer perceptron (MLP) architectures are frequently employed for
solving STLF problems [28–31], especially when it comes to new searching algorithms
for model training such as adaptive learning [28], genetic algorithms with particle swarm
optimization [32], and modified harmony search algorithm [33]. Graphical Neural Net-
works (GNNs) have also been utilized [34] to examine the spatial correlation that data
sources have with each other, while Residual Neural Network (ResNet) models [35] have
been proposed as an organic way to map complex relationships between energy loads
of different regions. Feed-forward NNs have also been the topic of research concerning
hyperparameter tuning and optimization [36–38], aiming to increase forecast accuracy and
decrease the computational costs of said models. Additionally, studies like those of De
Felice Matteo and Yao Xin [39] and Vesa Andreea Valeria et al. [40] have introduced ensem-
bling techniques as a means of reducing parameter uncertainty in NN models, leading to
more consistent load forecasts.

Focusing on deep learning (DL) NNs for STLF, recent research has put a particular
emphasis on more sophisticated model architectures, such as recurrent neural networks
(RNNs) and long short-term memory (LSTM) networks [41–43]. Many variants of RNNs
and hybrid DL models [44,45] have been presented in several studies, providing fore-
casts concerning energy consumption at regional, national, or even building levels. More
specifically, Lee and Cho [46] have done notable work implementing LSTM-based models
for national-level forecasting using Korean data sets. Yuan et al. [47] have developed a
real-time short-term load adjustment tool using data from the Taiwan Power Company.
Wang et al. [48] made a comparative study between their proposed LSTM-based model,
MLP, and SVM, using weather and schedule data from a large office located in Alaska,
United States. The LSTM-based method proposed by Memarzadeh and Keynia [49] has
been validated successfully on load and price data collected from the Pennsylvania–New
Jersey–Maryland (PJM) and Spain electricity markets. Similarly, advanced NN architectures
have gained popularity [4,13,50], introducing innovative deep STLF approaches based on
feed-forward [51,52], convolutional [53], or transformer [54,55] setups.

Among the various forecasting approaches used, TL has been a key topic of re-
search with applications in multiple sectors. There is an extensive review conducted
by Iman et al. [56], presenting studies involving TL in various topics including but not
limited to medical imaging, psychology, natural language processing (NLP), and quantum
mechanics. TL techniques have also been employed to solve problems in the energy sector
and especially STLF. Following the trend of aforementioned complicated architectures,
models such as LSTM, ResNet, and TCN have been used to process data from multiple me-
ters at the regional, national, and international levels, all achieving considerable forecasting
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performance. Jung et al. [57] proposed a novel energy load forecasting scheme, collecting
calendar, population, and weather data from 25 districts in Seoul. Lee and Rhee [38] pro-
posed a two-layer transfer-learning-based short-term load forecasting (STLF) architecture
using data from ISO England and GEFCOM 2012, spanning multiple US cities and states.
Cai et al. [58] attempted to increase model performance to adjust to future needs for electric-
ity consumption brought on by the rapid urbanization in Nigeria. Abdulrahman et al. [59],
Zhao et al. [60], and Zhang et al. [61] focused on developing models for high-precision
short-term load forecasting during COVID-19, collecting data from Switzerland, France,
Germany, and Italy as well as metropolitan US cities. Also in the context of TL, clustering
techniques have been employed, aiming to identify distribution nodes that have similar
trends based on the energy consumption of smart grids [62,63]. Ultimately, ensemble
techniques have become popular in the context of TL [34,64], once more demonstrating the
importance of NN ensembles within time series forecasting applications.

Among the numerous comparative studies related to DL architectures [65–67], we
can distinguish several cases where MLP architectures achieve higher accuracy than other
NN models [68], as well as studies demonstrating that MLPs, aided by TL, outperform
LSTM architectures [67]. Another study [38] compares TL and meta-learning techniques
on national data sets of Korea and Portugal, respectively, highlighting the importance of
hyperparameter optimization in the process. Additionally, depending on the nature of the
use case [69,70], MLPs can be preferred over a recurrent neural network, including LSTMs.
Considering these findings, alongside the numerous applications of MLP-based TL in the
energy sector [57,71–73], MLPs clearly demonstrate their usefulness as a base model within
the contemporary TL landscape.

Summing up, TL applications have been widely researched in the STLF domain.
In terms of model architecture, modern research mostly comprises CNN (e.g., ResNet,
TCN) and RNN (LSTM) architectures. However, MLPs are still used for benchmarking
and occasionally preferred when relative changes over a few time steps away can be
ignored. With regards to regional TL, existing research focuses on applications where
TL is implemented on data sets, spanning from multi-building to multi-district and even
multi-city (intra-national) levels. However, studies that employ TL at an international level
usually expand at a small scale as aforementioned, involving a limited number of countries.

1.4. Contribution

This study aims to investigate the value added by TL to STLF at an international level
when applied to forecast the national aggregated electricity load of different countries.
In this regard, the contribution of our study can be summarized as follows:

1. While previous research has examined TL for STLF using national [38,58,59] or small-
scale international transfer [60,61], the present study extends the scale of international
TL to 27 EU countries, covering the entire European continent. To this end, we use load
consumption data sets available at ENTSO-E [74]. We argue that global forecasting
models can be used as a starting point to provide more accurate load forecasts by
taking advantage of knowledge transfer opportunities among different, yet possibly
similar electricity demand time series. This is a major contribution to the electrical
power and energy system domain that can be of significant interest for TSOs and
utilities, at both the European and international levels.

2. While many researchers have chosen to experiment with complex DL architectures
[28,32–34,58], in this work we focus on MLPs, a relatively simple NN architecture
that is well established in the time series forecasting domain and has been proven to
often outperform more sophisticated models. Apart from the fact that MLPs allow
for greater flexibility when it comes to parameter adjusting and retraining, which is
a feature that makes them a widely accepted benchmarking option in the context of
TL, the former are usually faster to compute and easier to implement and replicate.
Said characteristics constitute a significant contribution to the research community
and potential future users of the present study.
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3. Different countries may exhibit different electricity demand patterns due to key latent
variables (e.g., geography, population size, and economic state). Therefore, we intro-
duce a time series clustering approach with the objective of identifying countries with
similar demand patterns and facilitating TL. Although similar clustering approaches
have been examined in the literature [62,63], they were applied on low voltage dis-
tribution and building-level data rather than country-level electricity demand time
series. To this end, we introduce an additional TL setup in our study, where we apply
TL among the countries of a given cluster rather than the complete set of countries
available in the data set.

1.5. Structure of the Paper

The rest of the paper is structured as follows. Section 2 covers the methodological steps
of our study including the following stages: (i) data pre-processing (sanitization of missing
values, duplicates, and outliers), (ii) an exploratory data analysis that provides useful
insights about the data set, (iii) the clustering process used to form groups of countries
with similar load patterns, (iv) the selected model architecture, (v) the TL methodology and
the respective examined setups, and (vi) the model training, validation, and evaluation
procedures. Section 3 follows with the results derived from the investigated TL setups,
followed by a brief discussion of the results in Section 4. Finally, in Section 5 we conclude
our work and present potential future perspectives.

2. Methodology

To effectively address our TL problem, the experimental process took place using an
automated machine learning operations (MLOps) pipeline developed with MLflow [75],
building up to the one described by Pelekis et al. [13]. A flowchart displaying the basic
concepts and stages of the pipeline can be found in Figure A1. The methodological steps of
our approach are structured as described in the following sections.

2.1. Data Collection and Curation

The data set used in the present study contains the time series of the national net aggregated
electricity demand of 27 different European countries (it includes the electricity demands of all
EU countries at an hourly resolution, excluding Luxembourg and Cyprus, with the addition of
Switzerland and Norway). The data set is available online and was obtained by the ENTSO-E
transparency platform [27]. The time series, containing a total of 1,577,954 data points, spans
from 2015 up to 2021, as this was the most recent version of the data collection containing full
calendar years at the time when the experiments were carried out.

Prior to model training, data wrangling had to be carried out on the electrical load time
series. To do so, we extended the methodology proposed in [4] to all countries included in
the data set. Specifically, we proceeded with the following operations:

1. Removal of duplicate entries: Data may become duplicated as a result of storage or
measurement errors; therefore, cleaning our data of such duplicates is necessary to
avoid costly mistakes (e.g., skewed prediction results).

2. Removal of outliers: After calculating the mean and standard deviation of the load
for each month in the data set, we removed any values that arithmetically deviated
from the mean more than a certain amount, aiming to exclude any outliers. More
specifically, we set the maximum distance from the mean as 4.5 times the standard
deviation, so as to maintain data credibility and remove only extreme outliers. This
process detected 233 different outliers, with many of them forming groups in segments
of our data set as shown in Figure 1a,b.

3. Conversion from native UTC to local time of each country: Electricity demand time
series can exhibit different patterns, depending on the time of the day (e.g., due to
daylight hours). To accommodate that and align the international time series patterns
through time, for each time series we inferred the timezone based on the country it
referred to, changing it to local time rather than UTC which was the initial setting.
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4. Missing data imputation: In the cases where imputation was required, we employed
a hybrid method between weighted average of historical data and simple linear
interpolation, similar to Peppanen et al. [76] and Pelekis et al. [4]. The weights of each
method depend exponentially on the distance of the missing value in question from
the nearest timestamp that has a value according to the formula:

w = ea×di , r = w × L + (1 − w)× H

where α (empirically set to 0.3) is a positive weight parameter that depicts how rapidly
the weight of simple interpolation drops as the distance to the closest non-empty
value increases, di is the (positive) distance (in samples) to the closest (preceding or
succeeding) available sample, L is the imputation suggestion by linear interpolation,
H is the imputation suggestion for historical data, and r is the resulting imputed
value. Therefore, as di increases, the contribution of the linear interpolation suggestion
decreases and the contribution of the historical data suggestion increases exponentially.
Said algorithm resulted in the imputation of 13,290 data points within our data set; an
illustrative example of the process is demonstrated in Figure 1c,d.

(a) (b)

(c) (d)
Figure 1. Visual representation of the outlier removal and missing value imputation procedures that
were performed during the pre-processing of the data set. (a) Extreme outliers at random data points
(Denmark). (b) Outliers forming grouping at specific data points (Norway). (c) Imputation matching
complicated pattern (France). (d) Imputation on multiple close proximity data points (Greece).

2.2. Load Profiling

Proceeding with load profiling, we initially calculated the average load profiles of the
entire load time series data set, grouped by and aggregated on selected time units (hour,
weekday, and month). Specifically, Figure 2 illustrates the graphs of the daily (Figure 2a),
weekly (Figure 2b), and yearly (Figure 2c) load profiles of the countries of the data set.
Subsequently, several key patterns can be noted with respect to our data, as follows:

• Daily load profile: In general, most countries exhibit a steep increase starting from
sunrise, reaching a peak at noon, with a small decrease during the noon break time,
followed by a steady decrease towards night hours (Figure 2a). This can be attributed
to the increased energy demand during working hours, and confirmed by the decrease
during noon break/lunch time when working activity is decreased. However, several
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countries (e.g., Switzerland, France) exhibit differentiating patterns leading to the
need for further investigation.

• Weekly load profile: We observe a steady energy demand during the working days
and a steep decrease as we reach the weekend days (Figure 2b). This is attributed to
the fact that commercial and industrial activity is decreased at the end of the week
(Saturday and Sunday).

• Yearly load profile: For the vast majority of countries, the summer months have on
average the lowest energy requirements and they steadily increase as we move towards
winter. After that, the energy demand follows the reverse pattern, steadily decreasing
until it reaches the lowest point again at summer (Figure 2c). This behavior can be
attributed to the increased demand of heating loads during the winter. However,
the opposite trend can be observed for southern European countries with much
warmer climates (Greece, Spain, Italy, Croatia, and Portugal) which demonstrate
higher energy load during summer months due to the increased cooling demand.

Taking the above into consideration, it becomes evident that most countries follow
common patterns during the span of any time profile given. However, as several differences
and sub-classifications can be observed—especially within the yearly (Figure 2c) and daily
profiles (Figure 2a)—we are prompted to compare their energy loads and seek further
classifications and dissimilarities through the clustering procedure of the following section.

(a) (b)

(c)
Figure 2. Average load profiles of the entire load time series data set aggregated by selected time
intervals (hour, weekday, and month) for the time period of 2015 to 2021. (a) Average daily load
profile (hourly resolution). (b) Average weekly load profile (daily resolution). (c) Average yearly load
profile (monthly resolution).

2.3. Clustering

Motivated by the insights of the previous section regarding the international load
profile patterns, we are prompted towards grouping countries together in clusters that
will act as source domains during TL, aiming at higher forecasting performance. A hier-
archical clustering approach using Ward’s linkage has been identified as the best option
for clustering functional data that exhibit periodic trends [77,78]. To measure the distance
between clusters (and by extension, countries), our approach was focused on the countries’
timely load profiles. In this direction, each country is represented as a vector consisting
of 4 sub-vectors, each one containing its daily, weekly, and yearly profiles, as depicted in
Figure 3. The vectors have been normalized to (i) ensure a clustering process of high quality
that only depends on load shapes rather than magnitudes, as the latter are highly variable
among countries, and (ii) enhance the computational efficiency of the algorithm. Note that
longer-term load profiles have been ignored as we focus on STLF (the contribution of such
profiles is considered negligible for the examined forecasting horizon).



Mathematics 2024, 12, 19 8 of 24

Figure 3. An illustration of the derived load profile vectors containing daily and yearly profiles for
each country of the data set.

The results of the clustering process are illustrated in Figure 4, where we can observe
four basic clusters: (i) Mediterranean countries (cluster 1), (ii) central European countries
(cluster 2), (iii) Eastern European countries (cluster 3), (iv) Scandinavian and Baltic countries
(cluster 4). Given these results, which imply a certain correlation among the countries of the
same cluster, we additionally came up with several geographical and socio-economic facts
that can be used to validate the results of the derived grouping by the clustering algorithm:

1. Mediterranean sea (cluster 1): Spain, Greece, Italy, and Croatia share many connections
due to their unique geographical position. To develop a more integrated energy
market in the Mediterranean region, many of these nations work together on electricity
and gas interconnections. They seek to increase cross-border gas and electricity trade
to guarantee a steady supply of energy.

2. Visegrad Group (cluster 2): Poland, Slovakia, and Hungary have made significant
progress at building transnational energy pipelines, electrical connections, and trans-
portation networks.

3. Benelux (cluster 2): Belgium and the Netherlands share a commitment to free trade
as well as a history of economic cooperation, while they are also renowned for their
close proximity and highly advanced logistics and transportation networks.

4. Baltic states (cluster 4): Estonia, Latvia, and Lithuania share historical ties and expe-
riences among the Baltic states, particularly their time under Soviet authority. Since
attaining their independence, they have worked to improve their collaboration.

5. Scandinavia (cluster 4): Sweden, Norway, and Denmark adopt a similar social struc-
ture, are located in close proximity to one another, and have a comparable cultural his-
tory. They work together on a variety of local concerns and have close trading relations
(energy policies, resource management, and development of RES, among others).

The aforementioned classifications and details on current affairs imply that the cluster-
ing algorithm has intuitively and sufficiently grouped the observed load patterns of the
European countries involved in our study.

Figure 4. Dendrogram and related choropleth based on clustering performed on daily, weekly,
and yearly profiles of the countries.
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2.4. Selected Model

With respect to NN selection, we have opted for the MLP for several reasons. Com-
pared to other popular NN architectures, MLPs are relatively simpler, more flexible, and sim-
ilarly skillful in learning how to map inputs to outputs within a wide range of forecasting
applications. Their structure allows examination with high precision and they do not
require the time-consuming network design search process needed for deeper and more
state-of-the-art architectures, therefore allowing for the rapid deployment of the experimen-
tal approach and interpretable comparisons. This trait also results in a more straightforward
application of TL techniques, enabling the execution of a wider variety of tests compared
to larger and usually computationally intensive architectures.

The MLP consists exclusively of perceptrons (or neurons), which are organized in
one or more layers. Each perceptron of a layer is fed with the outputs of each perceptron
of the previous layer and feeds, in turn, each perceptron of the next layer (forward pass).
Equation (1) is used to calculate a given neuron’s output.

y = f (
n

∑
i=1

(wixi) + b) (1)

The weighted (with weights wi) sum of the outputs (xi) of all the neurons in the
previous layer plus a bias term (b) is computed first. Then, the activation function f is
applied to this result. The purpose of this function is to enable the model to capture non-
linear relationships among the inputs (lags in our case) and outputs (forecasts). Various
activation functions have been used in the literature, such as the sigmoid, hyperbolic
tangent (tanh), and sigmoid linear units (SiLU), as well as the rectified linear unit (ReLU),
with the latter being among the most popular (see Equation (2)).

f (x) =
1

1 + e−x (2)

During the training process of an MLP, the back-propagation algorithm is used. The
weights and biases of the MLP are iteratively updated with the use of optimizers to ensure
the optimal values for its weights and biases. Among multiple optimizer options (e.g.,
Gradient Descent, Adagrad, Adadelta) our choice was the adaptive moment estimation
algorithm (ADAM) since it is one of the most widely adopted options in current research.

2.5. Transfer Learning Setup

We define TL as the extension of ML that uses knowledge previously gained from
solving a task in order to improve performance on a subsequent task (T). Given the popular
study by Pan and Yang [21] to define TL, we first need to formalize the following:

Let D be a domain that includes (i) a feature space (X) and (ii) a marginal probability
distribution P(X) for said X. Each task T (denoted by T = {Y, f (·)}) consists of (i) a label
space Y and (ii) a function f (·), which is unobserved and can only be inferred from the
training data ({xi, yi} | xi ∈ X and yi ∈ Y), and f (.) is used to predict the label f (x) of a
new instance x. A general-purpose definition of TL is stated as follows:

Definition 1. Given a source domain DS and a learning task TS, a target domain DT and learning
task TT , TL aims to help improve the learning of the target predictive function f (·) in DT using the
knowledge in DS and TS, where DS ̸= DT or TS ̸= TT .

Aiming to adapt this definition to our TL use case, we can come up with the following
statements for each one of our TL experiments:

• Domains (DS/DT ): The feature space is the sequence of historical values used to train
the model. Specifically, the length of this sequence directly depends on the optimal
look-back window (l) of each trained NN. Mathematically, this leads to the following
source and target feature spaces, respectively: XS, XT ∈ Rl). Therefore, the source
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and target feature spaces are the same within the TL workflow of a given experiment.
In addition, the source and target marginal probability distributions for the predictor
variable (future energy demand) are different (PS(X) ̸= PT(X)) within the same
experiment, since they depend on the countries included during the training (source
training) and fine-tuning (target training) procedures. Given the above, the source
and target domains differ within our TL studies (DS ̸= DT).

• Tasks (TS/TT ): The label space consists of the range of the possible energy demand
forecasts, which are directly dependent on the forecast horizon used. The forecast
horizon is constant (24 data points) within our day-ahead forecasting setting, causing
source and target label spaces to be the same (YS, YT ∈ R24). With regards to the f (·)
function, it corresponds to our trained NN, whose parameters (weights and biases) are
used for the knowledge transfer procedure. Since f (·) is determined by the provided
training data, and each experiment contains a different set of countries, thereby source
and target f (·) functions are different ( fS(·) ̸= fT(·)). Given the above, the source and
target tasks differ within our TL studies (TS ̸= TT).

Considering these factors, our TL setups fall within the scope of homogeneous
(YS = YT and XS = XT) inductive transfer learning [19,79], which can be defined as
follows:

Definition 2. (Inductive Transfer Learning). Given a source domain DS and a learning task TS,
and a target domain DT and learning task TT , inductive transfer learning aims to help improve
the learning of the target predictive function f (·) in DT using the knowledge in DS and TS, where
TS ̸= TT .

Regarding the specifics of TL sub-techniques, within our study, we apply warm-start
paired with fine-tuning. Warm-start utilizes previously trained weights or parameters.
Specifically, warm-start refers to models being trained on the source domain/task and their
parameters being subsequently used as initial values for the target model’s parameters (pa-
rameter transfer). Note that warm-start applies only an initialization of all models’ parame-
ters, in contrast to head replacement which initializes all but the final layers. Warm-start
initially involves copying the entire solution from the source task to the target task. This is
where fine-tuning comes into play to adjust our source task’s solution to the target task.
Taking into consideration that (i) normally, NNs’ weights and biases are typically initialized
using random values, which does not offer any initial advantageous/disadvantageous bias
for the parameters regarding the target task, and that (ii) the source and target are similar in
nature (task, domain, or feature space), the warm-start technique allows us to start training
the target models from a beneficial (“warmer”) position on the loss surface, leading to
faster convergence and decreased training time, as the optimal solution has already been
significantly approached during the training of the source model.

Aiming to evaluate the added value of TL with or without clustering on the day-
ahead national load forecasting of European countries, 3 main setups were implemented to
support our comparisons:

1. Baseline: We model each country included in the data set individually. In this respect,
each country has a unique, individual forecasting model which is trained, optimized,
and tested using historical data from said country alone. These models are used as a
baseline to evaluate the potential improvements of the two TL setups described below.

2. All-but-One (AbO): A TL setup according to which, given a certain country, a model
is first pre-trained on the data of all the other countries included in the data set and
then fine-tuned using the data of the selected country. As shown in Figure 5, our data
set contains data from 27 different countries. Therefore, in this setup, we perform
experiments equal to the number of countries, where each time a different country is
set as the target domain, while the remaining 26 are set as the source domain. A model
( fS) is trained in the source domain and its parameters are used (via the warm-start
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technique) to develop a new model ( fS) in order to generate forecasts in the target
domain.

3. Cluster-but-One (CbO): As stated in Section 2.3, countries with similar geographical,
climatic, and socio-economic characteristics may also share similarities in their elec-
tricity demand. In this context, this TL setup is developed to examine the performance
of TL between countries pertaining to the same cluster. The approach is similar to
the AbO setup, with the exception that in a given country’s experiment, the source
domain comprises countries that belong to the same cluster, rather than the entire
data set.

For the purpose of completeness and objective assessment, we also introduce a season-
ally naive model of weekly seasonality, namely, seasonally naive with a look-back window
of 168 values, namely sNaive(168). This naive approach uses the observed values of the
same day of the previous week as day-ahead forecasts for each of the countries and is
expected to produce moderate results (daily and weekly seasonalities are incorporated),
thus supporting the objective benchmarking of the TL and baseline approaches [4]. Note
that in addition to the seasonal naive model, in our experiments we also considered func-
tional mean time series models since they are capable of identifying both intra-week and
intra-year seasonal patterns. However, since the accuracy of said models was lower than
that of the sNaive(168) model, we ommit reporting their results in the rest of our analysis
for reasons of brevity.

Figure 5. An illustration of the separation process of source and target domains for each experiment
in the AbO setup. Each row of cells represents a separate execution of the entire ML pipeline. Source
countries in each row are depicted in green, while the corresponding target domain country is
depicted in blue. The same approach has been followed in the CbO setup as well, with the exception
that this separation takes place internally within the countries of each cluster, excluding those that do
not pertain to it.

2.6. Model Training and Validation Pipeline

In Section 2.2, we described the MLP architecture selected for our models. As men-
tioned, during the model training and validation procedure, all models have been optimized
to minimize the L2 loss (MSE), using the ADAM optimizer. Additionally, early stopping
was applied with a patience of 10 epochs.

Our data set contains data from 27 different countries. Therefore, depending on the
setup and target domain, each model might be subject to different (but mostly overlapping)
data points. In this context, the training process can be summarized as follows:

• Each model is trained on a training set spanning from 2015 to 2019, that is, Ns − Nt
unique data points, where Ns is the number of observations pertaining to the countries
of the source domain and Nt is the number of observations belonging to the target
country. Note that Ns can vary depending on (i) the historical data availability of each
country and (ii) the TL setup. For example, the AbO setup results in much larger
training data sets than CbO. The Nt variable is affected by the fact that not all countries’
observations date back to 2015, which leads to varying population sizes among target
domains. This is not the case for the validation and test sets, as all time series have
available observations for the years 2020 and 2021.



Mathematics 2024, 12, 19 12 of 24

• Each model is optimized on the validation set (year 2020: 239,018 unique data points)
to identify appropriate hyperparameter values.

• Each model is evaluated on the remaining, and previously unseen, test set (year 2021:
243,541 unique data points) without retraining the model on the full data set (union of
the training and validation sets).

Note that the aforementioned data set splitting process allowed the inclusion of complete
calendar years within each data set, thus maintaining the symmetry of seasonal patterns.

For each experiment, the hyperparameters of the MLPs were tuned using a multi-
dimensional grid of hyperparameter values and more specifically the tree-structured Parzen
estimator (TPE) optimization approach, as described by Bergstra et al. [80] and implemented
in Python (version 3.8) programming language in Optuna optimization library (version
2.10) [81], similar to Pelekis et al. [4]. Additionally, the successive halving algorithm—a
combination of random search and early stopping—was internally applied as a pruning
criterion for TPE trials. A crucial hyperparameter that is common among all architectures
is the look-back window (l), namely, the number of historical time series values (lags) that
the model looks back at when being trained to produce forecasts. The l directly determines
the input layer size of the trained neural network. The specific details of the optimization
process for each architecture are presented in Table 1. A total of 100 trials were executed for
the optimization of each NN architecture.

Following the identification of the best model architecture in terms of hyperparameter
values, 20 separate networks sharing the same hyperparameter values but different pseudo-
random initialization of neural weights were trained for each NN architecture. Then,
an ensemble of these models was used to produce the final forecasts. To improve the
robustness of the results, the final forecast of our ensemble model was derived as the
average of the predictions of all models. The ensemble method was performed using
Ensemble-PyTorch (version 0.1.9) [82], a unified framework for ensembling in PyTorch,
with a user-friendly API for ensemble training/evaluation, as well as high efficiency in
training with parallelism.

During the TL step, hyperparameter tuning was bypassed, as the hyperparameters
and trainable parameters of the given source model were passed, as they were, for the
initialization of the target model (warm-start technique). The retraining of the target model
followed, being fine-tuned until its validation loss plateaued out (early stopping).

With respect to computing resources, the training, validation, and testing of the
models were executed on an Ubuntu 22.04 virtual machine with an NVIDIA Tesla V100
GPU, 32 CPU cores, and 64 GB of RAM.

Table 1. The hyperparameters optimized per NN architecture and the respective search spaces.

Arguments Value Range Type

number of layers {2, . . . ,6} Discrete
layer sizes {128, 256, 512, 1024, 2048} Discrete
l {168, 336, 504, 672} Discrete
forecast horizon 24 Fixed
learning rate {1 × 10−5, . . . , 1 × 10−4} Continuous
batch size {256, 512, 1024} Discrete

2.7. Model Evaluation

Various forecasting performance measures are common in the literature for evaluating
forecasting accuracy, such as the mean absolute error (MAE), the mean squared error
(MSE), the root mean square error (RMSE), the mean absolute percentage error (MAPE),
the symmetric mean absolute percentage error (sMAPE), and the mean absolute scaled error
(MASE) Hyndman and Koehler [83]. Within the present study, MAPE was selected as it is
a widely accepted choice in STLF applications and results in interpretable measurements.
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Consequently, MAPE, defined as below, served as our main evaluation measure and was
used for optimizing the hyperparameters of the models:

MAPE =
1
m

m

∑
t−1

∣∣∣∣Yt − Ft

Yt

∣∣∣∣ · 100(%), (3)

where m represents the number of samples, while Yt and Ft stand for the actual values and
the forecasts at time t, respectively.

We should note that although MAPE is frequently judged for becoming infinite,
undefined, or heavily skewed when the actual values are (close to) zero, and also puts a
different penalty on positive errors than on negative errors [84], it still serves as a useful
measure in the STLF literature since it enables intuitive comparisons between countries of
different magnitudes of electricity consumption. Moreover, given that in such applications
the actual values are much greater than zero, the disadvantages of MAPE become less
relevant in practice. Nevertheless, to confirm that our key findings are not affected by the
selected accuracy measure, in the appendix we also report our results according to RMSE.

3. Results

Proceeding to the results of our experiments, the error metrics for each scenario have
been collected in Table 2. The last row lists the average improvement (average MAPE
difference) of each model compared to its baseline model. The last column contains the
MAPE of the best-performing model alongside its name. The final performance of each
architecture is displayed in Figures 6 and 7 (derived from Tables 2 and 3, respectively),
taking into account the ensembling modeling technique that followed the hyperparameter
optimization process. More details on the optimal hyperparameters and training times
of the best-performing models can be found in Table A1 of the Appendix A. Each line of
the table represents a country, containing (a) the name of its best-performing setup, (b) the
training time of the target model (fine-tuning process), (c) the training time of the baseline
model, and (d) hyperparameters of the best model. As an initial observation, sNaive(168)
is heavily outperformed in all cases by all NN models (AbO, CbO, baseline). This is but an
expected outcome, since naive models do not entail any kind of learning process; they only
repeat past values of the time series. In fact, this model was selected as a hard baseline,
helping to ensure the validity of our setups rather than to actually benchmark them. For the
sake of completeness, Appendix B lists the evaluation results with respect to RMSE as well.
Said results are in general alignment with those of Table 2. More precisely, 70% of the
countries in our RMSE metrics support the findings of our MAPE metrics. Nonetheless,
note here that the hyperparameter tuning performed during our experimental process was
based on optimal MAPE, therefore justifying the presence of certain small inconsistencies.

Focusing on the effectiveness of TL, Figure 7 demonstrates that within each cluster,
at least one of two TL setups achieve, on average, a lower forecasting error than the
baseline. Therefore, it becomes apparent that TL, as a whole, outperforms in all cases the
traditional NN approach that is represented by our baseline model. Note in Table 2 that
AbO or CbO are the only alternating values, demonstrating that there is always a TL setup
that outperforms the baseline NN. In this context, the last cell of the table corresponds
to the average improvement of TL (0.34 %), in general, compared to the NN baseline
model. Additionally, note that TL enables the advantageous initialization of target models
from their respective source models, leading to much faster convergence and therefore
a significant decrease in the target pipeline’s (fine-tuning) execution compared to the
respective baseline model execution. Said decrease in execution time ranges from 12.09%
up to 66.87% (average 47%) depending on the experiment (target country). More details
regarding the exact training times per experiment can be sought in Table A1 of Appendix A.
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Table 2. Accuracy (MAPE) of the examined forecasting approaches (Baseline, AbO, CbO) alongside
the naive model sNaive(168). The bold fonts correspond to the lowest error.

Country Cluster No. MAPE %
Baseline AbO CbO sNaive(168) Best Model

Italy 1 2.72 2.37 2.47 5.37 2.37 (AbO)
Croatia 1 3.35 3.00 2.86 6.13 2.86 (CbO)
Spain 1 2.00 1.95 2.28 4.51 1.95 (AbO)
Greece 1 3.66 3.60 3.39 7.97 3.39 (CbO)
Serbia 2 2.82 3.27 2.46 6.41 2.46 (CbO)
Portugal 2 2.24 2.79 2.23 4.31 2.23 (CbO)
Belgium 2 2.55 2.56 2.50 4.58 2.50 (CbO)
Ireland 2 2.15 2.03 2.09 3.32 2.03 (AbO)
Netherlands 2 4.21 4.16 4.26 5.59 4.16 (AbO)
France 2 4.53 2.31 2.22 7.15 2.22 (CbO)
Romania 2 2.54 2.09 2.33 4.36 2.09 (AbO)
Bulgaria 2 2.80 2.67 3.32 6.87 2.67 (AbO)
Finland 2 2.26 2.16 2.08 5.75 2.08 (CbO)
Hungary 3 2.96 3.26 2.88 5.64 2.88 (CbO)
Germany 3 2.76 3.17 2.42 4.26 2.42 (CbO)
Slovakia 3 2.06 1.94 2.17 3.95 1.94 (AbO)
Austria 3 3.07 3.02 3.04 5.32 3.02 (AbO)
Slovenia 3 3.56 3.58 3.49 6.44 3.49 (CbO)
Poland 3 2.18 2.40 2.05 4.39 2.05(CbO)
Lithuania 3 2.77 2.47 2.35 4.95 2.35 (CbO)
Switzerland 4 4.71 4.01 3.97 6.25 3.97 (CbO)
Norway 4 2.37 2.33 2.06 5.56 2.33 (CbO)
Denmark 4 3.87 2.80 2.79 5.46 2.79 (CbO)
Estonia 4 3.52 3.36 3.72 6.94 3.36 (AbO)
Czechia 4 2.21 1.83 1.96 4.97 1.83 (AbO)
Latvia 4 2.31 2.11 2.23 4.29 2.11 (AbO)
Sweden 4 3.13 2.84 3.19 6.85 2.84 (AbO)

Average error 2.94 2.74 2.70 5.47 2.61 (TL)
Average improvement (over Baseline) - 0.20 0.24 −2.53 0.33 (TL)

Table 3. Average MAPE(%) per cluster and training setup. The bold fonts indicate the minimum
error per cluster.

Cluster No. Baseline AbO CbO sNaive(168) Best Setup

1 2.93 2.73 2.75 5.99 AbO
2 2.85 2.67 2.61 5.37 CbO
3 2.77 2.83 2.63 4.99 CbO
4 3.16 2.75 2.85 5.75 AbO

Considering the analytical results of Table 2 and Figure 6, it is notable that the AbO
setup results in an average error reduction of 0.16% compared to the baseline in terms of
absolute MAPE percentage. Therefore, this setup outperforms the baseline on average,
even if this is not the case for all the countries in our data set. In the same direction, CbO
leads to a higher average error reduction of 0.24% compared to the baseline, therefore
confirming the value added by the clustering scheme proposed within our study.
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Figure 6. Side-by-side barplots depicting the MAPE(%) for each TL setup and baseline for each country.

Figure 7. Side-by-side barplots depicting the average MAPE(%) for each TL setup and the baseline
for each cluster.

4. Discussion
4.1. A Note on the Best-Performing TL Setup Overall

With respect to CbO, its average improvement (0.24%) compared to the baseline is
higher than AbO (0.20%) and therefore has already been considered as the best-performing
TL setup. To further reinforce this statement, it can be noted that CbO also holds the
majority of countries where it achieved better results than its TL competitor (AbO). More
specifically, among the 27 European countries that were examined in total, 12 (44.5%) of
them demonstrate better results with the AbO setup compared to CbO, with the opposite
being true for the other 15 (55.5%). This outcome can be attributed to the stratified training
data selection proposed by our clustering methodology. In this direction, by providing
a specific, highly correlated group of countries as its training set, the target model can
take advantage of the similarities among countries and transfer the required knowledge
in an optimal fashion. Despite the fact that CbO proved to be quite effective in most of
the countries, the shortcomings of said method cannot be neglected. Countries like Spain,
Romania, and Bulgaria exhibit reduced performance with CbO compared to the respective
baseline MLP.

Focusing on Table 3 and Figure 7, an interesting observation lies in the fact that cluster
3 is the only case where AbO is significantly outperformed, even by the baseline model.
This finding further validates the superiority of the clustering scheme, confirming that
CbO is the most consistent TL setup. Regarding the poor performance of AbO in cluster
3, it should be noted however that its forecast error is not always worse than the baseline
NN, being higher mainly in four (Germany, Poland, and Hungary) of the seven countries
included in the cluster.
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4.2. A Note on Selecting the Optimal TL Setup Based on the Target Country

Another interesting discussion topic relates to the selection between AbO and CbO
depending on the target country of interest. Our results suggest that said selection should
be evaluated individually per use case, and therefore specific caution is advised during
the selection process. However, a good indicator for clustering could, by definition, be the
degree of similarity within the energy demand patterns observed among the countries of
each cluster. This can be further supported by the significant overlap between countries,
where clustering was the most effective for countries that indeed have several interconnec-
tions with each other. In this direction, several interesting insights can be extracted from
the official ENTSO-E transmission system map [85], as follows:

1. Cluster 1: Croatia, Italy, and Greece have made a lot of progress developing energy
interconnections between them. There is an established 380-400 kV Transmission
Line between Redipuglia (Italy) and Melina (Croatia) as well as a 400KV HVDC link
between Galatina (Italy) and Arachthos (Greece)

2. Cluster 2: Belgium and the Netherlands are closely related in matters of energy and
have created transmission linessuch as the Van Eyck–Maasbracht interconnection.
Additionally, France and Belgium have also developed cross-border interconnections
between Mastaing–Avelgem and Avelin–Avelgem.

3. Cluster 3: Austria is connected by several interconnections with Hungary, Germany,
Slovenia, and Slovakia (e.g., Kainarkdal–Cirkovce, Silz–Oberbrumm, etc.). Poland and
Lithuania are also connected through various electricity interconnections, including
the LitPol Link, a high-voltage direct current (HVDC) interconnection that allows for
electricity exchange between the two countries.

4. Cluster 4: Sweden has a strong energy connection with Norway, primarily through
hydroelectric power generation, as well as Denmark through electricity transmission
lines and substations. Estonia and Latvia are also connected through electricity
interconnections (e.g., Valmiera–Trisguliina), promoting regional energy cooperation
and grid stability.

An interesting observation lies in cluster 1. Croatia, Italy, and Greece have developed
energy interconnections with each other, while, on the contrary, Spain has not—at least at
the time of writing this paper. In this context, Spain is the only country in its cluster where
CbO was outperformed by the NN baseline (and AbO by extension). Despite the appeal of
this theory, there are a few exceptions, such as the case of Sweden which did not respond
as expected to the CbO approach.

5. Conclusions and Future Work

This study conducted a comparative analysis of TL approaches used for day-ahead
national net aggregated electricity load forecasting. A feed-forward NN architecture was
selected to implement the baseline forecasting models, followed by proper hyperparameter
tuning and ensembling. The warm-start technique, accompanied by fine-tuning, was
employed as a widely used and streamlined TL technique. Within our initial approach
(AbO), we examined the value of straightforward TL. We developed a separate model for
each country of the data set, aiming at forecasting its energy load (target domain). Each
model draws its initial parameter values from another unique model, pre-trained using
the data from the rest of the countries included in the data set (source domain). Moreover,
motivated by an exploratory data analysis which revealed a certain correlation among
the energy load patterns of different countries—due to similarities in their geographical
and socio-economic conditions—we investigated whether the identified correlations could
be exploited to further boost forecasting performance. In this direction, we developed a
hierarchical clustering algorithm to derive clusters of countries and then used them to form
the proper source domains for the TL pipeline by pre-training the respective global model
using only the time series of the countries pertaining to the same cluster with the target
country (Cb0 setup).
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Overall, the experimental observations emerging from our research can be summarized
as follows:

• Time series analysis reveals that countries exhibit a consistent pattern in their daily,
weekly, and yearly load profiles.

• The process of country clustering suggests that countries sharing similar geographical
and/or socio-economic factors exhibit a strong correlation and are hence clustered
accordingly.

• The performance of the baseline NN model is consistently outperformed by at least
one of the examined TL approaches, either AbO or CbO. Specifically, the clustering-
based TL model (CbO) outperforms the rest of the models, improving the average
MAPE by 0.04% compared to AbO and by 0.24% when compared to the baseline.

• Despite its overall predominance, CbO often exhibited worse performance, especially
for countries with outlying socio-economic profiles and/or load patterns and magni-
tudes. In such cases, the AbO model is recommended to counter the negative bias that
clustering entails.

The methodology and results of our study can be used by researchers and forecasting
practitioners alongside certain stakeholders of the energy sector, such as transmission and
distribution system operators, to develop unified TL-based models for previously unseen
national load time series. Said models combine both increased accuracy and an average
training acceleration of 47% compared to their respective, conventional NN approach.

Regarding future perspectives, it would be of high interest to explore the clusters
and investigate their pertaining countries more thoroughly with respect to political and
socio-economic factors, such as energy policies, energy providers, and cross-country grid
interconnections. Such an analysis could allow the selection of more appropriate clustering
algorithms or even the manual classification of countries aiming for an optimized CbO
performance. Furthermore, a possible future next step of this research could involve
the experimentation and TL approach with more complex NN architectures as baseline
models, such as LSTM, CNN, or transformers. With respect to the specifics of TL, the use of
additional TL techniques (e.g., freezing, head replacement/feature extraction) is also highly
recommended in an attempt to optimize the TL pipeline, leading to a further increase in
both the accuracy and computational efficiency of the models. With respect to available
data sets, further performance increases could be potentially achieved by (i) enriching the
utilized electricity demand data set with non-European countries to further extend the scope
and scale of the study and (ii) incorporating weather forecasts or energy price fluctuations
within the training procedure. Moreover, future research could involve the comparison of
global forecasting models with the existing TL models (AbO, CbO) alongside their zero-shot
versions, i.e., approaches that omit the fine-tuning stage. Such a comparison would lead
to interesting results regarding the cases where (a) target data sets are (global) or are not
(TL) available during the model training process and (b) fine-tuning is hard to conduct
after handing the pre-trained model (zero-shot TL case). Finally, given that probabilistic
forecasts are particularly useful for supporting the operation of electricity systems, future
research could expand our work on point forecasts in the field of probabilistic forecasting,
using methods that either produce quantile/distribution forecasts directly or estimate the
uncertainty around the point forecasts empirically.
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Appendix A. Table of Optimal Hyperparameter Setups

Table A1. Training time and hyperparameters of the best-performing setups in terms of MAPE.

Country Best Performing Setup Pipeline Duration (Minutes) Best hyperparameters
Source Target Baseline Lookback Window Learning Rate Layer Number Layer Sizes Batch Size

Italy AbO 402 20 51 168 0.000206 4 {1024,256,2048,1024} 1024
Croatia CbO 90 17 40 168 0.000162 3 {256,256,1024} 256
Spain AbO 402 16 50 168 0.000224 2 {256,2048} 512
Greece CbO 72 24 58 504 0.000313 5 {512,256,512,128,2048} 1024
Serbia CbO 126 21 38 168 0.000617 3 {2048,1024,1024} 256
Portugal CbO 168 29 44 672 0.000541 4 {1024,2048,512,1024} 512
Belgium CbO 114 21 47 168 0.000839 2 {128,512} 256
Ireland AbO 546 29 33 336 0.000116 4 {512,256,512,2048} 256
Netherlands AbO 492 23 55 168 0.000511 3 {1024,2048,128} 256
France CbO 138 25 46 168 0.000428 3 {512,2048,2048} 256
Romania AbO 534 25 46 336 0.000213 3 {512,256,256} 256
Bulgaria AbO 1134 32 47 336 0.000169 4 {2048,256,1024,256} 256
Finland CbO 156 23 46 168 0.000307 3 {512,1024,256} 256
Hungary CbO 132 26 46 168 0.000928 4 {128,512,512,128} 256
Germany CbO 156 14 31 504 0.000810 4 {128,256,128,2048} 256
Slovakia AbO 600 26 66 168 0.000130 3 {2048,256,512} 256
Austria AbO 348 19 49 168 0.000644 4 {2048,128,512,256} 512
Slovenia CbO 168 29 36 168 0.000385 5 {512,256,128,128,128} 256
Poland CbO 150 25 54 504 0.000368 4 {128,2048,1024,256} 512
Lithuania CbO 174 25 32 504 0.000240 2 {1024,1024} 256
Switzerland CbO 162 28 54 336 0.000136 5 {1024,256,2048,512,512} 256
Norway CbO 150 22 51 168 0.000188 2 {128,1024} 256
Denmark CbO 126 20 44 168 0.000140 3 {2048,1024,512} 512
Estonia AbO 546 25 58 336 0.000117 4 {512,1024,512,2048} 256
Czechia AbO 498 24 44 336 0.000165 2 {1024,2048} 256
Latvia AbO 1584 40 46 168 0.000124 4 {1024,256,2048,512} 256
Sweden AbO 570 30 60 168 0.000278 4 {256,512,256,128} 256

https://transparency.entsoe.eu
https://github.com/pelekhs/transfer-learning-forecasting
https://github.com/pelekhs/transfer-learning-forecasting
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Appendix B. Evaluation Results in Terms of RMSE

Table A2. Accuracy (RMSE) of the examined forecasting approaches (Baseline, AbO, CbO) alongside
the naive model sNaive(168).

Country Cluster No. RMSE %
Baseline AbO CbO sNaive(168) Best Model

Italy 1 1099.00 1275.70 1276.80 2851.57 1099.00 (Baseline)
Croatia 1 95.57 88.99 86.53 175.85 86.53 (CbO)
Spain 1 684.20 839.90 915.60 1992.61 684.20 (Baseline)
Greece 1 293.20 297.20 280.50 686.37 280.50 (CbO)
Serbia 2 175.70 165.00 136.00 337.47 136.00 (CbO)
Portugal 2 194.20 228.80 191.40 404.31 191.40 (CbO)
Belgium 2 335.00 346.50 341.70 633.81 335.00 (Baseline)
Ireland 2 127.60 122.40 128.90 217.57 122.40 (AbO)
Netherlands 2 703.50 713.90 717.90 1002.51 703.50 (Baseline)
France 2 3430.40 1849.50 1803.00 5857.20 1803.00 (CbO)
Romania 2 194.90 204.10 225.30 435.16 194.90 (Baseline)
Bulgaria 2 172.50 166.50 198.80 435.59 166.50 (AbO)
Finland 2 303.70 292.90 289.10 791.46 289.10 (CbO)
Hungary 3 212.20 227.60 206.10 399.04 206.10 (CbO)
Germany 3 2272.50 2528.00 2013.70 3718.17 2013.70(CbO)
Slovakia 3 89.53 101.1 107.20 196.07 89.53 (Baseline)
Austria 3 309.40 322.60 318.40 552.92 309.40 (Baseline)
Slovenia 3 112.10 120.40 112.30 174.46 112.10 (Baseline)
Poland 3 681.20 758.90 645.20 1392.36 645.20 (CbO)
Lithuania 3 57.28 52.74 50.07 100.65 50.07 (CbO)
Switzerland 4 483.20 369.90 365.30 586.48 365.30 (CbO)
Norway 4 516.00 491.20 442.90 1286.17 442.90 (CbO)
Denmark 4 217.60 158.00 158.60 304.92 158.00 (AbO)
Estonia 4 44.64 43.32 47.51 89.93 43.32 (AbO)
Czechia 4 245.30 208.70 220.20 558.88 208.70 (AbO)
Latvia 4 28.38 26.85 27.20 51.94 26.85 (AbO)
Sweden 4 652.70 603.40 677.10 1496.47 603.40 (AbO)

Average Accuracy 508.57 480.88 443.83 990.00 420.98 (TL)
Average Improvement (over Baseline) - 41.76 64.75 −481.42 73.31
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Appendix C. ML Pipeline Flowchart

Figure A1. Illustration of the pipeline’s execution flow for the machine learning life-cycle stages.
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