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Abstract: The stability of nonlinear systems in the control domain has been extensively studied
using different versions of the algebraic Riccati equation (ARE). This leads to the focus of this work:
the search for the time-varying quaternion ARE (TQARE) Hermitian solution. The zeroing neural
network (ZNN) method, which has shown significant success at solving time-varying problems,
is used to do this. We present a novel ZNN model called ’ZQ-ARE’ that effectively solves the
TQARE by finding only Hermitian solutions. The model works quite effectively, as demonstrated
by one application to quadrotor control and three simulation tests. Specifically, in three simulation
tests, the ZQ-ARE model finds the TQARE Hermitian solution under various initial conditions, and
we also demonstrate that the convergence rate of the solution can be adjusted. Furthermore, we
show that adapting the ZQ-ARE solution to the state-dependent Riccati equation (SDRE) technique
stabilizes a quadrotor’s flight control system faster than the traditional differential-algebraic Riccati
equation solution.

Keywords: zeroing neural network; quaternion; algebraic Riccati equation; quadrotor control

MSC: 65F20; 68T05

1. Introduction

Algebraic Riccati equations (AREs) have gained considerable magnitude in applied
mathematics and a range of engineering issues since Kalman showed how widely used
they are in filtering and optimal control theory [1]. These problems include controlling
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wind generators [2], linear multi-agent systems [3], and wheeled inverted pendulums [4].
In particular, the continuous-time ARE is the following quadratic matrix equation [5]:

ATX + XA − XBX + C = 0n×n. (1)

Linear-quadratic regulators [6–8], Kalman filtering [5,9], linear-quadratic-Gaussian along
with H2/H∞ control [10,11], and coprime and spectral factorizations [12,13] all depend on
this matrix equation. It is significant to mention that ()T signifies transposition; the zero
p × 1 and p × n matrices are referred to as 0p and 0p×n, respectively; and each matrix in
(1) belongs to Rn×n, with B and C being symmetric and nonnegative definite matrices (i.e.,
B = BT ≥ 0 and C = CT ≥ 0). Also, there can be an infinite or a finite number of symmetric
or antisymmetric solutions X with definite or indefinite signs in the solutions set for (1).

Let H = {β1 + β2ı + β3 ȷ + β4k | ı2 = ȷ2 = k2 = ıȷk = −1, β1, β2, β3, β4 ∈ R} be the
quaternions set and Hn×n be the n × n matrices set on H [14]. Note that quaternions are a
system of non-commutative numbers that builds upon complex numbers. In this paper,
a recurrent neural network, called a ’zeroing neural network (ZNN)’, is used to solve the
next time-varying quaternion ARE (TQARE):

Ã∗(t)X̃(t) + X̃(t)Ã(t)− X̃(t)B̃(t)X̃(t) + C̃(t) = 0n×n, (2)

where all time-varying matrices are inHn×n, ()∗ denotes the conjugate transpose, and B̃(t) and
C̃(t) are assumed to be positive semidefinite (i.e., B̃(t) = B̃∗(t) ≥ 0 and C̃(t) = C̃∗(t) ≥ 0).
According to [15], there can be an infinite or a finite number of Hermitian or non-Hermitian
solutions X̃(t) with definite or indefinite signs in the solutions set for (2). Notably, Hamilton
proposed quaternions for the first time in 1843 [16]. Since they are helpful in computations
involving three-dimensional rotations in applied and theoretical mathematics [17], they are
highly significant in a number of domains, such as mathematical physics [18], computer mod-
eling [19], quantum mechanics [20], navigation [21], electromagnetism [22], and robotics [23].

The study of dynamic problems involving time-varying quaternion matrices (TVQM)
has garnered more attention recently. These problems include the linear TVQM equa-
tion [24], the pseudoinverse of TVQM [25], the constrained TVQM least-squares issue [26],
and the inversion of TVQM [27]. Furthermore, real-world applications of TVQMs include
chaotic system synchronization [28], robot joint kinematically redundant manipulators [29],
mobile manipulator control [30], picture restoration [31], and acoustic source tracking [32].
There is a commonality throughout all of these studies: they employ the ZNN method
to find the response. It is noteworthy that Zhang et al. introduced the ZNN technique
in [33] to address time-varying tasks in real time. ZNNs, in particular, are recurrent neural
networks that perform exceptionally well at parallel processing. Dynamical systems for
computing time-varying pseudoinverses were among their subsequent applications [34,35].
Nonlinear equation systems [36,37], linear equation systems [38,39], linear/quadratic pro-
gramming [40–42], and generalized inversion [43,44] are among the challenges that they
are currently utilized for. A ZNN model is typically constructed via two primary steps.
Firstly, we need to define the error matrix equation (EME) E(t). Secondly, the dynamical
system that follows has to be used:

Ė(t) = −λE(t), (3)

where t ∈ [0, t f ) ⊆ [0,+∞) is the time, and the time derivative operator is ( ˙). Furthermore,
the convergence rate of the model can be modified by varying the parameter λ ∈ R+. For
instance, a bigger value of λ causes any ZNN model to converge even quicker [45]. The
foundation of the ZNN’s architecture is to put E(t) to 0, which holds as t → ∞. The
real-time learning rule that results from the creation of EME in (3) is used to do this. EME
can therefore be regarded as a tool for tracking model learning.

In this paper, a novel ZNN model, termed ’ZQ-ARE’, is presented for solving the
TQARE by identifying only Hermitian solutions. One application to quadrotor control
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and three simulation experiments show that the model performs admirably. Additionally,
compared to the traditional differential-algebraic Riccati equation (DARE) solution, the
ZQ-ARE solution adaption to the state-dependent Riccati equation (SDRE) technique
demonstrates that it stabilizes a quadrotor’s flight control system more quickly. Notice that
through a theoretical analysis of the ZQ-ARE model, this study contributes to the corpus of
the literature. Last, the paper’s contributions are shown in the following list.

• A novel ZNN model, termed ’ZQ-ARE’, for solving the TQARE by identifying only
Hermitian solutions is introduced.

• A theoretical analysis is carried out in order to validate the ZQ-ARE model.
• Sim tests and a real-world application to quadrotor control are carried out to supple-

ment the theoretical study.
• For the task of stabilizing the flight control system of a quadrotor, a comparison

is given between the solution adaptations provided by the traditional DARE, the
ZQ-ARE, and the SDRE methods.

The all-ones p × 1 and p × n matrices will be indicated by 1p and 1p×n, respectively,
while the identity p × p matrix will be indicated by Ip throughout the duration of this
paper. In addition, ⊗, vec(·),⊙ will represent the Kronecker product, the vectorization
procedure, and the Hadamard product, respectively. Lastly, the matrix Frobenius norm will
be represented as ∥·∥F, and inversion and pseudoinversion will be indicated by superscripts
()−1 and ()†, respectively.

The layout of the paper is as follows. The TQARE reformulation and quaternion
preliminary results are presented in Section 2. In Section 3, the ZQ-ARE model—which
is grounded in the ZNN method—is described, and in Section 4, its theoretical analysis
is offered. Notice that the computational complexity of the ZQ-ARE model is described
in Section 3. Simulation experiments and application to quadrotor control are shown in
Section 5. Section 6 wraps up with some final thoughts and observations.

2. Preliminaries and Reformulation of the TQARE

The TQARE is reformulated and the foundations of TVQM are outlined in this part.
Notice that the TQARE (2) is being reformulated in order to lower the ZNN technique’s
computational complexity.

Allow M̃(t) = M1(t) + M2(t)ı + M3(t)ȷ + M4(t)k ∈ Hn×n to represent a TVQM using
the coefficient matrices Mj(t) ∈ Rn×n for j = 1, 2, 3, 4. Next is the conjugate transpose of
the TVQM M̃(t) [14,46]:

M̃∗(t) = MT
1 (t)− MT

2 (t)ı − MT
3 (t)ȷ − MT

4 (t)k. (4)

Similarly, consider the TVQMs C̃(t), X̃(t), B̃(t), Ã(t) ∈ Hn×n, which use the coefficient
matrices Cj(t), Xj(t), Bj(t), Aj(t) ∈ Rn×n for j = 1, 2, 3, 4. The following is the product of
B̃(t) and X̃(t):

B̃(t)X̃(t) = B̃X(t) = BX1(t) + BX2(t)ı + BX3(t)ȷ + BX4(t)k ∈ Hm×n, (5)

where the following are the coefficient matrices BXj(t) ∈ Rm×n:

BX1(t)=−B3(t)X3(t)+B1(t)X1(t)−B2(t)X2(t)−B4(t)X4(t),

BX2(t)=B1(t)X2(t)+B3(t)X4(t)+B2(t)X1(t)−B4(t)X3(t),

BX3(t)=B1(t)X3(t)+B3(t)X1(t)−B2(t)X4(t)+B4(t)X2(t),

BX4(t)=B4(t)X1(t)+B1(t)X4(t)−B3(t)X2(t)+B2(t)X3(t).

(6)

In the same manner, we can create the products ÃX(t) = Ã∗(t)X̃(t), X̃A(t) = X̃(t)Ã(t),
and X̃BX(t) = X̃(t)B̃X(t).
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Using the previously provided information, Equation (2) can be rewritten as follows:

ÃX(t) + X̃A(t)− X̃BX(t) + C̃(t) = 0n×n, (7)

where the following is true:
AX1(t) + XA1(t)− XBX1(t) + C1(t) = 0n×n,
AX2(t) + XA2(t)− XBX2(t) + C2(t) = 0n×n,
AX3(t) + XA3(t)− XBX3(t) + C3(t) = 0n×n,
AX4(t) + XA4(t)− XBX4(t) + C4(t) = 0n×n.

(8)

Then, setting

Y(t)=


X1(t) −X2(t) −X3(t) −X4(t)
X2(t) X1(t) −X4(t) X3(t)
X3(t) X4(t) X1(t) −X2(t)
X4(t) −X3(t) X2(t) X1(t)

, A(t)=


A1(t)
A2(t)
A3(t)
A4(t)

, C(t)=


C1(t)
C2(t)
C3(t)
C4(t)

,

W(t)=


B1(t) −B2(t) −B3(t) −B4(t)
B2(t) B1(t) −B4(t) B3(t)
B3(t) B4(t) B1(t) −B2(t)
B4(t) −B3(t) B2(t) B1(t)

, B(t)=


B1(t)
B2(t)
B3(t)
B4(t)

, X(t)=


X1(t)
X2(t)
X3(t)
X4(t)

,

D(t)=


AT

1 (t) AT
2 (t) AT

3 (t) AT
4 (t)

−AT
2 (t) AT

1 (t) AT
4 (t) −AT

3 (t)
−AT

3 (t) −AT
4 (t) AT

1 (t) AT
2 (t)

−AT
4 (t) AT

3 (t) −AT
2 (t) AT

1 (t)

,

(9)

where Y(t), W(t), D(t) ∈ R4n×4n and X(t), B(t), C(t), A(t) ∈ R4n×n, Equation (7) can be
reconstructed as follows:

D(t)X(t) + Y(t)A(t)− Y(t)W(t)X(t) + C(t) = 04n×n, (10)

where the coefficient matrices of X̃(t), Xj(t), j = 1, 2, 3, 4, are contained in X(t) and Y(t),
respectively. Remember that X̃(t) is the intended solution to the TQARE (2). Notice also
that (10) provides four real-valued time-varying matrices, as opposed to (2), which only
yields one TVQM.

3. ZNN Modification for the TQARE System

To solve the TQARE, we will create a ZNN model called ’ZQ-ARE’ in this section.
Let Ã(t), B̃(t), C̃(t), X̃(t) ∈ Hn×n be differentiable TVQMs. Also, let B̃(t) and C̃(t) be
positive semidefinite and X̃(t) be an unknown Hermitian solution. According to the
analysis of Section 2, (10) is a reformulation of (2). Following (9), we build the matrices
D(t), W(t) ∈ R4n×4n and A(t), B(t), C(t) ∈ R4n×n, accounting for the following EME:

EA(t) = Y(t)A(t) + D(t)X(t)− Y(t)W(t)X(t) + C(t), (11)

where X(t) ∈ R4n×4n and Y(t) ∈ R4n×n are the matrices of interest to be found. The first
derivative of (11) is:

ĖA(t) =Y(t)Ȧ(t) + Ẏ(t)A(t) + Ḋ(t)X(t) + D(t)Ẋ(t)

− Ẏ(t)W(t)X(t)− Y(t)Ẇ(t)X(t)− Y(t)W(t)Ẋ(t) + Ċ(t).
(12)
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The ZNN dynamical system is then treated in terms of Ẏ(t) and Ẋ(t). This is achieved
by substituting EA(t) and ĖA(t) in (12) for E(t) and Ė(t) in (3), respectively. The result is
as follows:

D(t)Ẋ(t) + Ẏ(t)A(t)− Ẏ(t)W(t)X(t)− Y(t)W(t)Ẋ(t) =

− λEA(t)− Ḋ(t)X(t)− Y(t)Ȧ(t) + Y(t)Ẇ(t)X(t)− Ċ(t).
(13)

Next, we apply the Kronecker product and vectorization to streamline the dynamics of (13):(
In⊗D(t)− In⊗(Y(t)W(t))

)
vec(Ẋ(t))+

(
AT(t)⊗ I4n−(W(t)X(t))T⊗ I4n

)
vec(Ẏ(t))=

vec(−λEA(t)−Ḋ(t)X(t)−Y(t)Ȧ(t)+Y(t)Ẇ(t)X(t)−Ċ(t)).
(14)

It is crucial to notice that the vectors vec(Ẋ(t)) and vec(Ẏ(t)) contain the same com-
ponents but in different places. Put differently, by expressing vec(Ẏ(t)) with regard to
vec(Ẋ(t)), Equation (14) can be further simplified. Hence, the following equation can be
written by replacing vec(Ẏ(t)) in (14):

vec(Ẏ(t)) = Rvec(Ẋ(t)), (15)

where the operational matrix R ∈ R(4n)2×(2n)2
can be computed using the algorithmic

procedure described in Algorithm 1. Observe that Algorithm 1’s notations adhere to the
standard MATLAB function theme [47].

Algorithm 1 Calculation of matrix R

Require: The order n of the square matrix X(t).
1: procedure OM_R(n)
2: Put x = (1 : (2n)2)′, X =reshape(x, 4n, n), and R =zeros((4n)2, (2n)2)
3: Put F1 = X(1 : n, :), F2 = X(n + 1 : 2n, :), F3 = X(2n + 1 : 3n, :), F4 = X(3n + 1 :

end, :)
4: Put F = [F1,−F2,−F3,−F4; F2, F1,−F4, F3; F3, F4, F1,−F2; F4,−F3, F2, F1]
5: Put Y = reshape(F, [], 1)
6: for c = 1 : (4n)2 do
7: R(c,abs(Y(c))) =sign(Y(c))
8: end for
9: end procedure

Ensure: The matrix R.

Equation (14) may be simplified even more by utilizing (15) as follows:(
In⊗D(t)− In⊗(Y(t)W(t))+

(
AT(t)⊗ I4n−(W(t)X(t))T⊗ I4n

)
R
)

vec(Ẋ(t))=

vec(−λEA(t)−Y(t)Ȧ(t)−Ḋ(t)X(t)+Y(t)Ẇ(t)X(t)−Ċ(t)).
(16)

Because the aim of this study is to find explicitly Hermitian solutions, we need to locate
only the components of X1(t) placed on and above its main diagonal, which are n(n + 1)/2
in number; and the components of Xj(t), j = 2, 3, 4, positioned above its main diagonal,
which are n(n − 1)/2 in number. So it is crucial to utilize ẋ(t) in place of Ẋ(t) by placing
the aforementioned r = n(n + 1)/2 + 3n(n − 1)/2 = 2n2 − n in number components of
Xj(t), j = 1, 2, 3, 4, into the vector x(t) ∈ Rr. The following equation may be constructed to

replace vec(Ẋ(t)) ∈ R(2n)2
in (16):

vec(Ẋ(t)) = Zẋ(t), (17)

where ẋ(t) ∈ Rr, and the operational matrix Z ∈ R(2n)2×r can be computed using the
algorithmic procedure described in Algorithm 2. This method reduces (16)’s dimension
while forcing X̃(t) to be a Hermitian matrix. Observe that Algorithm 2’s notations adhere
to the standard MATLAB function theme [47].
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Algorithm 2 Calculation of matrix Z

Require: The order n of the square matrix X(t).
1: procedure OM_Z(n)
2: Put r1 = n(n + 1)/2, r2 = n(n − 1)/2, Z1 =zeros(n2, r1), and Z2 =zeros(n2, r2)
3: for j = 1 : n2 do
4: Put h = 1+floor(−1+j

n ) and d = 1+mod(−1 + j, n)
5: if d < h then
6: Put Z1

(
j, d + h h−1

2

)
= 1 and Z2

(
j, d − h + 1 + h h−1

2

)
= −1

7: else if d == h then
8: Put Z1

(
j, d + h h−1

2

)
= 1

9: else
10: Put Z1

(
j, h + d d−1

2

)
= 1 and Z2

(
j, h − d + 1 + d d−1

2

)
= 1

11: end if
12: end for
13: Set Z =blkdiag(Z1, Z2, Z2, Z2) and k = [ ]
14: for j = 1 : n do
15: Put k = [k, j : n : (2n)2 − n + j]
16: end for
17: return Z = Z(k, :)
18: end procedure
Ensure: The matrix Z.

Equation (16) may be simplified even more by utilizing (17) as follows:(
In⊗D(t)− In⊗(Y(t)W(t))+

(
AT(t)⊗ I4n−(W(t)X(t))T⊗ I4n

)
R
)

Zẋ(t)=

vec(−λEA(t)−Ḋ(t)X(t)−Y(t)Ȧ(t)+Y(t)Ẇ(t)X(t)−Ċ(t)).
(18)

Furthermore, after the following have been established:

K(t)=
(

In⊗D(t)− In⊗(Y(t)W(t))+
(

AT(t)⊗ I4n−(W(t)X(t))T⊗ I4n
)

R
)

Z∈R(2n)2×r,

L(t)=vec(−λEA(t)−Ḋ(t)X(t)−Y(t)Ȧ(t)+Y(t)Ẇ(t)X(t)−Ċ(t))∈R(2n)2
,

(19)

we arrive at the following ZNN model:

ẋ(t) = K†(t)L(t). (20)

Equation (20)’s dynamic model, additionally referred to as ZQ-ARE, is the suggested
ZNN model to be used for solving the TQARE of (2).

In addition to the ZQ-ARE itself, the process of generating and solving (20) is com-
putationally demanding. In particular, because we perform r2 multiplications and r sub-
tractions/additions at each iteration, the complexity of generating (20) is O(r2) operations.
Furthermore, the equation’s linear system is solved step-by-step using the implicit MATLAB
solver ode15s. Addressing (20) requires an r × r matrix, which adds O(r3) in complexity.
Keep in mind that r = 2n2 − n. Hence, the computational complexity of the ZQ-ARE is
O(r3) = O((2n2 − n)3).

4. Convergence and Stability Analysis

The ZQ-ARE (20) model’s stability analysis and convergence is presented in this
section. It is significant to note that theoretical support has been carefully taken into
account at every step of building the ZNN model. Firstly, we construct the EME according
to the time-variant problem to be solved [33], and this means it monitors the ZNN’s process
of solving the TQARE of (2). This EME is presented in (11) for the ZQ-ARE model. Secondly,
we design an evolutionary formula in (13) based on the ZNN design in (3) to make the
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EME approach zero. Finally, the relative ZQ-ARE model in (20) can be derived by these two
steps. Additionally, it is worth mentioning that the Lyapunov stability theory is applied in
this section to comprehensively guarantee the stability of the ZQ-ARE model.

Theorem 1. Let W(t), D(t) ∈ R4n×4n and A(t), B(t), C(t) ∈ R4n×n be differentiable. The
theoretical solution (TSOL) XTS (t) is reached by the dynamics of (13) in line with the ZNN
method (3), and it is stable in accordance with Lyapunov.

Proof. X(t) = XTS (t)− XO(t) follows from the substitution XO(t) := −X(t) + XTS (t),
where XTS (t) is the TSOL. The elements of X(t) are rearranged in Y(t), as per (9). Con-
sequently, since YTS (t) and YO(t) respectively represent a reposition of the elements of
XTS (t) and XO(t), then Y(t) = YTS (t) − YO(t). Moreover, Ẏ(t) = ˙YTS (t) − ẎO(t) and
Ẋ(t) = ˙XTS (t)− ẊO(t) are the time-derivatives of Y(t) and X(t), respectively.

Let
D(t)XTS (t) + YTS (t)A(t)− YTS (t)W(t)XTS (t) + C(t) = 04n×n, (21)

and its first derivative

D(t) ˙XTS (t)+Ḋ(t)XTS (t)+ ˙YTS (t)A(t)+YTS (t)Ȧ(t)− ˙YTS (t)W(t)XTS (t)

−YTS (t)Ẇ(t)XTS (t)−YTS (t)W(t) ˙XTS (t)+Ċ(t)=04n×n.
(22)

After substituting (11) for X(t) = XTS (t)− XO(t) and Y(t) = YTS (t)− YO(t), the follow-
ing may be verified:

EA
TS (t)=D(t)XTS (t)−D(t)XO(t)+YTS (t)A(t)−YO(t)A(t)−YTS (t)W(t)XTS (t)

+YO(t)W(t)XTS (t)+YTS (t)W(t)XO(t)−YO(t)W(t)XO(t)+C(t),
(23)

and the following results from (3):

˙ETS
A
(t)=D(t) ˙XTS (t)+Ḋ(t)XTS (t)−D(t)ẊO(t)−Ḋ(t)XO(t)+ ˙YTS (t)A(t)+YTS (t)Ȧ(t)

−ẎO(t)A(t)−YO(t)Ȧ(t)+Ċ(t)− ˙YTS (t)W(t)XTS (t)−YTS (t)Ẇ(t)XTS (t)

−YTS (t)W(t) ˙XTS (t)+ẎO(t)W(t)XTS (t)+YO(t)Ẇ(t)XTS (t)

+YO(t)W(t) ˙XTS (t)+ ˙YTS (t)W(t)XO(t)+YTS (t)Ẇ(t)XO(t)

+YTS (t)W(t)ẊO(t)−ẎO(t)W(t)XO(t)−YO(t)Ẇ(t)XO(t)−YO(t)W(t)ẊO(t)

=−λEA
TS (t).

(24)

Afterward, in order to confirm convergence, we select the probable Lyapunov function
listed below:

P(t) =
1
2

∥∥∥EA
TS (t)

∥∥∥2

F
=

1
2

TR
(

EA
TS (t)

(
EA
TS (t)

)T
)

. (25)

The following can then be verified:

Ṗ(t) =
2TR

((
EA
TS (t)

)T ˙ETS
A
(t)

)
2

= TR
((

EA
TS (t)

)T
˙ETS

A
(t)

)
= −λTR

((
EA
TS (t)

)T
EA
TS (t)

)
.

(26)
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Because of this, the following is valid:

Ṗ(t)

{
= 0, EA

TS (t) = 0

< 0, EA
TS (t) ̸= 0,

⇔Ṗ(t)


= 0, D(t)XTS (t)− D(t)XO(t) + YTS (t)A(t)− YO(t)A(t)− YTS (t)W(t)XTS (t)

+YO(t)W(t)XTS (t) + YTS (t)W(t)XO(t)− YO(t)W(t)XO(t) + C(t) = 0
< 0, D(t)XTS (t)− D(t)XO(t) + YTS (t)A(t)− YO(t)A(t)− YTS (t)W(t)XTS (t)

+YO(t)W(t)XTS (t) + YTS (t)W(t)XO(t)− YO(t)W(t)XO(t) + C(t) ̸= 0,

⇔Ṗ(t)

{
= 0, XO(t) = 0 & YO(t) = 0

< 0, XO(t) ̸= 0 & YO(t) ̸= 0,
⇔ Ṗ(t)

{
= 0, XO(t) = 0

< 0, XO(t) ̸= 0.

(27)

Observe that because Y(t) is a reorganization of the X(t) entries, YO(t) ̸= 0 when XO(t) ̸=
0, and YO(t) = 0 otherwise. Furthermore, since EA(0) = 0 and XO(t) are the equilibrium
points of (24), the following is true:

Ṗ(t) ≤ 0, ∀ XO(t) ̸= 0. (28)

We find that the equilibrium state XO(t) = −X(t) + XTS (t) = 0 is stable based on the
theory of Lyapunov. After that, t → ∞ and X(t) → XTS (t). Observe that since Y(t) is a
reposition of the X(t) elements, t → ∞ and Y(t) → YTS (t).

Theorem 2. Let B̃(t), C̃(t), Ã(t) ∈ Hn×n be differentiable. Also, suppose that C̃(t) and B̃(t) are
positive semidefinite matrices. At each t ∈ [0, t f ) ⊆ [0,+∞), the ZQ-ARE model (20) converges to
the TSOL xTS (t) exponentially for any choice of starting value x(0).

Proof. First, using the analysis presented in Section 2, the TQARE of (2) is transformed
into (10). More specifically, we use (9) to build the matrices D(t), W(t) ∈ R4n×4n and
A(t), B(t), C(t) ∈ R4n×n using the matrices Ã(t), B̃(t) and C̃(t). We therefore change (2)
into (10). Secondly, the EME of (11) is declared in order to solve (10). The model (13) is
used in accordance with the ZNN method (3) for zeroing (11). Theorem 1 states that when
t → ∞ for any choice of starting value, Y(t) → YTS (t) and X(t) → XTS (t). Keep in mind
that the X(t) elements are rearranged into Y(t). Since (10) is a reformulation of the TQARE
of (2), the model (13) converges to Equation (2)’s TSOL. Third, the Kronecker product,
vectorization, and the operation matrices of (15) and (17) are used to simplify (13) and form
the ZQ-ARE model of (20). An alternate form of (13) is the ZQ-ARE, which converges to
the TSOL xTS (t) when t → ∞ for any starting value x(0). This completes the proof.

5. Simulations and Application

This section will present an application to quadrotor control as well as three simulation
examples (SEs). It is important to mention a few key justifications. In the SEs, we assigned
η(t) = cos(t) as well as γ(t) = sin(t) for simplicity. Moreover, the MATLAB ode solver
ode15s is used for all computations, and its time interval is set to [0, 10]. Notice that by using
ode15s and its normal double-precision arithmetic (i.e., ϵ = 0.22 × 10−15), the majority of
errors in this section’s figures have minimum values that are in the neighborhood of 10−5.

5.1. Walkthrough Tests
5.1.1. Example 1

The coefficients of matrix Ã(t) in this SE are configured as follows:

A1(t) =
[

6γ(t) + 1 4
5η(t) + 2 6

]
, A2(t) =

[
0 2γ(t) + 2

4γ(t)− 2 0

]
,

A3(t) =
[

0 5
5γ(t) + 1 0

]
, A4(t) =

[
0 2γ(t) + 3
2 0

]
.
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the coefficients of matrix B̃(t) are configured as follows:

B1(t) =
[

η(t) γ(t) + 3
γ(t) + 3 γ(t) + 2

]
, B2(t) =

[
0 6
−6 0

]
,

B3(t) =
[

0 5 + η(t)
−5 − η(t) 0

]
, B4(t) =

[
0 η(t)

−η(t) 0

]
,

and the coefficients of matrix C̃(t) are configured as follows:

C1(t) =
[

γ(t) + 5 η(t)
η(t) η(t) + 2

]
, C2(t) =

[
0 5 + γ(t)

−5 − γ(t) 0

]
,

C3(t) =
[

0 6
−6 0

]
, C4(t) =

[
0 γ(t)

−γ(t) 0

]
.

Hence, Ã(t), B̃(t), C̃(t) ∈ H2×2. Additionally, the initial condition of the ZQ-ARE model
has been set to x(0) = 100 ⊙ 16, and the parameter λ is employed with values of 10 and 100
in order to verify the convergence features of the ZNN technique. The ZQ-ARE model’s
findings are depicted in Figure 1.
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Figure 1. Equation (2) error, solution trajectories, and EMEs of ZQ-ARE from Section 5.1.1: (a) EMEs,
(b) Equation (2) error, (c) real part of the trajectory, (d) imaginary part of the trajectory for i,
(e) imaginary part of the trajectory for j, and (f) imaginary part of the trajectory for k.

5.1.2. Example 2

Consider the following 3 × 3 real matrices:

M1 =

 0 0 1
0 0 0
−1 0 0

, M2 =

 0 1 0
−1 0 0
0 0 0

, M3 =

0 0 0
0 0 1
0 −1 0

.

Then, the coefficients of matrix Ã(t) in this SE are configured as follows:

A1(t) =13×3 + I3 ⊙ γ(t), A2(t) = M1 ⊙ (1 + γ(t)),

A3(t) =M2 ⊙ (2 + 2γ(t)), A4(t) = M3 ⊙ (3 + γ(t)),
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the coefficients of matrix B̃(t) are configured as follows:

B1(t) =I3 ⊙ (1 + γ(t)), B2(t) = M1 ⊙ (4 + 2η(t)),

B3(t) =M2 ⊙ (1 + η(t)), B4(t) = M3 ⊙ (3 + 2η(t)),

and the coefficients of matrix C̃(t) are configured as follows:

C1(t) =I3 ⊙ (1 + η(t)), C2(t) = M1 ⊙ (5 + η(t)),

C3(t) =M2 ⊙ (7 + η(t)), C4(t) = M3 ⊙ (1 + 3η(t)).

Therefore, Ã(t), B̃(t), C̃(t) ∈ H3×3. Additionally, the parameter λ of the ZQ-ARE model is
utilized with a value of 10, and the initial conditions (ICs) are set as follows:

• IC1: x(0) = 015;
• IC2: x(0) = 100 ⊙ 115.

Notice that we use two ICs in order to verify the results of Theorem 2. The ZQ-ARE
model’s findings are depicted in Figure 2.
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Figure 2. Equation (2) error, solution trajectories, and EMEs of ZQ-ARE from Section 5.1.2: (a) EMEs,
(b) Equation (2) error, (c) real part of the trajectory, (d) imaginary part of the trajectory for i,
(e) imaginary part of the trajectory for j, and (f) imaginary part of the trajectory for k.

5.1.3. Example 3

Consider the following 6 × 6 real matrices:

M1 =


0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0

, M2 =


0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, M3 =


0 0 0 0 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

.
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Then, the coefficients of matrix Ã(t) in this SE are configured as follows:

A1(t) =16×6 + I6 ⊙ γ(t), A2(t) = M1 ⊙ (1 + γ(t)),

A3(t) =M2 ⊙ (2 + 2γ(t)), A4(t) = M3 ⊙ (3 + γ(t)),

the coefficients of matrix B̃(t) are configured as follows:

B1(t) =I6 ⊙ (1 + γ(t)), B2(t) = M1 ⊙ (4 + 2η(t)),

B3(t) =M2 ⊙ (1 + η(t)), B4(t) = M3 ⊙ (3 + 2η(t)),

and matrix C̃(t) = B̃(t). Therefore, Ã(t), B̃(t), C̃(t) ∈ H6×6. Additionally, the parameter
λ of the ZQ-ARE model is utilized with a value of 10, and the initial condition is set as
x(0) = round(xTS (0)), where round(·) denotes an element-wise round function of all
inputs, and xTS is the eigenvector solution [48]. It is important to note that in order for
the ZQ-ARE model to find a solution that matches a certain TSOL, we utilize an initial
condition that is near that TSOL. The ZQ-ARE model’s findings are depicted in Figure 3.
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Figure 3. Equation (2) error, solution trajectories, and EME of ZQ-ARE from Section 5.1.3: (a) EME,
(b) Equation (2) error, (c) real part of the trajectory, (d) imaginary part of the trajectory for i,
(e) imaginary part of the trajectory for j, and (f) imaginary part of the trajectory for k.

5.2. Discussion of the SE Findings

Throughout Sections 5.1.1–5.1.3, the effectiveness of the ZQ-ARE (20) model for solving
the TQARE of (2) is examined. Because of the appropriate matrices B̃(t), C̃(t), and Ã(t),
each SE has a distinct TQARE.

It can be seen that Ã(t), B̃(t), C̃(t) ∈ H2×2 in Section 5.1.1. In other words, n = 2 in
(2)’s TQARE. For λ = 10 and λ = 100, we have the following results for the ZQ-ARE
model. Figure 1a illustrates the ZQ-ARE model’s EMEs. The two cases in this illustration
begin with a big error value at t = 0 and end up with a tiny error value in the interval
[10−5, 10−3] at t = 2 when λ = 10 and at t = 0.1 when λ = 100. Stated differently,
the convergence features of the ZNN approach are verified by the EME of the ZQ-ARE
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model, which is influenced by the value of λ. The ZQ-ARE model’s (2) error is displayed in
Figure 1b. The results displayed there confirm those in Figure 1a, indicating that solving (10)
is the same as solving (2). The solutions produced by the model are shown as trajectories
in Figure 1c–f. These figures display the real part and the three imaginary parts of the
solutions, respectively. It is demonstrated that the models provide the same solutions and
that their convergence to the TSOL is consistent with the related EMEs’ tendency towards
convergence.

Furthermore, it can be seen that Ã(t), B̃(t), C̃(t) ∈ H3×3 in Section 5.1.2. In other
words, n = 3 in (2)’s TQARE. Under IC1 and IC2 for λ = 10, we have the following results
for the ZQ-ARE model. Figure 2a illustrates the ZQ-ARE model’s EMEs. The two cases in
this illustration begin with a big error value at t = 0: with IC2’s initial error value being
substantially larger than IC1’s. However, the EMEs reach a tiny error value in the interval
[10−4, 10−3] at t = 1 in the instance of IC1 and at t = 2 in the instance of IC2. Stated
differently, Theorem 2 is validated by the ZQ-ARE model, which converges to a low value
for two distinctive ICs. The ZQ-ARE model’s (2) error is displayed in Figure 2b. The results
displayed there confirm those in Figure 2a, indicating that solving (10) is the same as solving
(2). The solutions produced by the model are shown as trajectories in Figure 2c–f. These
figures display the real part and the three imaginary parts of the solutions, respectively. It
is demonstrated that the models provide the same solutions and that their convergence to
the TSOL is consistent with the related EMEs’ tendency towards convergence.

Additionally, it can be seen that Ã(t), B̃(t), C̃(t) ∈ H6×6 in Section 5.1.3. In other
words, n = 6 in (2)’s TQARE. Under an initial condition that is near to the eigenvector
TSOL and for λ = 10, we have the following results for the ZQ-ARE model. Figure 3a
illustrates the ZQ-ARE model’s EME. The EME in this illustration begins with a big error
value at t = 0 and reaches a tiny error value in the interval [10−4, 10−2] at t = 1. The
ZQ-ARE model’s (2) error is displayed in Figure 3b. The results displayed there confirm
those in Figure 3a, indicating that solving (10) is the same as solving (2). The solutions
produced by the model are shown as trajectories in Figure 3c–f. These figures display the
real part and the three imaginary parts, respectively, of the ZQ-ARE model’s solution and
the eigenvector TSOL. It is demonstrated that the model provides the same solution and
that its convergence to the eigenvector TSOL is consistent with the related EME’s tendency
towards convergence. Stated differently, Theorem 2 is validated by the ZQ-ARE model,
which converges to the TSOL.

When everything is considered, the ZQ-ARE model solves three distinct TQAREs
quite well. It is noteworthy that the discussion given above confirms the ZNN technique’s
convergence qualities and Theorem 2’s findings. Additionally, the ZQ-ARE model’s com-
putational complexity is O((2n2 − n)3), which is similar to that of other ZNN models that
approach various quaternion matrix equations (see [25,28,30–32]).

5.3. Application to Quadrotor Control

In this application, the ZNN design technique is used to stabilize the quadcopter
device of Figure 4. Determining the position of a quadcopter requires the definition of
coordinate systems since it is a vehicle with four separate drives and, at its center of
gravity, an electric power system [49,50]. Three Euler angles and the vertical movement
in the global coordinate system are the control parameters for a six-degree-of-freedom
model device [51,52]. In order to ensure independent control over each drive and minimal
aerodynamic effects, it is necessary to consider a fixed-frame body and a symmetrical
model structure with the origin in the mass center [53,54].

Our approach uses the dynamic model derived from [55,56], which consists of the
following equation system:
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ẍ = u1
m (η(ϕ)γ(θ)η(ψ) + γ(ϕ)γ(ψ))

ÿ = u1
m (η(ϕ)γ(θ)γ(ψ)− γ(ϕ)η(ψ))

z̈ = u1
m η(ϕ)η(ψ)− g

ϕ̈ =
Iy−Iz
Ix

θ̇ψ̇ − JR
Ix

θ̇ωd +
l
Ix

u2

θ̈ = Iz−Ix
Iy

ϕ̇ψ̇ − JR
Iy

ϕ̇ωd +
l
Iy

u3

ψ̈ =
Ix−Iy
Iz

ϕ̇θ̇ + l
Iz

u4,

(29)

where the position of the quadrotor is described by the coordinates x, y, z in the global
coordinate system, and its orientation is described by the three Euler angles: i.e., the yaw
angle ψ ∈ [−π, π], pitch angle θ ∈ [−π/2, π/2], and roll angle ϕ ∈ [−π, π]. Additionally,
g is the gravitational acceleration, l is the quadrotor’s arm length, d is the factor of drag, ωd
is the relative motor speed, Ix,Iy,Iz are inertias, JR is the rotor inertia, m is the quadrotor’s
mass, and uj, j = 1, . . . , 4 are the input variables of the system.

Figure 4. Configuration, inertia, and body-fixed frame of the quadrotor.

The state-space formation of (29) is the following:

ẋ =



x2
u1
m (η(x7)γ(x9)η(x11) + γ(x7)γ(x11))

x4
u1
m (η(x7)γ(x9)γ(x11) + γ(x7)η(x11))

x6
u1
m η(x7)η(x9)− g

x8
Iy−Iz
Ix

x12x10 − JR
Ix

x10ωd +
l
Ix

u2

x10
Iz−Ix
Iy

x12x8 − JR
Iy

x8ωd +
l
Iy

u3

x12
Ix−Iy
Iz

x10x8 +
l
Iz

u4,



(30)

where x =
[
x, ẋ, y, ẏ, z, ż, ϕ, ϕ̇, θ, θ̇, ψ, ψ̇

]T
=

[
x1, x2, . . . , x12

]T ∈ R12 is the state vector

and u =
[
u1, u2, u3, u4

]T ∈ R4 is the control vector.
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In order to solve an ARE and derive the suboptimal control rule, it is crucial to note that
the SDRE control approach reconstructs the nonlinear dynamics utilizing parameterization
into a linear form with coefficient state-dependent matrices [57]. In the state space, the
ARE equation’s coefficients vary. Therefore, it is necessary to solve a state-dependent ARE
at any point in the state space. We are able to get more degrees of freedom because the
state-dependent parameterization is nonunique, which can potentially improve controller
performance. The structure is similar to that of a quadratic when the nonlinear performance
index is minimized.

Consider the optimal control issue for the next linear time-varying system [58]:

ẋ(t) = A(t)x(t) + L(t)u(t), (31)

where x(t) ∈ Rn, L(t) ∈ Rn×m, A(t) ∈ Rn×n, and u(t) ∈ Rm. Control gains at any state
x(t) can be calculated using standard linear optimal control theory, i.e., choosing the control
that minimizes the following cost function:

J = 0.5
∫ ∞

0
xT(t)C(t)x(t) + uT(t)G(t)u(t)dt, (32)

where C(t) ∈ Rn×n penalizes the state and G(t) ∈ Rm×m penalizes the control effort. By
obtaining X(t), which is the solution to the next continuous-time ARE (CARE):

X(t)A(t) + AT(t)X(t)− X(t)L(t)G−1(t)LT(t)X(t) + C(t) = 0n×n, (33)

the control gains that minimizes (32) become:

u(t) = −G−1(t)LT(t)X(t)x(t). (34)

This controller’s stability features are verified in [59,60].
One traditional approach for solving (33) is to use the forward-propagating Riccati

equation (FPRE) method [61]. Particularly, the solution of (33) is obtained through the
following DARE:

Ẋ(t) = X(t)A(t) + AT(t)X(t)− X(t)L(t)G−1(t)LT(t)X(t) + C(t). (35)

On the other hand, one different approach for solving (33) is to use the ZNN method as
proposed in [62]. Particularly, by using B(t) = L(t)G−1(t)LT(t), it is readily understood
that (33) may be turned into (2). As a result, the solution of (33) can be obtained through (20).

In our approach, the SDRE method is applied to the attitude control problem. The
vector of the state variables for that problem is xI =

[
x7, x8, . . . , x12

]T ∈ R6, and the vector

of the input variables is uI =
[
u2, u3, u4

]T ∈ R3, while the state-dependent model derived
from (30) after factorization is the following:

ẋI =



0 1 0 0 0 0
0 0 0 Iy−Iz

Ix
x12 0 0

0 0 0 1 0 0
0 Iz−Ix

Iy
x12 0 0 0 0

0 0 0 0 0 1
0 0 0 Ix−Iy

Iz
x8 0 0


· xI +



0 0 0
l
Ix

0 0
0 0 0
0 l

Iy
0

0 0 0
0 0 l

Iz


· uI , (36)

where A(t) ∈ R6×6 and L(t) ∈ R6×3. Thereafter, we set Ã(t) = A(t), C̃(t) = G(t) = I6,
and B̃(t) = L(t)G−1(t)LT(t), and we use the parameter values of the object presented in
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Table 1 and the ICs xI (0) =
[
π/4, π/2, 3π/4, 0, 0, 0

]T. Additionally, the λ parameter value
is set to 100, and the ICs of the ZQ-ARE model and DARE have been set as follows:

X̃(0) = X(0) =

12×2 02×2 02×2
02×2 12×2 02×2
02×2 02×2 12×2

. (37)

The results of the ZNN and FPRE methods are presented in Figure 5. Notice that the
purpose of the control procedure is stabilization at the zero point.

Particularly, it can be seen that Ã(t), B̃(t), C̃(t) ∈ H6×6. In other words, n = 6 in (2)’s
TQARE. For λ = 100, we have the following results for the ZQ-ARE model. Figure 5a
illustrates the ZQ-ARE model’s EMEs. The EME in this image starts with a big value at t = 0
and ends up with a small value in the interval [10−16, 10−15] at t = 5. Figure 5b depicts
the (2) error of the ZQ-ARE solution of the ZNN method and the DARE solution of the
FPRE method. The findings show that the ZQ-ARE solution is more accurate than the DARE
solution. Figure 5c displays the trajectories of the real parts of the solutions generated by the
models; the solutions’ imaginary parts are left out because they are zeros. This graph shows
that although the models produce identical solutions, the ZNN approach converges more
quickly than the FPRE method. Figure 5d shows the time-plot of the quadrotor’s angles, and
Figure 5e shows the time-plot of the quadrotor’s velocities. These graphs demonstrate that
stabilization at the “zero” point for the angles and velocities is successful by both models,
but the ZNN method achieve faster stabilization than the FPRE method. Figure 5f shows the
quadrotor’s position during attitude control, where we can observe that the ZNN and FPRE
methods produce identical results. Based on the aforementioned observations, the results of
the application to quadrotor control show that the ZNN method is more effective than the
FPRE method. To conclude, the ZNN method is not only fruitful for solving the TQARE, but
it may also be employed to quadrotor control with high efficiency.
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Figure 5. EME, solution trajectories, Equation (2) errors, time-plot of angles, and velocities, and plot
of the position of the quadrotor during attitude control: (a) EME convergence, (b) Equation (2) error,
(c) solution trajectories, (d) time-plot of angles, (e) time-plot of velocities, and (f) plot of position
during attitude control.
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Table 1. The parameters utilized in the quadrotor simulation.

Parameter Value Unit

m 0.5 kg
g 9.81 m/s2

l 0.3 m
JR 0.01 N
Ix 0.0081 kg·m2

Iy 0.0081 kg·m2

Iz 0.0162 kg·m2

6. Conclusions

In this paper, a novel ZNN model, termed ’ZQ-ARE’, is presented for solving the
TQARE by identifying only Hermitian solutions. Theoretical investigation and simulation
experiments are conducted to support the ZQ-ARE model’s accuracy and efficiency, while
an application to quadrotor control is carried out to support the ZQ-ARE model’s practical
applicability. Specifically, in three SEs, the ZQ-ARE model finds the TQARE Hermitian
solutions under various initial conditions, and we also demonstrate that the convergence
rate of the solution increases as the value of the parameter λ rises.For the purpose of stabi-
lizing the flight control system of a quadrotor, a comparison is given between the solution
adaptations provided by the ZNN and FPRE methods. The results of this application show
that the ZNN method is more effective than the FPRE method. So we can conclude that the
ZNN method is not only fruitful for solving the TQARE, but it may also be employed for
quadrotor control with high efficiency.

It is significant to mention that the suggested ZNN model has the drawback of being
noise-intolerant since all kinds of noise significantly affect the suggested ZNN approach’s
accuracy. Therefore, the adaptation of this model to a noise-tolerant ZNN design could be
the main focus of future study. To be more precise, the suggested model might be made
noise-tolerant by substituting the original ZNN design with a noise-tolerant ZNN archi-
tecture, such as the one used in [37]. Moreover, future research may involve applying the
proposed ZNN model to a range of other technical issues, including secure communications
with application to acoustic source tracking [63] and network and power systems with
application to chaotic system stabilization [64,65].
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