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Abstract: In this scholarly discourse, we present proof of the existence of unique fixed points in
b-metric spaces for hybrid rational contractions. Moreover, we establish a common fixed point
theorem for four self-mappings, assuming S-compatibility for two pairs of self-mappings within the
framework of b-metric spaces. As a practical demonstration of the aforementioned results, we apply
them to a type of integral equation and derive a theorem that guarantees the existence of solutions.

Keywords: fixed/common fixed point; rational contraction; b-metric space; C-class function;
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1. Introduction

Fixed point theory is an interdisciplinary field that brings together concepts from
topology, geometry, pure and applied analysis. It has proven to be an invaluable tool in the
study of nonlinear analysis, economics, engineering, medicine, biology, optimal control,
game theory, and other theoretical sciences. One of the key contributions of fixed point
theory is its ability to solve all kinds of mathematical problems, such as variational inequal-
ities, differential equations and integral equations, and mainly establish the existence and
uniqueness of the solutions to these problems. In this regard, the selection of a generalized
and extended metric space plays a crucial role in providing non-trivial conditions that guar-
antee the existence of solutions for a given equation. As early as 1989, Bakhtin [1] initially
introduced a extension version of metric, called b-metric space, and later formally defined
by Czerwik [2] in 1993. Czerwik also generalized the well-known Banach Contraction
Principle within this generalized metric space. The topological properties of such metric
spaces and the fixed point theorems of KKM mappings in metric type spaces were first
discussed by Khamsi and Hussain [3]. Van An et al. [4] established the stone type theorem
under b-metric space, and provided conditions such that b-metric space can be metrizable.
Additionally, Czerwik et al. [5,6] introduced set-valued mappings in b-metric spaces and
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generalized Nadler’s fixed point theorem. In 2012, Aydi and co-authors [7,8] demonstrated
fixed point and common fixed point theorems for set-valued quasi-contraction mappings
and set-valued weak φ-contraction mappings within the framework of b-metric spaces.
Various papers have explored fixed point theory for both single-valued and set-valued
operators in b-metric spaces, as documented in references [9–19].

In 1976, the concept of commutative maps was introduced by Jungck [20], which
sparked the study of the existence of a common fixed point of such maps in metric spaces.
Following this, Sessa [21] introduced the weak version of commuting mappings, known
as weak commuting mappings. In 1986, Jungck [22] further generalized weak commu-
tativity by introducing compatible mappings. This research opened new directions in
fixed point theory for many researchers. Jungck [23] subsequently extended his own
concept by introducing the notion of weak compatibility. Over the last few decades, vari-
ous generalizations of compatible mappings have been developed, including compatible
mapping of type (A) [24], compatible mapping of type (B) [25], compatible mapping
of type (C) [26], compatible mapping of type (P) [27], semi-compatible mappings [28],
weak semi-compatible mappings [29], conditional semi-compatible mappings [30], faintly
compatible mappings [31], occasionally weakly compatible mappings [32–34], and other
types of mappings [35,36]. Recently, Zhou et al. [37] introduced a new compatible condition
called Sτ-compatibility, which is weaker than the (E.A.) property, and also presented a
common fixed point theorem in metric spaces.

This paper aims to demonstrate the presence of a distinct fixed point for a novel
hybrid rational contraction within the framework of b-metric spaces. Additionally, we
introduce a novel form of compatibility condition known as S-compatible for two pairs
of self-mappings, in order to investigate the common fixed point theorem for hybrid
rational contractions under this specific compatibility condition. Furthermore, we will
showcase the existence of a solution to a particular integral equation as an application of
our primary findings.

2. Preliminaries

In 1993, Czerwik [2] introduced the notion of b-metric spaces in the following way.

Definition 1. Suppose that G is a nonempty set, s ≥ 1 be a given real number. A function
ρ : G × G → R+ is a b-metric if, for all u, v, w ∈ G, the following conditions are satisfied:

(i) ρ(u, v) = 0 if and only if u = v;
(ii) ρ(u, v) = ρ(v, u);
(iii) ρ(u, w) ≤ s[ρ(u, v) + ρ(v, w)].

Then the pair (G, ρ) is called a b-metric space.

A b-metric is a metric if (and only if) s = 1, at this point, b-metric is a generalization of
the normal metric. In other words, a metric is necessarily a b-metric, but a b-metric is not
necessarily a metric. Some examples can be used to illustrate the above conclusions (see
Example 1.2, [38]).

Definition 2 ([39]). Let (G, ρ) be a b-metric space. Then a sequence {xn} in X is called:

(1) b-convergent if and only if there exists x ∈ X such that ρ(xn, x) → 0 as n → +∞. In this
case, we write lim

n→+∞
xn = x.

(2) b-Cauchy if and only if ρ(xn, xm) → 0 as n, m → +∞.

A b-metric space (G, ρ) is b-complete if every b-Cauchy sequence in X is b-convergent.
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Lemma 1 ([38]). Let (G, ρ) be a b-metric space with s ≥ 1 and suppose that {xn} and {yn} are
b-convergent sequences and converges to x, y, respectively. Then we have

1
s2 ρ(x, y) ≤ lim inf

n→+∞
ρ(xn, yn) ≤ lim sup

n→+∞
ρ(xn, yn) ≤ s2ρ(x, y).

When x = y, we can obtain lim
n→+∞

ρ(xn, yn) = 0. In addition, for all z ∈ X, we obtain,

1
s

ρ(x, z) ≤ lim inf
n→+∞

ρ(xn, z) ≤ lim sup
n→+∞

ρ(xn, z) ≤ sρ(x, z).

Lemma 2 ([40]). Let {xn} be a sequence in a b-metric space (G, ρ) such that

ρ(xn, xn+1) ≤ λρ(xn, xn−1)

for some λ with 0 < λ < 1
s and s > 1 for n ∈ N. Then {xn} is a b-Cauchy sequence in (G, ρ).

In 2014, Ansari [41] proposed a type of function called C-class functions which covers
a number of contractive conditions.

Definition 3 ([41]). A continuous function F : [0,+∞)2 → R is called a C-class function if for
any s, t ∈ [0,+∞), the following conditions hold:

1. F(s, t) ≤ s;
2. F(s, t) = s implies that either s = 0 or t = 0.

An extra condition on F can be imposed such that f (0, 0) = 0 in some cases if required.
The letter C denotes the class of all C-class functions. Some classical examples of C-class functions
can be found in [41].

Definition 4 ([42]). A function ψ : [0,+∞) → [0,+∞) is called an altering distance function if
the following properties are satisfied:

(i) ψ is non-decreasing and continuous;
(ii) ψ(t) = 0 if and only if t = 0.

We denote the class of the altering distance functions by Ψ.

A minor modification of the altering distance function is stated as follows.

Definition 5. A function ϕ : R → R is called an infinite altering distance function if the following
properties are satisfied:

(i) ϕ is non-decreasing and continuous;
(ii) ϕ(u) = 0 if and only if u = 0.

We denote the class of the infinite altering distance functions by Ψinf.

Let Φ be the class of the functions φ : [0,+∞) → [0,+∞), then the following conditions
are true:

(Φ1) φ is continuous;
(Φ2) φ(t) > 0 for all t > 0 and φ(0) = 0.

Definition 6 ([37]). A pair (g, f ) of self-mappings defined on G is called to be compatible w.r.t. Sτ

(Sτ-compatible, for short) if there exists a sequence {un} ∈ G such that

lim
n→+∞

τun = t and lim
n→+∞

gτun = lim
n→+∞

f τun = τt.
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Example 1. Suppose that G = R, gu = 2u, f u = 4 − 2u and τu = 1 + u. Take {un} = 1
n .

Since lim
n→+∞

τun = 1 with lim
n→+∞

gτun = 2 = τ(1) and lim
n→+∞

f τun = 2 = τ(1). Then pair (g, f )

is Sτ-compatible. However, lim
n→+∞

τun ̸= lim
n→+∞

gun and lim
n→+∞

τun ̸= lim
n→+∞

f un.

Apparently, Sτ-compatibility of a pair (g, f ) self-maps implies E.A. property of a pair
(g, f ) of self-maps by taking self-map τ as identity map.

Let G = R, gu = u, f u = u2 and τ = Iu(identity function on G). Take {un} = 1
n .

Here lim
n→+∞

τun = lim
n→+∞

f τun = lim
n→+∞

gτun = lim
n→+∞

un = 0. Hence, pair self-maps (g, f )

satisfies (E.A.) property.
Based on the definition mentioned above, we introduce a new compatible condition

for two pairs (A, B), (J, T) of self-mappings called S-compatiblity as follows.

Definition 7. Suppose that (A, B), (J, T) are two pairs of self-mappings defined on G. Then
(A, B) is said to be compatible w.r.t. (J, T) (S(J,T)-compatible, for short), if there exists a sequence
{un} ∈ G such that

lim
n→+∞

Jun = lim
n→+∞

Tun = t,

lim
n→+∞

AJun = lim
n→+∞

BJun = Jt,

lim
n→+∞

ATun = lim
n→+∞

BTun = Tt.

Definition 8. Let (A, B), (J, T) be two pairs of self-mappings defined on X. Then (A, B), (J, T)
are said to be S-compatible, if (A, B) is compatible w.r.t. (J, T) and (J, T) is compatible w.r.t.
(A, B).

Example 2. Suppose that G = R+ and define A, B, J, T : G → G by Au = 2u, Bu = u2, Ju =
u

1+u , and Tu =
√

u for all u ∈ G. For a sequence {un} ∈ G, where un = 1
n , n ∈ N. Then

lim
n→+∞

Jun = lim
n→+∞

Tun = 0 and also lim
n→+∞

AJun = lim
n→+∞

BJun = J(0) = 0 and lim
n→+∞

ATun =

lim
n→+∞

BTun = T(0) = 0. Therefore, (A, B) is compatible w.r.t. (J, T) for sequence {un}. Similarly,

after simple calculation, we also obtain that (J, T) is compatible w.r.t. (A, B) for sequence {un}.
Hence, (A, B), (J, T) are S-compatible.

3. Fixed/Common Fixed Point Theorems for Hybrid Rational Contractions

In this section, in the framework of b-metric space, some results of the fixed points
and common fixed points for rational contractive mappings are given.

Theorem 1. Suppose that (G, ρ, s) is a complete b-metric space, g : G → G is a mapping satisfying

ψ(s1+ερ(gu, gv)) ≤ F(ψ(X(u, v)), φ(X(u, v))) + LY(u, v), (1)

where X, Y: G × G → R+ are two mappings satisfying

X(u, v) = 1
m+n+q+p+2sw

{
mρ(u, v) + n ρ(u,gu)ρ(u,gv)+ρ(v,gv)ρ(v,gu)

ρ(u,gv)+ρ(v,gu)

+qρ(u, gu) + pρ(u, gv) + w[ρ(u, gv) + ρ(v, gu)]
}

and
Y(u, v) = min{ρ(u, gu), ρ(v, gu), ρ(g2u, g2v)},

for all elements u, v ∈ G, L ∈ R, ε, m, n, q, p, w ≥ 0 with m + n + q + p + 2sw > 0, and F ∈ C,
ψ ∈ Ψinf, φ ∈ Φu. Then g has a unique fixed point.
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Proof. Step I. We prove that the sequence {un} is a convergent in G.
Let u0 ∈ G, we can construct a Picard sequence {un} in G such that un+1 = gun =

gn+1u0 for all n ∈ N∪ {0}.
If un0 = un0+1 for some n0 ∈ N∪ {0}, then g(un0) = un0 . This implies un0 is a fixed point
of g. Hence, assume that for all n ∈ N ∪ {0}, un ̸= un+1, i.e., ρ(un, un+1) > 0. Applying
u = un−1 and v = un in (1), we obtain

ψ(s1+ε(ρ(un, un+1))) = ψ(s1+ερ(gun−1, gun))

≤ F(ψ(X(un−1, un)), φ(X(un−1, un))) + LY(un−1, un) (2)

≤ ψ(X(un−1, un)) + LY(un−1, un),

where

X(un−1, un) =
1

m + n + q + p + 2sw

{
mρ(un−1, un) + n

ρ(un−1, gun−1)ρ(un−1, gun) + ρ(un, gun)ρ(un, gun−1)

ρ(un−1, gun) + ρ(un, gun−1)

+ qρ(un−1, gun−1) + pρ(un, gun) + w[ρ(un−1, gun) + ρ(un, gun−1)]

}
=

1
m + n + q + p + 2sw

{
mρ(un−1, un) + n

ρ(un−1, un)ρ(un−1, un+1) + ρ(un, un+1)ρ(un, un)

ρ(un−1, un+1) + ρ(un, un)

+ qρ(un−1, un) + pρ(un, un+1) + w[ρ(un−1, un+1) + ρ(un, un)]

}
≤ 1

m + n + q + p + 2sw

{
mρ(un−1, un) + nρ(un−1, un) + qρ(un−1, un)

+ pρ(un, un+1) + swρ(un−1, un) + swρ(un, un+1)

}
=

m + n + q + sw
m + n + q + p + 2sw

ρ(un−1, un) +
p + sw

m + n + q + p + 2sw
ρ(un, un+1)

and

Y(un−1, un) =min {ρ(un−1, gun−1), ρ(un, gun−1),ρ(g2un−1, g2un)}
=min {ρ(un−1, un), ρ(un, un), ρ(un+1, un+2)} = 0.

According to (2), we can obtain

s1+ε(ρ(un, un+1)) ≤ m + n + q + sw
m + n + q + p + 2sw

ρ(un−1, un) +
p + sw

m + n + q + p + 2sw
ρ(un, un+1)

≤ m + n + q + sw
m + n + q + p + 2sw

ρ(un−1, un) + s1+ε(
p + sw

m + n + q + p + 2sw
)ρ(un, un+1).

So,

ρ(un, un+1) ≤
1

s1+ε
ρ(un−1, un). (3)

By induction, we can infer that

ρ(un+1, un) ≤ (
1

s1+ε
)ρ(un, un−1) ≤ (

1
s1+ε

)2ρ(un−1, un−2) ≤ · · · ≤ (
1

s1+ε
)nρ(u1, u0).

Hence, we have
lim

n→+∞
ρ(un, un+1) = 0. (4)

By Lemma 2, {un} is a b-Cauchy sequence. Further, according to the completeness of G,
we have {un} converges to a point u∗ ∈ G.
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Step II. We prove that u∗ is a fixed point of g.
Again, applying u = un, v = u∗ in (1), we have

ψ(s1+ερ(un+1, gu∗)) = ψ(s1+ερ(gun, gu∗)) ≤ F(ψ(X(un, u∗)), φ(X(un, u∗))) + LY(un, u∗), (5)

where

X(un, u∗) =
1

m + n + q + p + 2sw

{
mρ(un, u∗) + n

ρ(un, gun)ρ(un, gu∗) + ρ(u∗, gu∗)ρ(u∗, gun)

ρ(un, gu∗) + ρ(u∗, gun)

+ qρ(un, gun) + pρ(u∗, gu∗) + w[ρ(un, gu∗) + ρ(u∗, gun)]

}
=

1
m + n + q + p + 2sw

{
mρ(un, u∗) + n

ρ(un, un+1)ρ(un, gu∗) + ρ(u∗, gu∗)ρ(u∗, un+1)

ρ(un, gu∗) + ρ(u∗, un+1)

+ qρ(un, un+1) + pρ(u∗, gu∗) + w[ρ(un, gu∗) + ρ(u∗, un+1)]

}
(6)

and

Y(un, u∗) =min {ρ(un, gun), ρ(u∗, gun),ρ(g2un, g2u∗)}
=min {ρ(un, un+1), ρ(u∗, un+1), ρ(un+2, g2u∗)}. (7)

Taking the upper limit as n → +∞ in (6) and (7), then

lim
n→+∞

sup X(un, u∗) ≤ p + sw
m + n + q + p + 2sw

ρ(u∗, gu∗), lim
n→+∞

sup Y(un, u∗) = 0. (8)

From the properties of ψ and F, we have

ψ(sρ(un+1, gu∗))

≤ ψ(s1+ερ(un+1, gu∗))

≤ F(ψ(X(un, u∗)), φ(X(un, u∗))) + LY(un, u∗)

≤ ψ(X(un, u∗)) + LY(un, u∗).

Taking the upper limit as n → +∞ in the above inequalities and using (8), we obtain

ψ(
p + sw

m + n + q + p + 2sw
ρ(u∗, gu∗))

≤ ψ(s1+ερ(u∗, gu∗))

≤ F(ψ(
p + sw

m + n + q + p + 2sw
ρ(u∗, gu∗)), φ(

p + sw
m + n + q + p + 2sw

ρ(u∗, gu∗)))

≤ ψ(
p + sw

m + n + q + p + 2sw
ρ(u∗, gu∗)),

which yields that ψ( p+sw
m+n+q+p+2sw ρ(u∗, gu∗)) = 0 or φ( p+sw

m+n+q+p+2sw ρ(u∗, gu∗)) = 0. We
derive ρ(u∗, gu∗) = 0 implies u∗ = gu∗.

Step III. we will prove that u∗ is a unique fixed point of g.
Assume that i is also a fixed point of g, that is gi = i. Then, we have

ψ(s1+ερ(u∗, i)) = ψ(r1+ερ(gu∗, gi)) ≤ F(ψ(X(u∗, i)), φ(X(u∗, i))) + LY(u∗, i), (9)
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where X, Y: G × G → R+ are two mappings satisfying

X(i, u∗) =
1

m + n + q + p + 2sw

{
mρ(i, u∗) + n

ρ(i, gi)ρ(i, gu∗) + ρ(u∗, gu∗)ρ(u∗, gi)
ρ(i, gu∗) + ρ(u∗, gi)

+ qρ(i, gi) + pρ(u∗, gu∗) + w[ρ(i, gu∗) + ρ(u∗, gi)]
}

=
m + 2w

m + n + q + p + 2sw
ρ(i, u∗)

and

Y(i, u∗) = min
{

ρ(i, gi), ρ(u∗, gi), ρ(g2i, g2u∗)
}
= 0.

Then (9) becomes

ψ(
m + 2w

m + n + q + p + 2sw
ρ(u∗, i)) ≤ ψ(ρ(u∗, i))

≤ ψ(s1+ερ(u∗, i))

≤ F(ψ(
m + 2w

m + n + q + p + 2sw
ρ(u∗, i)), φ(

m + 2w
m + n + q + p + 2sw

ρ(u∗, i)))

≤ ψ(
m + 2w

m + n + q + p + 2sw
ρ(u∗, i)),

which yields that ψ( m+2w
m+n+q+p+2sw ρ(u∗, i)) = 0 or φ( m+2w

m+n+q+p+2sw ρ(u∗, i)) = 0. We derive
ρ(u∗, i) = 0, it implies u∗ = i. So, u∗ is a unique fixed point of g.

Example 3. Let G = [0, 1] equipped with ρ(u, v) = (u − v)2, it is obvious that (G, ρ) is a
complete b-metric space respected to s = 2. Suppose that ψ(t) = 1

2 t, F(r, t) = r and g(u) = 1
2 u,

we have

ψ(21+1ρ(gu, gv)) =
1
2
(u − v)2

≤ (
1
2
)22ρ(u, v).

So g satisfies (1) respected to ρ, L ∈ R, F ∈ C, ψ ∈ Ψinf, φ ∈ Φu and m = 2, ε = 1, n = q = p =
w = 0. By Theorem 1, we have g has a unique fixed point.

Corollary 1. Suppose that (G, ρ, s) is a complete b-metric space, and g is a self-mapping defined
on G satisfying for all elements u, v ∈ G,

ψ(s1+ερ(gu, gv)) ≤ F(ψ(X(u, v)), φ(X(u, v))),

where X: G × G → R+ is a mapping satisfying

X(u, v) =
1

m + n + q + p + 2sw

{
mρ(u, v) + n

ρ(gu, u)ρ(u, gv) + ρ(gu, v)ρ(gv, v)
ρ(u, gv) + ρ(gu, v)

+ qρ(gu, u) + pρ(gv, v) + w(ρ(u, gv) + ρ(gu, v))
}

,

and F ∈ C, ψ ∈ Ψinf, φ ∈ Φu, ε, m, n, p, q, w ≥ 0 with m + n + q + p + 2sw > 0. If g is
continuous, then g has a unique fixed point.

With choice F(r, t) = (m + n + q + p + 2sw)r, for some m + n + q + p + 2sw ∈ (0, 1),
we have the following corollary.
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Corollary 2. Suppose that (G, ρ, s) is a complete b-metric space, g : G → G is a mapping
satisfying

ψ(s1+ερ(gu, gv)) ≤ ψ(X(u, v)) + LY(u, v),

where X, Y: G × G → R+ are two mappings satisfying

X(u, v) =
1

m + n + q + p + 2sw

{
mρ(u, v) + n

ρ(u, gu)ρ(u, gv) + ρ(v, gv)ρ(v, gu)
ρ(u, gv) + ρ(v, gu)

+ qρ(u, gu) + pρ(v, gv) + w[ρ(u, gv) + ρ(v, gu)]
}

and
Y(u, v) = min{ρ(u, gu), ρ(v, gu), ρ(g2u, g2v)},

for all u, v ∈ G, L ∈ R, ε ≥ 0, and ψ ∈ Ψinf. Then g has a unique fixed point.

With choice F(r, t) = (m + n + q + p + 2sw)r, for some m + n + q + p + 2sw ∈ (0, 1),
ψ(t) = t and L = 0, we have the following corollary.

Corollary 3. Suppose that (G, ρ, s) is a complete b-metric space, and g : G → G is a mapping
satisfying

s1+ερ(gu, gv)) ≤
{

mρ(u, v) + n
ρ(u, gu)ρ(u, gv) + ρ(v, gv)ρ(v, gu)

ρ(u, gv) + ρ(v, gu)
+

qρ(u, gu) + pρ(v, gv) + w[ρ(u, gv) + ρ(v, gu)]
}

for all u, v ∈ G, ε, m, n, q, p, w ≥ 0 such that m + n + q + p + 2sw ∈ (0, 1
s1+ε ). Then g has a

unique fixed point.

In the following, we will illustrate some common fixed point theorems for two pairs
of self-mappings with S-compatible condition.

Theorem 2. Suppose that (G, ρ, s) is a complete b-metric space, and (A, B), (J, T) are two pairs of
self-mappings defined on G satisfying

(1) A(G) ⊆ J(G) and T(G) ⊆ B(G);
(2) for all elements u, v ∈ G, ε, m, n, q, p, w ≥ 0 such that m + n + q + p + 2sw > 0,

ψ(s1+ερ(Au, Tv)) ≤ F(ψ(X(u, v)), φ(Y(u, v))), (10)

where X : G × G → R+ is a mapping satisfying

X(u, v) =
1

m + n + q + p + 2sw

{
mρ(Bu, Jv) + n

ρ(Au, Bu)ρ(Bu, Tv) + ρ(Au, Jv)ρ(Jv, Tv)
ρ(Bu, Tv) + ρ(Au, Jv)

+ qρ(Au, Bu) + pρ(Jv, Tv) + w(ρ(Bu, Tv) + ρ(Au, Jv))
}

, (11)

and F ∈ C, ψ ∈ Ψinf, φ ∈ Φu. Suppose that ρ is continuous. If (J, T), (A, B) are S-compatible
and J is continuous, then A, B, J and T have a unique common fixed point.

Proof. Let u0 ∈ G. Since A(G) ⊆ J(G) and T(G) ⊆ B(G), then there exist u1, u2 ∈ G such
that Au0 = Ju1 = v0, Tu1 = Bu2 = v1. Repeating this process, we can obtain a sequence
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{un} in G such that Aun−1 = Jun = vn−1 and Tun = Bun+1 = vn for n ∈ N. From (10) and
(11), we have

ψ(s1+ερ(Aun, Tun+1))

≤ F(ψ(X(un, un+1)), φ(X(un, un+1)))

≤ ψ(X(un, un+1))

= ψ(
1

m + n + q + p + 2sw

{
mρ(Bun, Jun+1)

+ n
ρ(Aun, Bun)ρ(Bun, Tun+1) + ρ(Aun, Jun+1)ρ(Jun+1, Tun+1)

ρ(Bun, Tun+1) + ρ(Aun, Jun+1)

+ qρ(Aun, Bun) + pρ(Jun+1, Tun+1) + w(ρ(Bun, Tun+1) + ρ(Aun, Jun+1))

}
)

From the construction of sequence {vn}, it yields that

ψ(s1+ερ(vn, vn+1))

≤ ψ(
1

m + n + q + p + 2sw
[mρ(vn−1, vn) + n

ρ(vn, vn−1)ρ(vn−1, vn+1) + ρ(vn, vn)ρ(vn+1, ρn)

ρ(vn−1, ρn+1) + ρ(vn, vn)

+ qρ(vn, vn−1) + pρ(vn+1, vn) + w(ρ(vn−1, vn+1) + ρ(vn, vn))])

≤ ψ(
1

m + n + q + p + 2sw
[mρ(vn−1, vn) + nρ(vn, vn−1)+

+ qρ(vn, vn−1) + pρ(vn+1, vn) + sw(ρ(vn−1, vn) + ρ(vn, vn+1))])

By the definition of ψ, we have

s1+ερ(vn, vn+1)

≤ m + n + q + sw
m + n + q + p + 2sw

ρ(vn−1, vn) +
p + sw

m + n + q + p + 2sw
ρ(vn, vn+1)

≤ m + n + q + sw
m + n + q + p + 2sw

ρ(vn−1, vn) +
(p + sw)s1+ε

m + n + q + p + 2sw
ρ(vn, vn+1).

Then, it implies that

s1+ε(1 − p + sw
m + n + q + p + 2sw

)ρ(vn, vn+1) ≤
m + n + q + sw

m + n + q + p + 2sw
ρ(vn−1, vn).

Sequentially, we obtain

ρ(vn, vn+1) ≤
1

s1+ε
ρ(vn−1, vn).

Therefore, {vn} is a Cauchy sequence. Completeness of (G, ρ, s) implies {vn} converges
to some point t ∈ G or lim

n→+∞
Aun = lim

n→+∞
Jun = lim

n→+∞
Tun = lim

n→+∞
Bun = t. The S-

compatibility of (J, T) and (A, B) yields the following results:

lim
n→+∞

TAun = lim
n→+∞

JAun = At. (12)

lim
n→+∞

TBun = lim
n→+∞

JBun = Bt. (13)

lim
n→+∞

ATun = lim
n→+∞

BTun = Tt. (14)

lim
n→+∞

AJun = lim
n→+∞

BJun = Jt. (15)
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Now by the definition of ψ and s,

ψ(ρ(ATun, Tun))

≤ ψ(s1+ερ(ATun, Tun))

≤ F(ψ(X(Tun, un)), φ(X(Tun, un)))

≤ ψ(X(Tun, un))

= ψ(
1

m + n + q + p + 2sw
[mρ(BTun, Jun)

+ n
ρ(ATun, BTun)ρ(BTun, Tun) + ρ(ATun, Jun)ρ(Jun, Tun)

ρ(BTun, Tun) + ρ(ATun, Jun)

+ qρ(ATun, BTun) + pρ(Jun, Tun) + w(ρ(BTun, Tun) + ρ(ATun, Jun))]).

Taking limit as n → +∞ in the above inequalities, together with (14), we have

ψ(ρ(Tt, t)) ≤ ψ[
m + 2w

m + n + q + p + 2sw
ρ(Tt, t)].

By the definition of ψ, we obtain

ρ(Tt, t) ≤ m + 2w
m + n + q + p + 2sw

ρ(Tt, t).

Then,

ρ(Tt, t)
n + q + p + 2w(s − 1)
m + n + q + p + 2sw

≤ 0.

Since m, n, q, p, w ≥ 0 and s ≥ 1, this yields that Tt = t. Again by the definition of ψ and s,
we have

ψ(ρ(Aun, TBun))

≤ ψ(s1+ερ(Aun, TBun))

≤ F(ψ(X(un, Bun)), φ(X(un, Bun)))

≤ ψ(M(un, Bun))

= ψ(
1

m + n + q + p + 2sw
[mρ(Bun, JBun)

+ n
ρ(Aun, Bun)ρ(Bun, TBun) + ρ(Aun, JBun)ρ(JBun, TBun)

ρ(Bun, TBun) + ρ(Aun, JBun)

+ qρ(Aun, Bun) + pρ(JBun, TBun) + w(ρ(Bun, TBun) + ρ(Aun, JBun))]).

Taking limit as n → +∞ in the above inequalities, together with (13), we have

ψ(ρ(t, Bt)) ≤ ψ[
m + 2w

m + n + q + p + 2sw
ρ(t, Bt)].

Hence Bt = t.
If we put u = un and v = Aun in (10), then with the help of (12), we have At = t.

Since J is continuous, this yields lim
n→∞

JBun = Jt. With (13), it is easy to see that Bt = Jt.
Hence Tt = Jt = At = Bt = t and then t is common fixed point of A, B, J and T.
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For the uniqueness, suppose that i is another common fixed point of A, B, J and T,
that is Ai = Bi = Ji = Ti = i. From (10), we have

ψ(ρ(t, i))

= ψ(ρ(At, Ti))

≤ ψ(s1+ερ(At, Ti))

≤ F(ψ(X(t, i)), φ(X(t, i)))

≤ ψ(X(t, i))

= ψ(
1

m + n + q + p + 2sw
[mρ(Bt, Jw) + n

ρ(At, Bt)ρ(Bt, Ti) + ρ(At, Ji)ρ(Ji, Ti)
ρ(Bt, Ti) + ρ(At, Ji)

+ qρ(At, Bt) + pρ(Ji, Ti) + w(ρ(Bt, Ti) + ρ(At, Ji))])

= ψ(
m + 2w

m + n + q + p + 2sw
ρ(t, i)),

which implies that ρ(t, i) ≤ m+2w
m+n+q+p+2sw ρ(t, i). Hence, ρ(i, t) = 0, that is i = t. So t is the

unique common fixed point of A, B, J and T.

Example 4. Let G = [0, 2] equipped with ρ(u, v) = (u − v)2, it is obvious that (G, ρ) is a
complete b-metric space respected to s = 2. If Au = 1

16 u, Bu = 1
4 u, Tu = 1

8 u and Ju = 1
2 u,

obviously, A(G) ⊆ J(G), T(G) ⊆ B(G) and J is continuous. Consider a sequence {un} ∈ X
where un = 1

n , n ∈ N, it is obvious that

lim
n→+∞

Jun = lim
n→+∞

Tun = 0,

lim
n→+∞

AJun = lim
n→+∞

BJun = J0,

lim
n→+∞

ATun = lim
n→+∞

BTun = T0,

lim
n→+∞

Aun = lim
n→+∞

Bun = 0,

lim
n→+∞

JAun = lim
n→+∞

TAun = A0,

lim
n→+∞

JBun = lim
n→+∞

TBun = B0.

So (T, J) and (A, B) are S-compatible. Suppose that ψ(t) = 2t and F(r, t) = r, we have

ψ(21+1ρ(Au, Tv)) =
1

32
(u − 2v)2

≤ 1
2
(u − 2v)2

= ψ(ρ(u, v)).

So g satisfies (10) respected to φ ∈ Φu and m = 2, ε = 1, n = q = p = w = 0. By Theorem 2,
then A, B, J and T have a unique common fixed point.

Theorem 3. Let (G, ρ, s) be a complete b-metric space, and (A, B), (J, T) be two pairs of self-
mappings defined on G satisfying

(1) A(G) ⊆ J(G) and T(G) ⊆ B(G);
(2) for all elements u, v ∈ G, L ∈ R, ε, m, n, q, p, w ≥ 0 with m + n + q + p + 2sw > 0,

ψ(s1+ερ(Au, Tv)) ≤ F(ψ(X(u, v)), φ(X(u, v))) + LY′(u, v), (16)
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where X, Y′: G × G → R+ are two mappings satisfying

X(u, v) =
1

m + n + q + p + 2sw

{
mρ(Bu, Jv) + n

ρ(Au, Bu)ρ(Bu, Tv) + ρ(Au, Jv)ρ(Jv, Tv)
ρ(Bu, Tv) + ρ(Au, Jv)

+ qρ(Au, Bu) + pρ(Jv, Tv) + w(ρ(Bu, Tv) + ρ(Au, Jv))
}

and

Y′(u, v) = min{ρ(Au, Bu), ρ(Jv, Tv), ρ(Au, Jv), ρ(Bu, Tv)},

where F ∈ C, L ∈ R, ψ ∈ Ψinf, φ ∈ Φu. Suppose that ρ is continuous. If (J, T), (A, B) are
S-compatible and J is continuous, then A, B, J and T have a unique common fixed point.

Proof. The conclusion follows by the analysis similar to that in the proof of Theorem 2.

Corollary 4. Let (G, ρ, s) be a complete b-metric space, and A, B, T and J be four self-mappings
of defined on G satisfying A(G) ⊆ J(G), T(G) ⊆ B(G) and for all elements u, v ∈ G,
ε, m, n, q, p, w ≥ 0 with m + n + q + p + 2sw > 0,

ψ(s1+ερ(Au, Tv)) ≤ ψ(X(u, v))

where

X(u, v) =
1

m + n + q + p + 2sw

{
mρ(Bu, Jv) + n

ρ(Au, Bu)ρ(Bu, Tv) + ρ(Au, Jv)ρ(Tv, Jv)
ρ(Bu, Tv) + ρ(Au, Jv)

+ qρ(Au, Bu) + pρ(Tv, Jv) + w(ρ(Bu, Tv) + ρ(Au, Jv))
}

,

and ψ ∈ Ψinf. Suppose that ρ is continuous, If (J, T), (A, B) are S-compatible and J is continuous,
then A, B, T and J have a unique common fixed point.

Proof. Common fixed point of mappings A, B, T and J can be obtained just by choosing
F(r, t) = r in Theorem 3.

Corollary 5. Let (G, ρ, s) be a complete b-metric space, and A, B, T and J be four self-mappings of
G satisfying the following

(1) A(G) ⊆ J(G) and T(G) ⊆ B(G);
(2) for all elements u ∈ G, ε, m, n, q, p, w ≥ 0 with m + n + q + p + 2sw > 0,

s1+ερ(Au, Tv)) ≤ k
{

mρ(Bu, Jv) + n
ρ(Au, Bu)ρ(Bu, Tv) + ρ(Au, Jv)ρ(Tv, Jv)

ρ(Bu, Tv) + ρ(Au, Jv)

+ qρ(Au, Bu) + pρ(Tv, Jv) + w(ρ(Bu, Tv) + ρ(Au, Jv))
}

,

where k = 1
m+n+q+p+2sw . Suppose that ρ is continuous. If (J, T), (A, B) are S-compatible and J is

continuous, then A, B, T and J have a unique common fixed point.

Proof. On applying the definition of ψ(t) = t in Corollary 4 and common fixed point of
mappings A, B, T and J can be easily obtained.
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Corollary 6. Let (G, ρ, s) be a complete b-metric space, and let A and B be two self-mappings
defined on G satisfying

(1) A(G) ⊆ B(G);
(2) for all elements u, v ∈ G, ε, m, n, q, p, w ≥ 0 with m + n + q + p + 2sw > 0,

ψ(s1+ερ(Au, Av)) ≤ F(ψ(X(u, v)), φ(X(u, v))),

where X: G × G → R+ is a mapping satisfying

X(u, v) =
1

m + n + q + p + 2sw

{
mρ(Bu, Bv) + n

ρ(Au, Bu)ρ(Bu, Av) + ρ(Au, Bv)ρ(Av, Bv)
ρ(Bu, Av) + ρ(Au, Bv)

+ qρ(Au, Bu) + pρ(Av, Bv) + w(ρ(Bv, Av) + ρ(Au, Bv))
}

,

and F ∈ C, ψ ∈ Ψinf, φ ∈ Φu. Suppose that ρ is continuous. If A and B are continuous, then A
and B have a unique common fixed point.

Proof. The conclusion can be easily deduced from the Corollary 4, instead of considering
the case involving one pair self-mappings A and B defined on G.

4. Existence for a Solution to an Integral Equation

Consider the integral equation

u(t) = p(t) +
∫ T

0
λ(t, r)g(r, u(r))dr, t ∈ [0, T] (17)

where T > 0. The purpose of this section is to give an existence theorem for a solution of
(17) that belongs to G = C(I, R) (the set of continuous real functions defined on I = [0, T],
by using the obtained result in Corollary 3. Obviously, this space with the b-metric given by

ρ(u, v) = max
t∈I

| u(t)− v(t) |p

for all u, v ∈ G is a complete b-metric space with s = 2p−1 and p ≥ 1.
We will consider (17) under the following assumptions:

(i) g, p : [0, T]×R → R are continuous.
(ii) λ : [0, T]×R → [0, ∞) is continuous.
(iii) There exist q > 0, 0 < a < 1

22p−2 such that for all u, v ∈ G,

| g(r, v)− g(r, u) |≤ a
1
p q max

t∈I
{| v − u |}.

(iv) max
t∈I

(
∫ T

0 | λ(t, r) | dr)p ≤ 1
22p−2qp .

Theorem 4. Under assumptions (i)–(iv), (17) has a solution in G, where G = C([0, T],R).

Proof. We define H : G → G by

H(u(t)) = p(t) +
∫ T

0
λ(t, r)g(r, u(r))dr.
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We have

2p−1 | Hu(t)− Hv(t) |p = 2p−1 |
∫ T

0
λ(t, r)[g(r, u(r))− g(r, v(r))]dr |p

≤ 2p−1(
∫ T

0
| λ(t, r)[g(r, u(r))− g(r, v(r))] | dr)p

≤ 2p−1aqp(max
r∈I

| u(r)− v(r) |)p(
∫ T

0
| λ(t, r) | dr)p

≤ 2p−1qpaρ(u, v)
1

22p−2qp

=
1

2p−1 aρ(u, v)

Thus, from Corollary 3, by taking ε = 1, we deduce the existence of u ∈ G such that
u = H(u).

5. Conclusions

This paper proposes a novel form of hybrid rational contraction in b-metric spaces
and establishes the corresponding fixed point results. Additionally, the concept of S-
compatibility is introduced to establish a common fixed point theorem for two pairs of
self-mappings in b-metric spaces. Furthermore, the application of these main results to
integral equations is explored to demonstrate the existence of solutions. Additionally,
potential future research directions are suggested, including: (i) modifying or altering
certain conditions in the main theorems, (ii) extending the results to other metric spaces such
as fuzzy metric space [43], (iii) considering the uniqueness of solutions to integral equations,
(iv) utilizing the main results and techniques to solve fractional differential equations [44,45],
and (v) investigating common fixed points of more than four self-mappings, such as six or
eight self-mappings. Especially, the possibility of obtaining five or seven self-mappings is
also raised.
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