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Abstract: This article presents an extended distribution that builds upon the exponential distribution.
This extension is based on a scale mixture between the exponential and beta distributions. By
utilizing this approach, we obtain a distribution that offers increased flexibility in terms of the
kurtosis coefficient. We explore the general density, properties, moments, asymmetry, and kurtosis
coefficients of this distribution. Statistical inference is performed using both the moments and
maximum likelihood methods. To show the performance of this new model, it is applied to a real
dataset with atypical observations. The results indicate that the new model outperforms two other
extensions of the exponential distribution.

Keywords: exponential distribution; kurtosis; maximum likelihood estimator; slash distribution; EM
algorithm
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1. Introduction

A scale mixture is a statistical model that combines two or more probability distri-
butions to generate a new distribution. In a scale mixture, one distribution is used to
determine the scale parameter of another distribution. For example, in a normal scale
mixture, the scale parameter of a normal distribution is determined by another distribution,
such as a gamma distribution (see Andrews and Mallows [1]). This allows for greater
flexibility in modeling data that may have varying levels of variability.

Scale mixtures are commonly used in Bayesian statistics, where the scale parameter
is often treated as a random variable (Fernández and Steel [2]). They can also be used in
other areas of statistics, such as in the modeling of heavy-tailed distributions. The slah
methodology is used for distributions that arise from a scale mixture. The slash distribution
is a symmetric extension of the standard normal distribution; it is represented as the
quotient between two independent random variables, one standard normal and the other
Beta(q, 1). Thus, we say that W has a slash distribution if

W =
X
Y

,

where X ∼ N(0, 1), Y ∼ Beta(q, 1), q > 0 and X is independent of Y (see Johnson et al. [3]).
This distribution has heavier tails than the normal distribution, i.e., it has greater kurtosis.
The properties and inference of this family are discussed in Rogers and Tukey [4], Mosteller
and Tukey [5] and Kadafar [6]. Wang and Genton [7] offered a multivariate version of the
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slash distribution and a multivariate skew version. Various works have used the slash
methodology to extend some distributions with positive support, such as Olmos et al. [8],
Rivera et al. [9], and Castillo et al. [10], among others.

Overall, scale mixtures provide a flexible framework for modeling data with varying
levels of variability, allowing for more accurate and robust statistical analysis.

The principal object of this article is to introduce a new extension of the exponential
(E) distribution, with probability density function (pdf) given by fX(x; λ) = λ exp(−λx),
λ, x > 0, based on a scale mixture; this new distribution has a more flexible coefficient
of kurtosis and can thus be used for modelling atypical data. Some extensions of the
exponential distribution are the Weibull distribution and the generalized exponential (GE)
distribution, which was studied by Gupta and Kundu [11,12,13]; the latter is a particu-
lar case of the exponentiated Weibull distribution, with zero localization, introduced by
Mudholkar et al. [14].

This article is organized as follows. In Section 2, we give the representation of this
new distribution and generate the new density, basic properties, moments, coefficients
of asymmetry, and kurtosis. In Section 3, we perform the inference using estimation by
moments and maximum likelihood (ML) with the EM algorithm. In Section 4, we show
an application to a real dataset. The codes necessary to reproduce the results obtained are
available in the Appendix A and as Supplementary Material in the case of the EM algorithm.

2. Density Function and Properties

In this Section, we introduce the density, properties, and graphs of the new distribu-
tion.

2.1. Scale Mixture

Definition 1. We say that the random variable Z has a pdf given by

fZ(z; λ, q) = λe−2λz
1F1(q, 2q + 1; 2λz), z > 0, (1)

where λ > 0 is scale parameter, q > 0 is shape parameter, and 1F1 is the confluent hypergeometric
function (see Abramowitz and Stegun [15]), which is given by

1F1(a, b; x) =
Γ(b)

Γ(a)Γ(b − a)

∫ 1

0
va−1(1 − v)b−a−1exvdv, b > a > 0, (2)

where Γ(·) is the gamma function. We call Z a scale mixture of the exponential (SME) distribution.

The following proposition shows that the SME distribution is the product of a mixture
scale between the E and Beta distributions.

Proposition 1. If Z|X = x ∼ E(2λx) and X ∼ Beta(q, q) then Z ∼ SME(λ, q).

Proof. The marginal pdf of Z is given by

fZ(z; λ, q) =
∫ 1

0
fZ|X(z) fX(x) dx

=
∫ 1

0
2λxe−2λxz 1

B(q, q)
xq−1(1 − x)q−1dx

=
2λ

B(q, q)

∫ 1

0
xq(1 − x)q−1e−2λzx dx,

=
2λe−2λz

B(q, q)

∫ 1

0
xq(1 − x)q−1e2λz(1−x) dx,

where B(·, ·) is the beta function; making the transformation u = 1 − x and using the
confluent hypergeometric function given in (2), this result is obtained.
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Remark 1. In this scale mixture of the exponential distribution, we use the Beta distribution,
motivated by the representation of the slash distribution, since this generates distributions with
greater kurtosis.

The following proposition shows that the SME distribution is also a product of the
quotient between two independent random variables, i.e., using the slash methodology.

Proposition 2. Let X ∼ E(λ) and Y ∼ Beta(q, q) be independent. Then, Z = X
2Y ∼ SME(λ, q).

Proof. Using the stochastic representation Z = X
2Y , and procedures based on the Jacobian

method, we can write

Z = X
2Y

V = Y

}
⇒ X = 2ZV

Y = V

}
⇒ J =

∣∣∣∣ ∂X
∂Z

∂X
∂V

∂Y
∂Z

∂Y
∂V

∣∣∣∣ = ∣∣∣∣ 2v 2z
0 1

∣∣∣∣ = 2v

fZ,V(z, v) = |J| fX,Y(2zv, v)

fZ,V(z, v) = 2v fX(2zv) fY(v) , 0 < v < 1 , z > 0.

Hence, marginalizing with respect to variable V, we arrive at the density of Z, which is
given by

fZ(z; λ, q) =
2λ

B(q, q)

∫ 1

0
vq(1 − v)q−1e−2λzvdv =

2λe−2λz

B(q, q)

∫ 1

0
vq(1 − v)q−1e2λz(1−v)dv.

The result follows by making the transformation u = 1 − v and using the confluent
hypergeometric function given in (2).

In Figure 1, we show the pdf of the SME distribution for two values of the parameters
q and λ = 3 and we compare it with the E(3) distribution.
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Figure 1. Densities SME(3, 1) (solid line), SME(3, 5) (dashed line), and E(3) (dotted line).

We perform a brief comparison illustrating that the tails of the SME distribution are
heavier than those of the E distribution.

Table 1 shows P(Z > z) for different values of z in the distributions mentioned. It is
clear that the SME distribution has much heavier tails than the E distribution.
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Table 1. Tails comparison for different SME and E distributions.

Distribution P(Z > 1) P(Z > 2) P(Z > 3)

E(3) 0.0498 0.0025 0.0001
SME(3,5) 0.0740 0.0108 0.0025
SME(3,1) 0.1662 0.0833 0.0556

2.2. Properties

In this subsection, we study some properties of SME distribution.

2.3. Cumulative Distribution Function

The following proposition shows the cdf of the SME distribution, which is generated
using the representation given in (1).

Proposition 3. Let Z ∼ SME(λ, q). Then, the cdf of Z is given by

FZ(z; λ, q) = 1 − e−2λz
1F1(q, 2q; 2λz), z > 0,

where λ > 0 and q > 0.

Proof. Calculating the cdf of Z directly, we have

FZ(z; λ, q) =
∫ z

0
λe−2λt

1F1(q, 2q + 1, 2λt)dt =
2λ

B(q, q)

∫ 1

0
vq(1 − v)q−1

∫ z

0
e−2λtvdtdv

=
1

B(q, q)

∫ 1

0
vq−1(1 − v)q−1(1 − e−2λzv)dv

= 1 − 1
B(q, q)

∫ 1

0
vq−1(1 − v)q−1e−2λzvdv,

the result follows using the confluent hypergeometric function given in (2).

2.4. Reliability Analysis

The reliability function r(t) and hazard function h(t) of the SME distribution, which
are generated using the representation given in (1), are given in the following corollaries.

Corollary 1. Let T ∼ SME(λ, q). Then, the r(t) and h(t) of T are given by

1. r(t) = e−2λt
1F1(q, 2q; 2λt),

2. h(t) =
λ 1F1(q, 2q + 1; 2λt)

1F1(q, 2q; 2λt)
,

where λ > 0 and q > 0.

Figure 2 shows that the hazard function of the SME distribution is monotone decreas-
ing; only in the limit case, when parameter q tends to infinity, is it constant, as this is the
hazard function of the E distribution (whose hazard function is λ).

2.5. Order Statistics
Let Z1, Z2, . . . , Zn be a random sample from Equation (1). Let Z1:n, Z2:n, . . . , Zn:n denote

the corresponding order statistics. It is well known that the pdf and the cdf of the k−th
order statistic, i.e., Y = Zk:n, are given by

fY(y) =
n!

(k − 1)!(n − k)!
Fk−1

Z (y)(1 − FZ(y))
n−k fZ(y)

=
n!λ e−2λ(n−k+1)y

(k − 1)!(n − k)!

[
1 − e−2λy

1F1(q, 2q; 2λy)
]k−1

1F1
n−k(q, 2q; 2λy) 1F1(q, 2q + 1; 2λy).
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Therefore, the pdf of the largest order statistic Z(n) = Zn:n is given by

fZ(n)
(y) = nλ e−2λy

[
1 − e−2λy

1F1(q, 2q; 2λy)
]n−1

1F1(q, 2q + 1; 2λy),

and the pdf of the smallest order statistic Z(1) = Z1:n is given by

fZ(1)
(y) = nλ e−2nλy

1F1
n−1(q, 2q; 2λy) 1F1(q, 2q + 1; 2λy).

The following proposition shows that, when parameter q tends to infinity in the SME
distribution, it converges to the E(λ) distribution.

Proposition 4. Let Z ∼ SME(λ, q). If q → ∞, then Z converges in law to a random variable
Z ∼ E(λ).

Proof. Let Z ∼ SME(λ, q) and Z = X
2Y , where X ∼ E(λ) and Y ∼ Beta(q, q).

We study the convergence in law of Z, since Y ∼ Beta(q, q), we have E[Y] = 1/2 and
Var[Y] = 1

4(2q+1) . By applying Chebychev’s inequality to Y, we have ∀ϵ > 0

P[|Y − 1/2| > ϵ] ≤ Var(Y)
ϵ2 =

1
4ϵ2(2q + 1)

. (3)

If q → ∞, then the right-hand side of (3) tends to zero, i.e., Y converges in probability to
1/2, then we have

Y P−→ 1
2

, q → ∞, ⇒ 2Y P−→ 1, q → ∞.

Since X ∼ E(λ), by applying the Slutsky’s Lemma to Z = X
2Y , we have

Z L−→ X ∼ E(λ), q → ∞,

that is, for increasing values of q, Z converges in law to a E(λ) distribution.
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Figure 2. Hazard function SME(1, 1) (solid line), SME(1, 5) (dashed line), SME(1,10) (dotted line), and
SME(1,∞) = E(1) (horizontal dashed line).

2.6. Moment-Generating Function and Moments

The following proposition shows the moment-generating function MZ(t) of the SME
distribution, which is generated using the representation given in (1).
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Proposition 5. Let Z ∼ SME(λ, q). Then, the moment-generating function of Z is given by

MZ(t) = −λ

t 2F1

(
1, q + 1, 2q + 1,

2λ

t

)
, (4)

where λ > 0 and q > 0.

Proof. Calculating the MZ(t) directly, we obtain

MZ(t) = λ
∫ 1

0

2
B(q, q)

xq(1 − x)q−1dx
∫ ∞

0
etze−2λxz dz

= λ
∫ 1

0

2
B(q, q)

xq(1 − x)q−1
(

1
2λx − t

)
dx

= − λ
t

∫ 1

0

2
B(q, q)

xq(1 − x)q−1
(

1 − 2λx
t

)−1
dx,

and using the Gauss hypergeometric function, 2F1, which is given by

2F1(a, b, c; x) =
Γ(c)

Γ(b)Γ(c − b)

∫ 1

0
vb−1(1 − v)c−b−1(1 − xv)−adv,

where c > a + b or a + b − 1 < c ≤ a + b (for details on this function see Abramowitz and
Stegun [15]), this result is obtained.

Using Proposition 1, we can calculate the r−th distributional moment.

Proposition 6. Let Z ∼ SME(λ, q). Then, for r = 1, 2, . . . and q > r the r−th distributional
moment is given by

µr = E(Zr) =
Γ(r + 1)Br

2rλrB0
, (5)

where λ > 0 is a scale parameter, q > 0 is shape parameter, and Bi = B(q − i, q) = Γ(q−i)Γ(q)
Γ(2q−i) .

Proof. Using the representation given in Proposition 1, it follows that

µr = E(Zr) = E(E(Zr|X)) = E
(

Γ(r+1)
(2λX)r

)
= Γ(r+1)

2rλr E(X−r),

where E(X−r) = Br
B0

are the distributional inverse moments of the Beta(q, q).

Remark 2. The µr exist for every r that belongs to the real values whenever r+ 1 /∈ Z−, q− r /∈ Z−

and 2q − r /∈ Z−, where Z− are the negative integers.

Corollary 2. Let Z ∼ SME(λ, q). Then, the mean and variance are given, respectively, by

E(Z) =
2q − 1

2λ(q − 1)
, q > 1, and Var(Z) =

(2q − 1)(2q2 − 3q + 2)
4λ2(q − 2)(q − 1)2 , q > 2.

Corollary 3. Let Z ∼ SME(λ, q). Then, the asymmetry (
√

β1) and kurtosis (β2) coefficients, for
q > 3 and q > 4, respectively, are

√
β1 =

2
(
3B2

0B3 − 3B0B1B2 + B3
1
)(

2B0B2 − B2
1
)3/2

and

β2 =
3
(
8B3

0B4 − 8B2
0B1B3 + 4B0B2

1B2 − B4
1
)(

2B0B2 − B2
1
)2 .
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Remark 3. Figure 3 shows that when parameter q approaches 3, the asymmetric coefficient tends to
infinity. In the same way, when parameter q approaches 4, the kurtosis coefficient tends to infinity.
We can observe that

√
β1 ∼ (q − 3)−1.5 as q → 3+ and β2 ∼ (q − 4)−2 as q → 4+. The notation

∼ indicates that it is asymptotically equivalent. This shows the flexibility of the SME distribution
in the asymmetry and kurtosis coefficients.
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Figure 3. Plots of the asymmetry and kurtosis coefficients of the SME distribution.

3. Inference

In this Section, the moment and ML estimators for the SME distribution are discussed.

3.1. Moment Estimators

Proposition 7. Let Z1 . . . , Zn be a random sample of size n from the Z ∼ SME(λ, q) distribution.
Then, the moment estimator (θ̂M) of θ = (λ, q) for q > 2 is given by

λ̂M =
2q̂M − 1

2Z(q̂M − 1)
(6)

q̂M =
5Z2 − 8Z2

+

√
Z2(9Z2 − 16Z2

)

4(Z2 − 2Z2
)

, (7)

where Z is the sample mean and Z2 is the sample mean for the squared observations. We calculate
the value of q̂M in (7), and then this value is replaced in (6) to obtain the value λ̂M.

Proof. From (5), and considering the first two equations in the moments method, we have

Z =
2q − 1

2λ(q − 1)
, Z2 =

2q − 1
λ2(q − 2)

.

The result is obtained by solving for λ and q.

3.2. Ml Estimators

Given an observed sample Z1, . . . , Zn from the SME(σ, q) distribution, the log-likelihood
function for parameters λ and q given z = (z1, . . . , zn)⊤, can be written as

l(λ, q) = n log(λ)− 2λ
n

∑
i=1

zi +
n

∑
i=1

log(1F1(q, 2q + 1, 2λzi)). (8)
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The ML estimators are obtained by maximizing the log-likelihood function given in (8).
Partially differentiating the log-likelihood function with respect to each parameter and
equating to zero, the following normal equations are obtained as

n
λ
− 2

n

∑
i=1

zi +
n

∑
i=1

H1(zi; λ, q)
H(ti; λ, q)

= 0; (9)

n

∑
i=1

H2(zi; λ, q)
H(zi; λ, q)

= 0; (10)

where H(zi; λ, q) =1 F1(q, 2q + 1, 2λzi), H1(zi; λ, q) = ∂
∂λ H(zi; λ, q), and H2(zi; λ, q) =

∂
∂q H(zi; λ, q).

Numerical methods, such as the Newton–Raphson algorithm, can be employed to find
solutions for Equations (9) and (10). Another approach to obtain the maximum likelihood
estimates is by maximizing (8) using the “optim” subroutine in the R software package (R
version 4.3.2) [16]. The EM algorithm is used as an alternative approach to obtain the ML
estimators in the next subsection.

3.3. Em Algorithm

The iterative method for finding the ML estimators based on the EM algorithm can be
applied using the stochastic representation of the SME model provided in Proposition 1
(see Dempster et al. [17]). In order to simplify the estimation process, latent variables
X1, . . . , Xn are introduced through a hierarchical representation of the SME model.

Zi|Xi = xi ∼ E(2λx) and Xi ∼ Beta(q, q).

Hence, the complete likelihood function for θ = (λ, q) can be expressed as

lc(θ) = n log(2λ)− 2λ
n

∑
i=1

zixi − n log B(q, q) + q

(
n

∑
i=1

log xi +
n

∑
i=1

log(1 − xi)

)
+ c.

Let x̂i = E(Xi|Zi = zi); ûi = E(log Xi|Zi = zi) and v̂i = E(log(1 − Xi)|Zi = zi). Note
that such expectations can be computed numerically considering that

f (xi | Zi = zi) ∝ xq
i (1 − xi)

q−1e−2λzixi , i = 1, . . . , n,

i.e., Xi | Zi = zi ∼ CH(q + 1, q, 2λzi), where CH is a confluent hypergeometric distribution,
introduced by Gordy [18]. Then, x̂i =

q+1
2q+1

1F1(q+2,2q+2,−2λzi)

1F1(q+1,2q+1,−2λzi)
. With these definitions, the

expected value for the log-likelihood function given the observed data is

Q(θ|θ̂(k)) = −n log(2λ)− 2λ
n

∑
i=1

x̂i
(k)zi − n log B(q, q) + q

(
n

∑
i=1

ûi
(k) +

n

∑
i=1

v̂i
(k)

)
.

Therefore, the EM algorithm to estimate vector θ is given as follows:

• E-step: For i = 1, . . . , n, use θ̂(k−1), the estimate of θ at the (k − 1)-th iteration of the
algorithm, to compute

x̂(k)i =
q̂(k−1) + 1

2q̂(k−1) + 1
1F1(q̂(k−1) + 2, 2q̂(k−1) + 2,−2λ̂(k−1)zi)

1F1(q̂(k−1) + 1, 2q̂(k−1) + 1,−2λ̂(k−1)zi)
, û(k)

i = D(k)
i10 and v̂(k)i = D(k)

i01 ,

where

D(k)
iab =

∫ 1

0
(log xi)

a(log(1 − xi))
bg(xi | θ̂(k−1))dxi,

and g(· | θ̂(k−1)) corresponds to the pdf of the CH(q̂(k−1) + 1, q̂(k−1), 2λ̂(k−1)zi) model.
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• M1-step: Update λ̂(k) as

λ̂(k) =
n

2 ∑n
i=1 zi x̂

(k)
i

.

• M2-step: Update q̂(k) as the solution for the non-linear equation

ψ(q)− ψ(2q) =
1
2

(
û
(k)

+ v̂
(k))

,

where ψ(·) is the digamma function and û
(k)

and v̂
(k)

denote the mean of û1, û2, . . . , ûn
and v̂1, v̂2, . . . , v̂n evaluated in the k-th step, respectively.

The E-step, M1-step, and M2-step are repeated until convergence is obtained, for in-
stance, until the maximum distance between the estimates obtained in two consecutive
iterations is less than a specified value. Codes for the EM algorithm are available as
Supplementary Material.

3.4. Observed Information Matrix

Let Z1, . . . , Zn be a random sample of SME(λ, q) distribution, so the observed infor-
mation matrix is given by

In(λ, q) =


∂2l(λ, q)

∂λ2
∂2l(λ, q)

∂λ∂q

∂2l(λ, q)
∂q∂λ

∂2l(λ, q)
∂q2

 ,

such that

∂2l(λ, q)
∂λ2 = n

λ2 +
n

∑
i=1

H3(zi; λ, q)H(zi; λ, q)− H2
1(zi; λ, q)

H2(zi; λ, q)
,

∂2l(λ, q)
∂λ∂q

=
n

∑
i=1

H4(zi; λ, q)H(zi; λ, q)− H2
1(zi; λ, q)H2

2(zi; λ, q)
H2(zi; λ, q)

,

∂2l(λ, q)
∂q∂λ

=
n

∑
i=1

H5(zi; λ, q)H(zi; λ, q)− H2
1(zi; λ, q)H2

2(zi; λ, q)
H2(zi; λ, q)

,

∂2l(λ, q)
∂q2 =

n

∑
i=1

H6(zi; λ, q)H2(zi; λ, q)− H2
2(zi; λ, q)

H2(zi; λ, q)
,

where H3(zi; λ, q) = ∂
∂λ H1(zi; λ, q), H4(zi; λ, q) = ∂

∂q H1(zi; λ, q), H5(zi; λ, q) = ∂
∂λ H2(zi; λ, q),

and H6(zi; λ, q) = ∂
∂q H2(zi; λ, q).

3.5. Simulation Study

To evaluate the effectiveness of the proposed approach, we conducted a simulation
study to assess the performance of the estimation procedure for the parameters λ and q in
the SME model. The study involved simulating 1000 samples from the SME model with
three different sample sizes: n = 50, 100, and 200. The objective of the simulation was to
analyze the behavior of the ML estimators for the parameters. The simulation utilized
Algorithm 1 to generate samples from the SME model.
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Algorithm 1 Algorithm to simulate values from the Z ∼ SME(λ, q) distribution.

1: Generate U ∼ U(0, 1).
2: Compute X = log(U).
3: Generate W ∼ Beta(q, q).
4: Compute Z = − X

2λW .

The ML estimates were calculated using the EM algorithm for each generated sample.
The bias estimate mean (Bias), Relative Bias (Relat. Bias), standard errors (SEs), and root
mean squared error (RMSE) are shown in Table 2. Based on the table, it can be concluded
that the ML estimates are stable. The bias is reasonable and decreases as the sample size
increases. Additionally, the standard errors and root mean squared error become closer
as the sample size increases, indicating accurate estimation of the standard errors of the
estimators. Moreover, the coverage probability (CP) converges to the nominal value of 95%,
suggesting that the approximation to a normal distribution is reasonable for asymptotic
distributions of ML estimators in the SME model, even with moderate sample sizes.

Table 2. ML estimations for parameters λ and q of the SME distribution.

True Esti-
Value Mator n = 50 n = 100 n = 200

λ q Bias Relat.
Bias SE RMSE CP Bias Relat.

Bias SE RMSE CP Bias Relat.
Bias SE RMSE CP

0.3 0.9 λ 0.0056 0.0187 0.0699 0.0713 0.930 0.0012 0.0013 0.0478 0.0491 0.933 0.0003 0.001 0.0336 0.0335 0.935
q 0.3494 0.3882 0.9341 1.5762 0.986 0.1436 0.1595 0.2650 0.3092 0.976 0.1114 0.1238 0.1717 0.2109 0.972

3 3 λ 0.0578 0.0193 0.6108 0.6023 0.9480 0.0155 0.0052 0.4190 0.4122 0.9550 −0.0048 0.0016 0.2940 0.3008 0.9400
q 3.4563 1.1521 15.3985 7.6745 0.9320 2.2172 0.7391 7.5971 5.5487 0.9380 1.1422 0.3807 3.0497 3.4228 0.9480

5 λ 0.0656 0.0131 1.0062 1.0137 0.9530 0.0428 0.0086 0.7028 0.7170 0.9430 −0.0194 0.0039 0.4879 0.4872 0.9490
q 3.6878 0.7376 16.7017 7.8837 0.9260 2.5917 0.5183 8.8779 6.0848 0.9310 1.3019 0.2604 3.3514 3.7521 0.9400

10 λ 0.1409 0.0469 2.0204 1.9723 0.9550 0.0725 0.015 1.3981 1.3559 0.9530 0.0022 0.0004 0.9789 1.0040 0.9310
q 3.4013 0.3401 15.5562 7.5771 0.9220 2.2612 0.2261 7.6449 5.8702 0.9290 1.0582 0.1058 2.9019 3.3276 0.9430

5 3 λ 0.5401 0.1080 4.0908 4.1705 0.9460 −0.1251 0.0250 2.7644 2.7372 0.9450 −0.0381 0.0076 1.9573 1.9689 0.9460
q 3.0615 1.0205 14.2999 7.1274 0.9040 2.4105 0.8035 8.1781 5.8233 0.9300 1.3798 0.4599 3.5320 4.0312 0.9400

5 λ 0.1377 0.0275 0.6026 0.6105 0.9630 0.0458 0.0091 0.4117 0.4101 0.9510 0.0086 0.0017 0.2875 0.2837 0.9560
q 4.8173 0.9635 26.9415 9.7030 0.8810 3.9440 0.7888 16.6657 8.3701 0.9080 3.0671 0.6134 10.2178 7.1131 0.9220

10 λ 0.2087 0.0417 1.0104 0.9979 0.9560 0.0768 0.0154 0.6851 0.6647 0.9550 0.0151 0.0030 0.4802 0.4748 0.9520
q 4.2450 0.4245 24.4946 9.0333 0.8980 4.1595 0.4159 17.1904 8.6566 0.9000 3.1381 0.3138 10.2049 7.1001 0.9030

10 3 λ 0.4606 0.0461 2.0441 2.0142 0.9680 0.1480 0.0148 1.3829 1.3759 0.9570 0.0471 0.0047 0.9623 0.8868 0.9650
q 3.5127 1.1709 22.3145 8.2245 0.8870 3.5210 1.1737 16.1847 7.8978 0.8950 2.8765 0.9588 9.8766 6.7824 0.9110

5 λ 0.7591 0.0759 4.0391 4.0866 0.9480 0.4594 0.0459 2.7810 2.7219 0.9670 0.0627 0.0063 1.9278 1.8641 0.9540
q 3.7836 0.7567 23.6827 8.4779 0.8870 3.4580 0.6916 15.8695 7.8824 0.8790 2.6302 0.5260 9.3693 6.5207 0.9130

10 λ 0.1918 0.0192 0.6125 0.5804 0.9790 0.1042 0.0104 0.4105 0.3916 0.9710 0.0522 0.0052 0.2827 0.2557 0.9730
q 0.9445 0.0945 30.4273 8.2888 0.7910 2.1081 0.2108 25.0503 8.1708 0.8270 2.9984 0.2998 20.0941 8.1843 0.8650

20 3 λ 0.3712 0.0186 1.0259 1.0111 0.9700 0.1785 0.0089 0.6829 0.6624 0.9660 0.0689 0.0034 0.4714 0.4493 0.9680
q 1.2705 0.4235 31.9658 8.2947 0.7920 2.1267 0.7089 24.7954 8.2037 0.8370 2.8024 0.9341 20.0680 8.0424 0.8640

5 λ 0.7195 0.0359 2.0535 1.9473 0.9800 0.3663 0.0183 1.3723 1.3197 0.9770 0.1801 0.0090 0.9479 0.9108 0.9650
q 0.9469 0.1894 31.0027 8.0842 0.7730 1.9417 0.3883 24.5047 8.2527 0.8380 2.5291 0.5058 19.3210 7.8358 0.8560

10 λ 1.4028 0.0701 4.1200 4.1425 0.9780 0.6564 0.0328 2.7491 2.5917 0.9750 0.3397 0.0169 1.8977 1.7311 0.9750
q 0.5117 0.0512 30.4592 8.1053 0.7670 1.7915 0.1792 25.0760 8.0883 0.8290 2.6677 0.2668 20.1392 7.8305 0.8630

4. Application

In this section, we present an application to a real dataset and compare the fits of the
Weibull, GE, and SME distributions. Next, the pdf GE is given.

A random variable X has a GE distribution with scale parameter λ and shape parame-
ter q if its pdf is given by

f (x; λ, q) = qλ
(

1 − e−λx
)q−1

e−λx, x > 0,

with λ > 0 and q > 0. We denote this by X ∼ GE(λ, q).
This dataset refers to the repair time (hours) of a simple total sample of 46 airborne

communications receivers, available at Devore [19] (p. 44). The data are as follows:
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0.2 0.3 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.8
0.8 1.0 1.0 1.0 1.0 1.1 1.3 1.5 1.5 1.5 1.5 2.0
2.0 2.2 2.5 2.7 3.0 3.0 3.3 3.3 4.0 4.0 4.5 4.7
5.0 5.4 5.4 7.0 7.5 8.8 9.0 10.3 22.0 24.5

The codes for this application are available in the Appendix A.
Table 3 shows a descriptive summary of the data, where b1 and b2 are the asymmetry

and kurtosis coefficients of the sample, respectively.

Table 3. Descriptive summary of Repair Time data.

n z s2 b1 b2

46 3.607 24.445 2.795 8.295

Computing initially the moment estimators under the SME model, we have the
following estimates: λ̂M = 0.335 and q̂M = 3.398. Using the moment estimators as initial
values, the ML estimates are computed and presented in Table 4. ML estimates for Weibull,
GE, and SME distributions, together with the values for the AIC and BIC, are presented in
Table 4.

Table 4. ML estimates for the Weibull, GE, and SME models, and AIC and BIC values.

Parameters
Weibull GE SME

Estimate Estimate Estimate

λ 0.3337 0.2694 0.3722
q 0.8985 0.9582 2.3078

Log-likelihood −104.4697 −104.9829 −102.9231
AIC 212.9394 213.9658 209.8462
BIC 216.5967 217.6231 213.5035

Table 4 shows the parameter estimations for the Weibull, GE, and SME distributions
using the ML method, and the corresponding Akaike information criterion (AIC) proposed
by Akaike [20] and the Bayesian information criterion (BIC) proposed by Schwarz [21]. For
the dataset analyzed, and using the AIC and BIC selection criteria, the SME model gives a
better fit to the data than the Weibull and GE models.

Figure 4 (left) presents the histogram of the dataset with the curves of the fitted models.
To allow for a clearer appreciation of the fits for the repair times (hours) of 46 airborne
telecommunications receivers, Figure 4 (right) shows a zoom of the tails of the histogram.
This shows more conclusively that the SME model produces a greater probability in the
tails than the Weibull and GE models. To complete the analysis of the fits to this dataset,
Figure 5 (below) presents the qqplot graphs of the three distributions fitted.

Figure 5 shows that the theoretical quantiles of the proposed SME model present a
better fit to the quantiles of the repair time data of the sample than the theoretical quantiles
of the Weibull and GE models. Thus, as stated above, based on the AIC and BIC selection
criteria, the SME model presents a better fit with this dataset.
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Figure 4. SME (solid line), GE (dashed line), and Weibull (dotted line).
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Figure 5. QQ-plots for repair time of 46 airborne communications receivers dataset: (left) Weibull
model; (center) GE model; (right) SME model.

5. Conclusions

This paper presents an extension of the exponential distribution based on the slash
methodology. This results in a distribution which is represented using the confluent
hypergeometric function. We study its properties and its ML estimation using the EM
algorithm, and present a simulation study and an application to real data. Some other
characteristics of the SME distribution are as follows:

• The SME distribution has two representations, given in (1) and in Proposition 1.
• Based on the mixed-scale representation, the SME distribution was implemented

using the EM algorithm to calculate the maximum likelihood estimators.
• The simulation study shows that the ML estimators produce very good results with

small samples.
• Our application shows that the SME distribution is a good option when the data have

a heavy right tail; this is confirmed by the AIC and BIC model selection criteria in a
comparison with the Weibull and GE distributions.

• We are working on an extension of the SME distribution that will have a more flexible
mode, as well as using it to model data with covariables.
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Appendix A

1. Density function.
The hypergeometric function contained in the CharFun package was used to obtain
the graph of the density function.

$
eexp<-function(a,b1,b2,b3)

{
x <- seq(0, 6, 0.04)
y <- (a)*exp(-2*a*x)*hypergeom1F1(2*a*x,b1,2*b1+1)
y1 <- (a)*exp(-2*a*x)*hypergeom1F1(2*a*x,b2,2*b2+1)
y2 <- (a)*exp(-2*a*x)*hypergeom1F1(2*a*x,b3,2*b3+1)
y3<- a*exp(-a*x)
plot(x,y, type = "l",, ylim = c (0,0.6), xlim = c(0, 3), xlab="z",

ylab="Density")
lines(x, y1, lty = 2)
lines(x, y2, lty = 3)
lines(x, y3, lty = 4)
}
eexp(3,1,5,10)
$

2. Hazard function
The hypergeometric function contained in the CharFun package was also used to
obtain the graph of the hazard function.

$
hexp<- function(a,b1,b2,b3)
{
x <- seq(0, 10, 0.04)
y <- ((a)*hypergeom1F1(2*a*x,b1,2*b1+1))/(hypergeom1F1(2*a*x,b1,2*b1))
y1 <- ((a)*hypergeom1F1(2*a*x,b2,2*b2+1))/(hypergeom1F1(2*a*x,b2,2*b2))
y2 <- ((a)*hypergeom1F1(2*a*x,b3,2*b3+1))/(hypergeom1F1(2*a*x,b3,2*b3))
y3 <- (a*exp(-a*x))/(exp(-a*x))
plot(x,y, type = "l",, ylim = c (0,1), xlim = c(0, 10), xlab="t",

ylab="Hazard function")
lines(x, y1, lty = 2)
lines(x, y2, lty = 3)
lines(x, y3, lty = 5)
}
hexp(1,1,5,10)
$

3. Asymmetry Coefficient

$
q <- seq(3.01, 20.01, 0.01)
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b0 = beta(q,q)
b1 = beta(q-1,q)
b2 = beta(q-2,q)
b3 = beta(q-3,q)
Asym <- (2*(3*(b02̂)*b3-3*b0*b1*b2+b13̂))/(2*b0*b2-b12̂)(̂3/2)
plot(q,Asym, type = "l", ylim = c (0,20), xlab="q",
ylab="Asymmetry Coefficient")

$

4. Kurtosis Coefficient

$
q <- seq(4.01, 140, 0.01)
b0 = beta(q,q)
b1 = beta(q-1,q)
b2 = beta(q-2,q)
b3 = beta(q-3,q)
b4 = beta(q-4,q)
Kurt <- (3*(8*b03̂*b4-8*b02̂*b1*b3+4*b0*b12̂*b2-b14̂))/(2*b0*b2-b12̂)(̂2)
plot(q,Kurt, type = "l",xlim=c(5,100),ylim = c (0,40), xlab="q",

ylab="Kurtosis Coefficient")
$

5. Application
The dataset, related to the repair time (hours) for a simple total sample of 46 airborne
communications receivers:

0.2 0.3 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.8
0.8 1.0 1.0 1.0 1.0 1.1 1.3 1.5 1.5 1.5 1.5 2.0
2.0 2.2 2.5 2.7 3.0 3.0 3.3 3.3 4.0 4.0 4.5 4.7
5.0 5.4 5.4 7.0 7.5 8.8 9.0 10.3 22.0 24.5

Parameter estimation using maximum likelihood estimators, to contrast the SME
model with the Weibull and generalized exponential models:

$
#SME
library(CharFun)
se3 <- function(theta){
lambda = theta[1]
q = theta[2]
f = -log(lambda)-log(hypergeom1F1(-2*lambda*y,q+1,2*q+1))
log.f = sum(f)
return(log.f)}
#Iterative Method
optim(par=c(0.1067734,4),se3, hessian=TRUE, method="L-BFGS-B",
lower=c(0,0),upper=c(Inf,Inf))
n = optim(par=c(0.1067734,4),se3, hessian=TRUE, method="L-BFGS-B",
lower=c(0,0),upper=c(Inf,Inf))
#Hessian matrix
solve(n$hessian)
#Standar Error
sqrt(round(diag(solve(n$hessian)),5))
$

$
#Weibull
se4 <- function(theta){
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lambda = theta[1]
q = theta[2]
f = -log(lambda)- log(q)-(q-1)*log(y)+lambda*yq̂
log.f = sum(f)
return(log.f)}
#Iterative Method
optim(par=c(0.106,2),se4, hessian=TRUE,method="L-BFGS-B",
lower=c(0,0),upper=c(Inf,Inf))
n = optim(par=c(0.106,2),se4, hessian=TRUE,method="L-BFGS-B",
lower=c(0,0),upper=c(Inf,Inf))
#Hessian matrix
solve(n$hessian)
#Standar Error
sqrt(round(diag(solve(n$hessian)),5))
$

$
#GE
se5 <- function(theta){
lambda = theta[1]
q = theta[2]
f = -log(q)-log(lambda)-(q-1)*log(1-exp(-lambda*y))+lambda*y
log.f = sum(f)
return(log.f)}
#Iterative Method
optim(par=c(0.5268,0.7904),se5, hessian=TRUE, method="L-BFGS-B",
lower=c(0,0),upper=c(Inf,Inf))
n = optim(par=c(0.5268,0.7904),se5, hessian=TRUE, method="L-BFGS-B",
lower=c(0,0),upper=c(Inf,Inf))
#Hessian matrix
solve(n$hessian)
#Standar Error
sqrt(round(diag(solve(n$hessian)),5))
$

$
library(CharFun)
hist(x, freq=F, ylim= c(0,0.17),ylab="Density", xlab="Variable", main="")
#SME, values obtained by fitting the model:
a1= 0.3722
b1= 2.3078
curve((a1)*exp(-2*a1*x)*hypergeom1F1(2*a1*x,b1,2*b1+1), add=T)
#GE, values obtained by fitting the model:
a2= 0.2694
b2= 0.9583
curve((b2)*(a2)*(1-exp(-x*a2))(̂b2-1)*(exp(-x*a2)), lty = 2, add=T)
#Weibull, values obtained by fitting the model:
a3= 0.3337
b3= 0.8986
curve(a3*b3*((x*a3)(̂b3-1))*exp(-x*a3)(̂b3),lty=3, add=T)
$

$
# QQPLOTS
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#WEIBULL
datos = x
lambda= 0.3337
q= 0.8986
Fx= 1 - exp(-lambda*datos)q̂
f= qnorm(Fx)
library(nortest)
qqnorm(f, pch = 1, frame = FALSE,ylim=c(-4,4),
xlim=c(-3,3),main="",cex.lab=1.5,cex.main=2,
xlab="Theoretical quantiles Weibull",
ylab="Quantiles sample repair time")
qqline(f, col = "black", lwd = 2)
$

$
#GE
datos = x
lambda= 0.2694
q= 0.9582
Fx= (1 - exp(-lambda*datos))q̂
f= qnorm(Fx)
library(nortest)
qqnorm(f, pch = 1, frame = FALSE,ylim=c(-4,4),
xlim=c(-3,3),main="",cex.lab=1.5,cex.main=2,
xlab="Theoretical quantiles GE",
ylab="Quantiles sample repair time")
qqline(f, col = "black", lwd = 2)
$

$
#SME
library(CharFun)
datos = x
lambda= 0.3722
q= 2.3078
Fx= 1-exp(-2*lambda*datos)*hypergeom1F1(2*lambda*datos,q,2*q)
f= qnorm(Fx)
library(nortest)
qqnorm(f, pch = 1, frame = FALSE,ylim=c(-4,4),
xlim=c(-3,3),main="",cex.lab=1.5,cex.main=2,
xlab="Theoretical quantiles SME",
ylab="Quantiles sample repair time")
qqline(f, col = "black", lwd = 2)
$
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