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Abstract: Difference schemes that approximate dynamic systems are considered discrete models of
the same phenomena that are described by continuous dynamic systems. Difference schemes with
t-symmetry and midpoint and trapezoid schemes are considered. It is shown that these schemes
are dual to each other, and, from this fact, we derive theorems on the inheritance of quadratic
integrals by these schemes (Cooper’s theorem and its dual theorem on the trapezoidal scheme). Using
examples of nonlinear oscillators, it is shown that these schemes poses challenges for theoretical
research and practical application due to the problem of extra roots: these schemes do not allow
one to unambiguously determine the final values from the initial values and vice versa. Therefore,
we consider difference schemes in which the transitions from layer to layer in time are carried out
using birational transformations (Cremona transformations). Such schemes are called reversible.
It is shown that reversible schemes with t-symmetry can be easily constructed for any dynamical
system with a quadratic right-hand side. As an example of such a dynamic system, a top fixed at its
center of gravity is considered in detail. In this case, the discrete theory repeats the continuous theory
completely: (1) the points of the approximate solution lie on some elliptic curve, which at ∆t → 0
turns into an integral curve; (2) the difference scheme can be represented using quadrature; and (3)
the approximate solution can be represented using an elliptic function of a discrete argument. The
last section considers the general case. The integral curves are replaced with closures of the orbits of
the corresponding Cremona transformation as sets in the projective space over R. The problem of the
dimension of this set is discussed.

Keywords: finite difference method; dynamical systems; Cremona transformations
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1. Introduction

Dynamical systems can very rarely be solved analytically, and, therefore, they have to
be studied numerically. Currently, the main numerical method of integration is the finite
difference method. The general concept of the finite difference method in its application to
ordinary differential equations is presented in [1]; the issues associated with conservation
of integrals of motion are given a prominent place in [2,3]. Of great importance is the
penetration into this theory of ideas and methods that were originally developed for
the study of partial differential equations, including the concept of mimetic difference
schemes, which inherit, in one sense or another, some properties of the original continuous
problem [4–6].

The finite difference method proposes replacing the system of differential equations

dxi
dt

= fi(x1, . . . , xn), i = 1, . . . , n,
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or, for short,
dx
dt

= f(x), (1)

with a system of algebraic equations

gi(x, x̂, ∆t) = 0, i = 1, . . . , n, (2)

relating the value of the solution at some moment in time t with the value of the solution at
the moment in time t + ∆t. In this case, the first value is simply denoted as x, the second as
x̂, and the finite value ∆t is called the time step. The system of the algebraic Equation (2)
itself will be called a difference scheme for a system of the differential Equation (1).

The approximate solution of the Cauchy problem

dx
dt

= f(x), x(0) = x0,

found using the scheme (2) with a positive step ∆t ∈ R, is understood as a sequence of
points x0, x1, · · · ∈ Rn, found recursively, i.e., xm+1 is a solution of

gi(xm, x̂, ∆t) = 0, i = 1, . . . , n,

with respect to x̂ and closest to x̂ = xm. The attention of researchers in the last century was
focused on the closeness of xm and x(m∆t).

Setting aside this undoubtedly important mathematical issue, we note that the dif-
ference scheme (2) represents a discrete mathematical model of the same phenomenon
as the original system of the differential Equation (1). Moreover, in mechanics, both old
and new, the quantity dt has often been treated as a finite increment, and it was implied
that Newton’s equations were actually difference equations [7]. From this point of view,
it seems reasonable that the difference model should be no worse than the differential
one. However, the simplest example shows that during discretization the most important
properties of a continuous problem are lost.

Consider a linear oscillator

dx
dt

= −y,
dy
dt

= x (3)

and the simplest difference scheme for it, the explicit Euler scheme

x̂ − x = −y∆t, ŷ − y = x∆t. (4)

The energy x2 + y2 is conserved in the original differential system, so, in the xy plane, the
point moves around a circle with a constant speed. In solutions found using Euler’s scheme,
energy is not conserved, and the point (x, y) spirals down to the center of the xy coordinate
system instead of spinning in a circle. This contradicts our ideas about oscillations, and
this contradiction is removed only in the limit at ∆t → 0. In fact, when describing the
properties of a linear oscillator, we permanently correct our considerations by looking back
at the differential formulation, which, therefore, cannot be removed from consideration.

In the general case, the situation remains the same: replacing the differential model
with a difference scheme leads to a violation of conservation laws and introduces new
phenomena (dissipation or even anti-dissipation), which disappear in the limit ∆t → 0.
This forces us to compare approximate solutions with the exact one all the time.

2. Preservation and Inheritance of Integrals of Motion

In fact, the reasons why the integrals of motion cease to be preserved are not related to
the passage to the limit ∆t → 0. Expression

x⃗(t + ∆t)− x⃗(t)
∆t
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can be regarded equally well as an approximation to the derivative of the function x,
calculated at any point between t and t + ∆t. By choosing the left end of the segment, we
obtain an explicit Euler scheme

x(t + ∆t)− x(t)
∆t

= ẋ(t) = f(x(t)).

However, with this choice, we violate the original equality of the left and right ends of
the considered segment of the t axis, which causes “dissipation”. In the limit ∆t → 0, this
equality is restored and conservation laws appear. It can be assumed that the integrals
of motion are preserved in those difference schemes, during the compilation of which
the equality of the points t and t + ∆t is preserved. Let us express this more precisely by
formulating two definitions.

Definition 1. The difference scheme (2) will be said to preserve the expression h(x, ∆t) if it follows
from Equation (2) that

h(x̂, dt) = h(x, ∆t).

If the expression h does not depend on ∆t, then it is an integral of motion of the
continuous dynamic system (1). In this case, we will say that the integral of motion h is
preserved exactly in the difference scheme. If the expression h depends on ∆t, then the
integral of motion will be the limit of this expression when ∆t → 0. In this case, we will say
that this integral is inherited by the difference scheme.

The issue of constructing difference schemes that preserve integrals of motion was
studied in the 1990s [2,8]; the issue of conservation of mechanical energy was considered
specifically [3,9]. A more subtle concept of inheritance of integrals of motion, presented in
Definition 1, came to the theory of dynamical systems from studies of partial differential
equations, in which the concept of mimetic difference schemes has been developed [4,5].

Definition 2. We will say that the difference scheme (2) has t-symmetry if the system of Equation (2)
is equivalent to the system

gi(x̂, x,−∆t) = 0, i = 1, . . . , n.

Schemes with t-symmetry are interesting in that they inherit the conservation laws of
the original dynamical system. Among the schemes with t-symmetry, we would like to
highlight the midpoint scheme

x̂− x = f

(
x̂+ x

2

)
∆t, (5)

and the trapezoid scheme

x̂− x =
f(x̂) + f(x)

2
∆t. (6)

The conservation of integrals in the midpoint scheme was studied in the 1980s by Cooper [2,8].

Theorem 1 (Cooper). The midpoint scheme preserves the linear and quadratic integrals of the
dynamical system (1) exactly.

From this theorem, it follows that, e.g., the points of the approximate solution of the
linear oscillator (3), found using the midpoint scheme

x̂ − x = −(ŷ + y)
∆t
2

, ŷ − y = (x̂ + x)
∆t
2

(7)

lie on a circle
x2 + y2 = C. (8)
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Moreover, in this case, the transition from layer to layer can be described in matrix form(
x̂
ŷ

)
= A

(
x
y

)
,

where the transition matrix

A =

(
4−∆t2

∆t2+4
−4∆t
∆t2+4

4∆t
∆t2+4

4−∆t2

∆t2+4

)
is a matrix of rotation (

cos ∆α − sin ∆α
sin ∆α cos ∆α

)
by the angle ∆α. Thus, the midpoint scheme allows the linear oscillator model (3) to be
discretized so that rotations at equal angles occur over equal periods of time. Qualitatively,
the discrete and continuous models are no different; quantitatively, over a time interval ∆t,
the continuous model rotates by an angle ∆t, and the discrete model rotates by an angle

∆α = arcsin
∆t

1 + ∆t2/4
= ∆t +O(∆t3).

If, as in the case of a linear oscillator, f is a linear function of x, then

f

(
x̂+ x

2

)
=

f(x̂) + f(x)

2
,

therefore, the trapezoidal scheme (6) will coincide with the midpoint scheme (5). In the
nonlinear case, these schemes do not coincide and a natural question arises: are the integrals
of motion inherited by the trapezoidal scheme?

To answer this question, note that these two difference schemes are in some sense
related to each other. Indeed, let x0, x1, x2, . . . be an approximate solution to Equation (1),
calculated using the midpoint scheme (5). Then, the coordinates x′0, x′1, x′2, . . . of the mid-
points of the links of the broken line x0x1x2 . . . represent another approximate solution to
the same equation, calculated using the trapezoidal scheme (6), which was noted in [10].
From this fact, the theorem dual to Cooper’s theorem immediately follows.

Theorem 2 (dual to Cooper’s theorem). If the expression h is preserved in the midpoint scheme
(in the sense of Definition 1), then, in the trapezoid diagram, the expression

h
(

x − f (x)
∆t
2

)
is preserved.

Thus, the linear or quadratic integral of motion h is inherited by the trapezoidal
scheme (6), but the expression for the conserved quantity coincides with h only in the limit
∆t → 0. This circumstance made it difficult to find the integral. We introduced the concept
of duality of difference schemes in [10], where a proof of the Theorem 2 can be found as
well.

A classical and, at the same time, realistic example of a nonlinear oscillator is offered by
a dynamic system that describes the motion of a top fixed at its center of gravity. Although
the integration of this model is associated with the names of Euler and Poinsot [11], the
movement of the top still causes surprise and interest among those who observe it live.
So, for example, there was active discussion on the Internet about wing nut somersaults
in zero gravity, which were observed by Janibekov, and which, nevertheless, are perfectly
described by this model [12].
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Following [11], let us denote the coordinates of the angular velocity vector relative to
the principal axes of inertia as p, q, r, and the principal moments of inertia as A, B, C; then,
the angular velocity evolution is described by a dynamic system

ṗ = aqr, q̇ = bpr, ṙ = cpq, (9)

the coefficients of which are expressed in terms of the principal moments of inertia

a = −C − B
A

, b = − A − C
B

, c = −B − A
C

.

This system has two quadratic integrals

Ap2 + Bq2 + Cr2 = C1 and A2 p2 + B2q2 + C2r2 = C2, (10)

which were found back in the 18th century [11]. In the 19th century, they were used to
reduce the problem to quadrature and integration in elliptic functions. From the viewpoint
of numerical methods, this case is interesting as a nonlinear oscillator with quadratic
integrals that are preserved exactly in the midpoint scheme, as noted in [2], and, due to
Theorem 2, which is dual to it, the quadratic integrals are inherited in a slightly modified
form by the trapezoidal scheme.

In cases in which the integrals of motion are not linear or quadratic, it is still possible
to construct difference schemes that preserve all algebraic integrals of motion. One of
the simplest ways is the method of quadratizing the integral, which consists of introduc-
ing new variables in such a way that, with respect to them, all integrals are linear and
quadratic [13–15]. In this way, from the midpoint scheme, we were able to construct a
difference scheme for the many-body problem, preserving all of its algebraic integrals [16].

There is a large family of schemes, the symplectic Runge–Kutta schemes, which
preserve linear and quadratic integrals of the dynamical system [2]. The midpoint scheme
discussed above is the simplest of these difference schemes. The dual trapezoidal scheme
dual to it does not belong to this family. The integrals of motion in it are not preserved but
are inherited in the sense of Definition 1.

3. Implicit Schemes and the Problem of Extra Roots

If f is not a linear function of x, then Equation (5), as well as Equation (6), cease to
be linear with respect to x̂. This significantly complicates the calculation of approximate
solutions: at each step, one has to numerically solve a system of nonlinear algebraic
equations, which not only introduces an additional error but also makes calculations using
much more laborious schemes than the explicit Euler scheme.

In practice, especially when calculating over long times, they prefer explicit schemes
to implicit ones, sacrificing the implementation of conservation laws to the speed of calcula-
tions. With a significant violation of conservation laws, of course, even the external similar-
ity of exact and approximate solutions, e.g., trajectories in the many-body problem [16], is
lost. The concept of explicit conservative Runge–Kutta schemes was introduced in [17,18].
In fact, these are explicit Runge–Kutta schemes, in which, at each step, the values are
corrected so that the specified conservation laws are satisfied [19]. This approach, however,
differs significantly from the original finite difference method. It cannot be written using
a single difference scheme, which we could interpret as a discrete model of the original
dynamical system.

No less problematic is the study of the inheritance of periodicity. We were able to
calculate the Gröbner basis of the midpoint scheme for the oscillator and eliminate q̂, r̂ from
the system. This leads to the equation

f ( p̂, p, q, r, ∆t) = 0,

having a degree of five with respect to p̂. It is not clear how to investigate it further.
Moreover, the physical meaning of the extra roots is not clear: since this is an equation of
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the fifth order, then, in addition to the desired root p̂, there must be four other roots close
to p. Using the explicit form of the polynomial f , it is easy to prove that these roots tend
to ∞ as ∆t → 0. In numerical calculations, this circumstance allows for separation of four
extra roots from the fifth one, which is only interesting when calculating an approximate
solution.

The question of “extra” roots, surprisingly, has eluded the attention of researchers.
Meanwhile, in nonlinear systems they arise naturally.

For example, the explicit Euler scheme

x̂ = x+ f(x)∆t

is linear with respect to x̂, so a given value of x corresponds to one single value x̂. However,
in the nonlinear case, a given value of x̂ corresponds to several values of x, one of which
tends to x̂ at ∆t → 0. These roots are not interesting when finding a numerical solution
since we are moving from the xi layer to the xi+1 layer, and not vice versa.

The appearance of extra roots in the explicit Euler scheme is not surprising. The
surprising thing is that the transition from it to schemes that have t-symmetry and preserve
integrals of motion does not lead to the disappearance of extra roots. Their appearance
violates another basic principle of mechanics: from the initial data, it should be possible to
unambiguously determine the final data and vice versa.

4. Reversible Schemes

It is generally accepted that when constructing difference schemes that inherit the
properties of the original differential model, the most important thing is the inheritance
of integrals of motion. However, as we saw above, the conservation of integrals and
t-symmetry does not rid the scheme of the extra roots discussed in the previous section.
The desire to get rid of them led us to a difference scheme in which a given initial value
x corresponds to one single final value x̂, and a given final value x̂ to one initial value x.
In [20], we proposed calling such difference schemes reversible.

The described construction is well known in algebraic geometry [21]. We call a
difference scheme reversible if its equations define a birational transformation between
those varieties whose points are x and x̂.

The question of choosing these varieties is not trivial, but, for now, we will con-
sider the simplest option when the difference scheme specifies a birational transforma-
tion between an n-dimensional x-space and an n-dimensional x̂-space, i.e., the Cremona
transformation [21]. Only for such a difference scheme will we retain the name reversible.

Reversible schemes may seem very rare, but, in reality, for any dynamical system with
a quadratic right-hand side, we have such a reversible scheme

x̂− x = F∆t,

where the right-hand side F is obtained from the right-hand side f of the original dynamical
system by replacing the squares x2

i with xi x̂i and the mixed terms xixj with 1
2 (x̂ixj + xi x̂j);

see [20].
It should be noted that the class of dynamical systems with a quadratic right-hand side

is very wide. This includes, for example, equations describing the motion of a rigid body,
which can be studied by analytical methods only in three special cases [11]. Moreover, by
virtue of Appelroth’s theorem [22], any dynamical system can be reduced by an appropriate
algebraic substitution to a system with a quadratic right-hand side. For polynomial systems,
software are available to perform such quadratization [23].

In the theory of dynamical systems, discrete systems in which the step is described
by the Cremona transformation were considered by A.P. Veselov [24], and special exam-
ples were considered by Henon and Moser [25]. Example 3 in [24] leaves no doubt that
A.P. Veselov considered the possibility of obtaining such discrete models from continu-
ous ones; however, these authors restricted their consideration to Cremona polynomial
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transformations. The above method of discretizing a dynamical system with a quadratic
right-hand side inevitably leads to Cremona transformations that are not polynomial.

When calculating an approximate solution using a reversible difference scheme, at
each step, it is necessary to solve a system of linear equations. This makes calculations
using such schemes much simpler than similar calculations using implicit Runge–Kutta
schemes, where, recall, at each step, it is necessary to solve a system of nonlinear equations.
The complexity of calculations using reversible schemes is close to the complexity of
calculations using explicit conservative second-order Runge–Kutta schemes. Let us show
with examples that, in this case, reversible schemes inherit the properties of the original
continuous models.

5. Motion of a Top in the Euler–Poinsot Case

Among continuous dynamic models with a quadratic right-hand side, the oscillators
that are integrable in elliptic functions deserve special attention. In Ref. [20], we considered
several such oscillators, including the Jacobi and Weierstrass ones. Both of these cases
can be considered a kind of variation in the dynamical system that describes the motion
of the top in the Euler–Poinsot case and is integrable in elliptic functions. Traditionally,
the Euler–Poinsot case is reduced to the Jacobi oscillator [11], but, in fact, the properties
of the reversible difference scheme for a top are conveniently described in the original
coordinates. For a top fixed at the center of gravity, it is not difficult to construct, without
any substitutions, a reversible and t-symmetric difference scheme that approximates the
system of the differential Equation (9):

p̂ − p = (q̂ + q)(r̂ + r)
a∆t
4

, . . . (11)

Elliptic oscillators were the subject of intense study in the 19th century, so their analytical
properties are well known [26]. This makes them a very convenient test when studying
difference schemes and, especially, when studying the question of whether difference
schemes inherit the properties of the original continuous problem.

5.1. Integral Curves

Carrying out numerical experiments with this scheme, we noticed that the points of
the approximate solution line up along a curve resembling an ellipse but are noticeably
different from the integral curve. In Figure 1, the integral curve and the ellipse on which
the points of the approximate solution lie are shown.

To create an equation for the curve on which the points of the approximate solution
lie, we had to extend the Lagutinski theory [27–29] to the finite difference case [30].

Theorem 3. Let a linear system of the form

m

∑
i=0

aigi(x) = 0, (12)

be given, where a0, . . . , am are numerical parameters from R. If, for any approximate trajectory
x0, x1, . . . of system (1), the Cremona determinant

det(gi(xj)) = 0 (i, j = 0.1, . . . m), (13)

is equal to zero, then the approximate trajectories lie on the hypersurfaces of system (12).

From Figure 1, it is easy to find that the projection of the solution points onto the pq
plane lies on the ellipse of the linear family

a1 p2 + a2q2 + a3 = 0. (14)
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To prove this rigorously, it is enough to consider the coordinates of the initial point x0 as
symbolic variables, calculate the coordinates of the points x1 and x2 in symbolic form, and
then calculate determinant (13). These calculations can be completed in Sage without any
noticeable expenditure of time. The determinant turned out to be equal to zero, so the
projections of the solution points onto the pq plane lie on the ellipse of linear family (14).

The equation itself is not difficult to find: Just replace the last line in the determinant
with p2, q2, 1. After the reduction in unimportant factors, we arrive at the equation

abc∆t2 p2
0q2 − abc∆t2 p2q2

0 + 4bp2 − 4bp2
0 − 4aq2 + 4aq2

0 = 0. (15)

Let us transform this equation into the form

b(4 − ac∆t2q2
0)

4bp2
0 − 4aq2

0
p2 −

a(4 − bc∆t2 p2
0)

4bp2
0 − 4aq2

0
q2 = 1.

Assuming that

C =
4 − ac∆t2q2

0
4bp2

0 − 4aq2
0

,

we have

bCp2 − a
(

C − c∆t2

4

)
q2 = 1. (16)

Thus, the projections of the points of the approximate solution lie on curves belonging to
the same pencil (16). In other words, the approximate solution retains the expression

bp2 − aq2

1 + c∆t2

4 aq2
= const (17)

in the sense of Definition 1. This expression at ∆t → 0 transforms into the integral
bp2 − aq2 = C of the initial system.

Similarly, we can study the projection onto the pr plane and arrive at the following
theorem.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
p

1.0

0.5

0.0

0.5

1.0

q

Figure 1. Approximate solution of system (9), found using the reversible scheme (11) at A = 1, B = 2,
C = 3, and ∆t = 3. The figure shows a circle (red), which is an integral curve for ∆t = 0, and an
ellipse (green), on which the points of the approximate solution lie.

Theorem 4. The points of the approximate solution of system (9), found using the reversible
scheme (11), lie on the curve

bp2 − aq2

1 + c∆t2

4 aq2
= C1,

cp2 − ar2

1 + b∆t2

4 ar2
= C2, (18)
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where C1, C2 are appropriately chosen constants.

5.2. Representation of a Difference Scheme in the Form of a Quadrature

Curve (18) is an elliptic curve, similar to the integral curve in the continuous case. This
curve is invariant under the Cremona transformation, which is defined by the difference
scheme (11). Therefore, the narrowing of this transformation to a transformation on
curve (18) is birational. Birational transformations on an elliptic curve can always be
described using Abelian integrals of the first type [21,31].

Consider a differential
dp
qr

on curve (18). Expressing q, r in terms of p by means of Equation (18), we can transform it
to the form

dp√
f4(p)

,

up to the choice of the root branch, where f4 is a polynomial of a degree of four with
simple roots. This expression has integrable singularities everywhere [32] and, therefore, is
a differential of the first kind.

Theorem 5. The points of the approximate solution of system (9), found by means of the reversible
scheme (11), satisfy the relation

xn+1∫
xn

dp
qr

= ∆u, (19)

where ∆u depends on ∆t and the initial data, and the integral is considered an Abelian integral on
curve (18).

Proof. Let O be an arbitrary point of the space pqr and x̂ = R(x, ∆t). The expression

R(x,∆t)∫
O

dp
qr

as a function of x is also an integral of the first kind; therefore, there exist such f and g that

R(x,∆t)∫
O

dp
qr

= f (∆t)
x∫

O

dp
qr

+ g(∆t). (20)

Let us make point x pass a closed loop. In this case, there exist such integers n, m, that

f (∆t)ω = nω + mω′,

where ω, ω′ are fundamental periods of curve (18), which, generally, depend on ∆t. For
∆t → 0, the image of x tends to x; therefore, f (0) = 1, n = 1, and m = 0. However,
function f cannot change discretely, while m and n, on the contrary, take only integer
values. Therefore, it is valid that n = 1 and m = 0 not only at ∆t = 0 but also at other
values of ∆t. Therefore,

f (∆t) = 1.

Hence, (20) can be rewritten in the form

x̂∫
x

dp
qr

= g(∆t),



Mathematics 2024, 12, 167 10 of 17

from which (19) immediately follows.

The analogue of relation (19) in the continuous case is well known. On the integral
curve, the equation

dp
dt

= aqr

can be rewritten in the form of the so-called quadrature∫ dp
qr

= at,

where, on the left, q, r are considered functions of p. In particular, it follows that

x(tn+1)∫
x(tn)

dp
qr

= a∆t.

Therefore, the representation of an approximate solution in the form of (19) will be called a
quadrature.

When applying Equation (19), the choice of root must be taken into account. If we
agree to choose the arithmetic value of the root, then the value of ∆u remains constant at
almost all steps, except for those during which the branch of the root should be changed.
In Figure 2, the usual form of the dependence of ∆u on the time is presented. It is clearly
seen that ∆u takes two values that differ in sign. Switching between these values does not
occur abruptly but, rather, in one or two steps.

2 4 6 8 10
t

0.10

0.05

0.05

0.10

∆u

Figure 2. Change of quadrature increment (19) at A = 1, B = 2, C = 3; initial data p = 0, q = r = 1;
and step ∆t = 1

10 .

In continuous theory, quadratures arise due to the fact that a separation of variables
can be performed on the integral curve. The appearance of quadratures in discrete theory
cannot be but a surprise.

The transition from x0 to xm using a difference scheme requires the calculation of
intermediate positions x1, . . . , xm−1. Representing the difference scheme as a quadrature
allows us to describe the transition from x0 to xm without these intermediate steps. This
is important not so much for practical calculations—the numerical calculation of the
quadrature will still require cutting the integration segment into columns—but for studying
the periodicity of the approximate solution.
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5.3. Periodicity of Approximate Solution

Since the points of the approximate solution lie on closed curves, the motion remains
periodic in the discrete case. It seems quite natural to take as a definition that an approxi-
mate solution that is a periodic sequence of points in an affine space is periodic. However,
usually the period is a value that is not comparable with the step ∆t. To circumvent this
difficulty, we will adopt the following definition.

Definition 3. We will say that the approximate solution x0, x1, . . . is periodic with period T if there
exists a number ∆u and a smooth T-periodic function g such that

xm = g(m∆u).

Let us prove that the approximate solutions found using the reversible scheme are
periodic in this sense. Quadrature is an additive function of integration points, so, from (19),
it follows that

xm∫
x0

dp
qr

= m∆u.

Since the integral curve (18) is elliptic, and dp/qr is a differential of the first kind, there
exists a meromorphic function ℘ such that

xm = ℘(m∆u).

Since an elliptic interval has a pair of incommensurable periods, this meromorphic function
is doubly periodic. Thus, the motion in both the continuous and discrete top models is
described by elliptic functions.

Since the zeros of the polynomial f4 are real, one of the periods of the function ℘ is
real, and the second is imaginary. The above is true for both continuous and discrete cases.
Only in the discrete case do the periods depend on ∆t. Thus, ℘ is a smooth function having
a real period T depending on ∆t. Thus, all conditions for Definition 3 are satisfied, and any
approximate solution to problem (9) found using a reversible scheme can be considered
periodic. This is extremely important since periodicity is the most important and most
noticeable of all the qualitative properties of a function.

Thus, in this case, the reversible difference scheme imitates all the known properties
of the indispensable model of a top fixed at its center of gravity. The main difference is
that, in the discrete case, the transition from layer to layer is carried out by the Cremona
transformation of the entire pqr space and, in the continuous case, by a birational transfor-
mation on the integral curve. From this point of view, the discrete model is simpler than
the continuous one.

There are a number of examples of dynamical systems with a quadratic right-hand
side whose integral curves are algebraic curves. All of them, of course, were reduced to
quadratures back in the 19th century and, in this sense, were solved analytically. If an
invertible difference scheme inherits the algebraic integrals of the original system, then
it specifies a birational correspondence on the algebraic curve, the connection of which,
with integrals of the first type [21], inevitably leads to the representation of the difference
scheme in the form of a quadrature. The integral curves of the classical nonlinear Jacobi
and Weierstrass oscillators, as well as system (9) considered above, are elliptic curves. They
are inherited by a reversible difference scheme, and, in all these cases, the difference scheme
can be described in the form of a quadrature.

6. Approximate Trajectories in Projective Spaces

Turning again to the general case of a dynamical system with a quadratic right-hand
side, we note that the transition from layer to layer is given by rational functions, the
denominators of which, generally speaking, can turn into zero. In the case of the top,
discussed in the last section, we are not faced with such a situation, so there was no need
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to move to a projective space. However, the simplest mathematical models lead to the
appearance of points at infinity.

Consider, for example, the Riccati equation

dp
dt

= 1 + p2, (21)

the solution of which, under the initial condition p(0) = 0, is p = tan t. This solution goes
to infinity at t = π

2 + πn, n ∈ Z. An approximate solution found using a reversible scheme
with a deliberately large step is presented in Figure 3. It imitates this departure to infinity,
correctly describing the behavior of the solution not only before the first pole but also after
it. This amazing property of reversible schemes was noted in [33]. The property is also
preserved for nonlinear oscillators, for example, the ℘-oscillator

d2 p
dt2 = ap2 + bp + c,

the exact solution of which also periodically goes to infinity [20].

2 4 6 8 10
t

10

5

5

10

p

Figure 3. Exact (red) and approximate (blue) solutions of Equation (21), satisfying the initial condition
p(0) = 0.

The appearance of a singular point in the considered interval has a fatal effect on the
applicability of the Euler scheme [34]. It was only in the late 2000s that it was realized
that this was a problem with the Euler and related schemes. However, the finite difference
method itself can be used to determine the position of moving singular points [35,36].
Examples show that reversible difference schemes correctly describe the solution going to
infinity and returning.

By default, for the dynamical systems (1), the position of the system x is considered a
point in the affine space. Now we have an obvious reason to expand the space under con-
sideration to projective space by adding a hyperplane at infinity. This is a natural extension
for the study of Cremona transformations [21]. In analytical theory [37] (chapter 4), when
studying the Riccati equation, they switched from the affine line to the projective line in the
second half of the 19th century.
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Thus, we consider x as a point in the projective space Pn, and the discrete model of the
dynamical system (1) as a transition from layer to layer:

x̂ = Cx,

described by the Cremona transformation C depending on ∆t.
When calculating an approximate solution that takes the value x0 at t = 0, we calculate

the points in the sequence {xn} recursively using the formula

xk+1 = Cxk.

If at some value k the denominator of the transformation becomes zero, then the point xk+1
will be infinitely remote. Such an interpretation is impossible only in one case when both
the denominator and all numerators turn to zero. Such points are known as singular points
of the Cremona transformation.

One problem arises here that is specific to multidimensional Cremona transformations:
a singular point can transform into a line [21]. For example, the Cremona transformation

x̂ =
1
x
=

y
xy

, ŷ =
x
y
=

x2

xy

has a singular point at zero (0, 0). The limit

lim
(x,y)→(0,0)

x
y

is indeterminate and by the transformation the point (0, 0) (or its vicinity) “spreads” into a
straight line x = ∞ at infinity. We can sublate the uncertainty of the limit by directing the
point to zero not in an arbitrary manner, but along a certain line.

When calculating an approximate solution, this line is determined in a natural way.
Let us assume that xm is not a singular point, but xm+1 = Cxm is, and, formally, we cannot
define C2xm. Let the point x move along the segment xmxm+1 to x = xm+1, then Cx moves
to some position, which we will take to be xm+2. Having accepted this convention, we
can regard the approximate solution either as an infinite sequence or as consisting of one
singular point, unsuccessfully taken as the initial one.

The process of calculating an approximate solution can be continued towards negative
values of m by adopting a similar convention of continuation through singular points. Thus,
below, by the approximate solution released from the point x, we mean the sequence

O(x) = {Cmx, m ∈ Z},

i.e., the orbit of transformation C. This sequence, under the accepted assumptions, is
defined for all x ∈ Pn, except for a finite number of singular points of transformation C.

7. Closure of the Approximate Trajectory

Let us denote the closure of the set O(x) in Pn by Z(x). This set is obviously in-
variant under the transformation C. The equality Z(x) = Z(x′) means that the different
integral curves O(x) and O(x′) are close to each other, and, therefore, they should not be
distinguished.

In the case of the top in (9), the set Z(x) is either a finite set (when O(x0) is a periodic
sequence) or an elliptic curve (18) in the space pqr. It is interesting to note that if we choose
the coordinates of the point x0 and the step ∆t as rational numbers, we will obtain an infinite
sequence of rational points O(x) on the elliptic curve (18), which has been the subject of
many studies [38].

Let us take a point x′ ∈ Z(x) that does not belong to O(x). Due to the invariance of
Z(x), the orbit O(x) belongs entirely to Z(x). In the case of the top at ∆t → 0, the curve Z(x)
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becomes an exact integral curve, so O(x) and O(x′) can be interpreted as “approximations”
to the same exact solution.

However, as soon as we slightly shift the center of a top’s fixation from the center of
gravity, the situation changes radically. The points of the approximate solution cease to line
up along a certain curve. First of all, the dimension of the system itself changes from three
to six unknown functions, which are usually taken as p, q, r and direction cosines of the
moving axis Oz [11]. This dynamical system has a quadratic right-hand side, and, using
the above method, it is possible to construct a reversible difference scheme for it.

In the case of a symmetric top (A = B, Lagrange–Poisson case [11,39]), the projection
of a particular solution into the space pqr lies on the plane r = C, and the trajectory
densely fills some ring on this plane. Computer experiments (see Figure 4) indicate that
this property is inherited by the approximate solution found using a reversible scheme.
Thus, Z(x) can be a piece of the two-dimensional variety. In the case of an asymmetric
top, we have no analytical description of the exact solution. Experiments with a reversible
difference scheme suggest that, in the asymmetric case, the set Z(x) is a surface that, at
A − B → 0, “collapses” into a ring.

4 2 2 4
p

4

2

2

4

q

Figure 4. Approximate solution of a top whose center of gravity is shifted relative to the anchor point,
found using a reversible scheme.

Initially, we believed that all properties of a discrete model could be studied using
algebraic methods. However, now we see that the study of the properties of solutions found
using reversible schemes is, to a large extent, the study of the set Z(x). In simple cases (for
example, in those considered in Section 5), this set turns out to be an algebraic curve, and,
therefore, the approximate solutions turn out to be periodic. In more complex cases, this set
is neither algebraic nor one-dimensional. Currently, there are no methods at our disposal
for calculating the dimension of Z(x); we cannot even rule out that this dimension may be
fractal [40]. In all the examples that we have examined in computer experiments, it seemed
that the points either lined up in some lines or lay on some surfaces. However, this cannot
serve as proof that the dimension of this set is always an integer. The appearance of such a
complex object in discrete theory is due to the fact that a reversible difference scheme can
be constructed for any dynamical system with a quadratic right-hand side (Section 4).
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8. Conclusions

In this paper, we considered difference schemes that approximate dynamic systems
as discrete models of the same phenomena that describe continuous dynamical systems.
The key problem facing this view seems to be the violation of fundamental conservation
laws (Section 2). However, it soon becomes clear (Section 3) that conservative schemes are
very difficult to study. Instead of conservatism, we based our approach on reversibility: we
consider difference schemes in which the transition from layer to layer in time is carried
out using Cremona transformations. Such difference schemes can be constructed for all
dynamical systems with a quadratic right-hand side (Section 4).

Among these systems, the one that describes the motion of a top fixed at its center
of gravity is distinguished. In this case, the discrete theory repeats the continuous theory
completely up to the appearance of integral curves (Section 5.1) and the representation
of the solution in the form of elliptic functions (Section 5.3). In fact, we can construct the
entire theory of elliptic functions as a branch of the theory of invertible difference schemes.

This theory shows that approximate solutions can be interpreted as periodic in the
sense of Definition 3. This allows us to raise the question of finding solutions that are
periodic in this sense in other cases and take a fresh look at the already classical problem
of finding partial periodic solutions of a particular dynamical system, for example, the
many-body problem.

In the general case, the place of integral curves is taken by the closures of the orbits of
the corresponding Cremona transformation. These closures, discussed in the last section,
are curves in the case of a top fixed at its center of gravity, and, in the general case, their
dimension can be greater.

In practice, it is impossible to distinguish between solutions lying on the same closure
Z since their trajectories approach each other arbitrarily closely. In our theory, what is of
interest is not a separate integral curve calculated using one or another difference scheme,
but rather the closure of the set of its points in projective space. This creates the main
difficulty in our theory since the closure, as we found out in the examples, is not always a
curve or at least an algebraic set. Essentially, it is here that the transcendental penetrates
the purely algebraic theory of invertible difference schemes.

This opens up two avenues for us to research further. Following the authors of the
19th century, we can identify and classify systems in which the closure Z(x) is structured
quite simply. It is quite obvious that we should start with the case in which Z(x) are curves
of genus 0, 1, or greater. The second way is to conduct computer experiments. Unlike
the authors of the 19th century, we can always calculate arbitrarily many points Z(x) and
try to estimate the dimension of this set. We believe that, over time, it will be possible to
replace the non-integrability of a system with a description of specific properties of the sets
Z(x). We believe that reversible difference schemes can add a constructive element to the
analytical studies of systems that have not yet been integrated.
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