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Abstract: Nonstationary fuzzy inference systems (NFIS) are able to tackle uncertainties and avoid
the difficulty of type-reduction operation. Combining NFIS and neural network, a first-order sparse
TSK nonstationary fuzzy neural network (SNFNN-1) is proposed in this paper to improve the
interpretability/translatability of neural networks and the self-learning ability of fuzzy rules/sets.
The whole architecture of SNFNN-1 can be considered as an integrated model of multiple sub-
networks with a variation in center, variation in width or variation in noise. Thus, it is able to model
both “intraexpert” and “interexpert” variability. There are two techniques adopted in this network:
the Mean Shift-based fuzzy partition and the Group Lasso-based rule selection, which can adaptively
generate a suitable number of clusters and select important fuzzy rules, respectively. Quantitative
experiments on six UCI datasets demonstrate the effectiveness and robustness of the proposed model.

Keywords: nonstationary neuro-fuzzy network; mean shift; group lasso; rule reduction

MSC: 68T07; 94D05; 68T27; 03B52; 68T05

1. Introduction

As a flexible, interpretable machine learning model, fuzzy neural networks (FNNs)
have been widely used in various fields, such as image processing [1], fuzzy control [2,3],
ranking challenges, risks and threats [4], actual classification and prediction [5–8], and so
on. One of the most commonly used FNN structures is the Takagi-Sugeno-Kang (TSK) [9]
fuzzy system, also called TSK neuro-fuzzy system because it can be represented as a neural
network [10–12]. The most famous TSK neuro-fuzzy system is the adaptive-network-based
fuzzy inference system (ANFIS) [10], which can be regarded as a first-order type-1 TSK
FNN. This kind of first-order type-1 TSK FNN can bridge the gap between the linguistic
and numerical representation of knowledge. Its fuzzy logic component provides a linguistic
representation of knowledge, whereas the neural network component provides a numerical
representation. Thus, it is a powerful tool that can address practical and theoretical gaps
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in modeling complex systems. Its ability to handle uncertain and imprecise data, provide
interpretable rules, and perform online learning make it useful in various applications.

The training of FNNs is a necessary work. There are many existing training algorithms,
such as backpropagation [5], particle swarm algorithm [13], hybrid algorithm [14] and
so on [15]. Although evolutionary algorithms and hybrid-type algorithms work well,
they require considerable running time. As an efficient and commonly used algorithm,
the backpropagation algorithm has become a common scheme to optimize TSK FNNs.
Many convergence results of gradient-based backpropagation algorithms [16,17] in FNNs
provide theoretical guarantees for a wide range of applications of this algorithm. Hence, the
gradient-based backpropagation algorithm is used in this paper to train the FNN model.

For fuzzy neural networks (FNNs), the fuzzy partition of input space is an important
task in structure recognition, which affects the number of generated fuzzy rules (FRs).
There are two typical partitioning methods: grid-type partition [10] and clustering-based
partition [17–20]. The grid-type partition partitions the input space into multiple grids.
Each grid represents a FR. It is simple but leads to the generation of rules that increase
dramatically with the number of dimensions. Compared to the grid-type partitioning
method, the clustering-based partition reduces the number of FRs yielded. It clusters
input training vectors into input space to provide more flexible partitioning. To make the
meaning of each clustering center and the matching fuzzy term of each input transparent to
their users, the formed clusters can be projected onto each dimension of the input space. On
each dimension, one input variable corresponds to a mapping membership function (MF),
and one cluster can be represented by the product of mapping MFs. The clustering-based
partition commonly uses K-means or fuzzy c-means as the clustering algorithm. They
need to set the number of clusters in advance, which is usually equal to the number of
classes, making the generated fuzzy rule base not expressive enough. If the right number
of clusters is chosen, the clustering-based partition can greatly improve the performance of
FNNs. Therefore, it is an important and significant work for FNNs to adaptively generate
suitable clusters and then gain a rich fuzzy rule base.

Redundancy inevitably occurs when enough FRs are yielded in a rich fuzzy rule
base. The interpretability of FNNs is mainly reflected in the fuzzy rule base, which is a
collection of FRs in the form of IF-THEN statements. Since too many rules will weaken
the interpretability of FNNs, a reduction in the number of rules is necessary and mean-
ingful. In order to reduce the number of FRs, various methods have been proposed,
such as direct extraction techniques from numerical data [21,22], genetic algorithm-based
approaches [23,24], and embedded neuro-fuzzy approaches [5,25–27]. Among these meth-
ods, the embedded neuro-fuzzy approaches simultaneously perform the rule extraction
and evaluation of the model, enhancing the effectiveness and reducing the computational
burden. In [5,27], the gate functions are introduced and embedded into the neuro-fuzzy
models for fuzzy rule selection, which is an effective method. However, they require the
introduction of the additional functions. In this paper, we attempt to explore another
method without introducing an additional function to perform embedded rule selection.

The FNNs mentioned above are based upon type-1 fuzzy sets (FSs), which are precise.
Thus, these type-1 FNNs struggle to tackle the uncertainty of rules. To tackle uncertainties
(such as noise measurements, semantics variations, and so on), the type-2 FNNs are pre-
sented [28] and have excellent performance [29–31]. Unfortunately, due to type-reduction
procedure (such as Karnik-Mendel iteration [32]) from type-2 to type-1, significant addi-
tional computational costs will incur for type-2 FNNs. Moreover, the type-2 fuzzy sets
cannot capture the notion of variability, nor to model the variation (over time) in the
opinions of individual experts and expert groups, called “intraexpert” and “interexpert”
variability [33], respectively. To address the problems of the type-2 FSs, the notion of nonsta-
tionary FSs (called NFSs) are introduced in [33], as well as the nonstationary fuzzy inference
systems (NFISs). Different from type-2 FSs, a NFS can actually be viewed as a collection
of multiple type-1 fuzzy sets yielded by the perturbation MFs without secondary MFs.
Therefore, the NFIS has a fundamentally different inference mechanism than the type-2
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fuzzy inference system. Combining neural networks with NFIS, a zero-order nonstationary
FNN (NFNN-0) is presented in [17], which can directly address the uncertainties and model
the “intraexpert” and “interexpert” variability. These previous works have demonstrated
the validity and strong robustness of NFS and nonstationary FNN. However, the nonlinear
mapping ability of NFNN-0 is weak due to the use of zero-order, so improving its nonlinear
representation ability is also a valuable work.

In this paper, based on the Mean Shift algorithm and the Group Lasso regularization,
a first-order sparse TSK nonstationary fuzzy neural network is proposed. It combines
the learning strategy of a neural network with the logical inference ability and language
expression ability of first-order NFIS, making the neural network interpretable/translatable
and realizing the self-learning of fuzzy rules/sets. It does not need to face the difficulty that
type-2 fuzzy inference mechanism needs to perform type-reduction procedures, because it
is actually a repetition of a first-order type-1 FNN with slightly different MFs over time.
Like NFNN-0, the proposed model can also model the “intraexpert” and “interexpert”
variability as well as directly deal with the uncertainties. The main contributions of this
paper are summarized as follows:

(i) To improve the nonlinear representation ability of NFNN-0, we extend the nonsta-
tionary fuzzy neural network from zero-order to first-order, and propose a first-order
sparse TSK nonstationary fuzzy neural network, called SNFNN-1. SNFNN-1 can
significantly improve the performance of NFNN-0. Simulation experiments confirm
the effectiveness and robustness of our model.

(ii) To adaptively generate a suitable number of clusters and FRs, the Mean Shift algorithm
is used to partition the input space and construct the antecedent structure of our
SNFNN-1 model. Compared with fuzzy partition based on K-means clustering or
fuzzy c-means clustering, this fuzzy partition method does not need to set the number
of clusters in advance and can provide more effective centers as well as the number of
MFs. With the gained MFs, a rich fuzzy rule base is subsequently generated.

(iii) Considering the redundancy among rules of the rich fuzzy rule base, we add a regu-
larization term, i.e., Group Lasso term, to the objective function to penalize each rule,
thus producing sparsity of rules in a grouped manner. Then, in the rule-consequent
structure of SNFNN-1, combined with a rule selection method, the important rules
are retained and the useless or inappropriate rules are deleted, so as to achieve the
purpose of rule reduction.

The rest of the research content is arranged as follows. Section 2 describes the ar-
chitecture of our proposed SNFNN-1 model. In Section 3, supporting experiments are
implemented. Section 4 draws the conclusions and outlines directions for future work.

2. First-Order Sparse TSK Nonstationary Fuzzy Neural Network (SNFNN-1)

In this section, we elaborate on the construction of the first-order sparse TSK nonsta-
tionary fuzzy neural network, namely SNFNN-1. There is no need to preset the number
of clusters in the fuzzy partition of our model due to the use of the Mean Shift algorithm.
Additionally, rule selection is achieved by adding a Group Lasso regularization to the
objective function.

Assume that X = [x1, . . . , xi, . . . , xn]
⊤ ∈ Rn ×RD is the sample set, and o = [o1, o2, . . . , on]⊤

is the corresponding desired outputs, where xi = [xi1, xi2, . . . , xiD]
⊤ is the i-th sample, D is

the number of input dimensions, and n is the number of samples.
Before constructing our model, the number of clusters needs to be determined via the

Mean Shift algorithm, as well as the corresponding centers and standard deviations. The
following is the specific method. Giving a bandwidth value h, take an unlabeled sample as
a cluster center x̂0, and then update this center by

x̂m+1 =
∑n

i=1 xigpG

(∥∥∥ x̂m−xi
h

∥∥∥)
∑n

i=1 gpG

(∥∥∥ x̂m−xi
h

∥∥∥) , (1)
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where m = 0, 1, 2, . . . is the m-th iteration. Mark all samples that were once within the
bandwidth until it converges. Then, we can gain a clustering center c1. Repeat the above
operation until all sample points are labeled. Eventually, we can obtain an adaptive
number of clusters, S, as well as S clustering centers {cs}S

s=1 and a clustering sample set
C = {C1,C2, . . . ,CS}. According to [34], each standard deviation is calculated by

σsd =

√√√√ ∑
xi∈Cs

(xid − csd)
2

nsd
, (2)

where d = 1, 2, . . . , D, and s = 1, 2, . . . , S.
For brevity, the structure of a multi-input-single-output SNFNN-1 is constructed, as

shown in Figure 1. It is easily extended to the case of multiple outputs. Actually, the
proposed SNFNN-1 can be considered as an integrated network of T sub-networks, where
T means the repetitions with variation in center/width or noise [33]. In this paper, the
variation in center is taken as an example. Each sub-network is a first-order type-1 FNN
based on the Mean Shift algorithm and the Group Lasso, abbreviated as SFNN-1.
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Figure 1. Structure of the SNFNN-1 model.

In the FNNs with the clustering-based fuzzy partition, the number of fuzzy rules
are commonly the same with the number of clusters, that is, R = S. For an input vector
xi (i ∈ 1, 2, . . . , n), each first-order type-1 fuzzy rule of the t-th SFNN-1 is defined as:

Rt
r : IF xi1 is At

r1 and xi2 is At
r2 and . . . and xiD is At

rD

THEN : zt
r(xi) =

(
vt

r
)⊤x̃i,

where r (r = 1, 2, . . . , R) means the r-th rule, and R represents the total number of rules.
t (t = 1, 2, . . . , T) is the t-th sub-network (i.e., SFNN-1). At

rd is the fuzzy set associated
with d-th feature in the r-th rule of t-th sub-network, whose membership function contains
triangular, trapezoidal, Gaussian functions, and so on. In this paper, the widely used
Gaussian functions are adopted. The clustering centers generated by the Mean Shift
algorithm and the corresponding standard deviations are regarded as the centers and
widths of membership functions, respectively. vt

r = [vt
r0, vt

r1, . . . , vt
rD]

⊤ is the consequent
parameter vector of r-th rule, and Vt = [vt

1, vt
2, . . . , vt

R]
⊤ is all consequent parameters.

x̃i = [1; xi] indicates the (1 + D)× 1 dimensional vector.
A simple SNFNN-1 model owns seven layers and the detailed presentation of each

layer is as follows:
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Layer 1 (Input layer): each node indicates an input variable (crisp variable) in this
layer. Then all input variables are fed to the next layer.

Layer 2 (Membership/Fuzzification layer): in this layer, the Gaussian membership
functions (GMFs) are adopted to produce the membership degrees of the input variables.
In order to avoid the derivation of the denominator, reduce the amount of calculation and
the difficulty of theoretical analysis, we take the reciprocals of the widths of GMFs as the
independent variables, referring to [16]. Hence, each membership value with variation in
center is defined as

µAt
rd
(xid) = e−

1
2 (xid−ct

rd)
2
(bt

rd)
2
, (3)

where t = 1, 2, . . . , T, r = 1, 2, . . . , R, d = 1, 2, . . . , D, and xid is the input variable of i-th
sample on the d-th dimension. ct

rd = c̃rd + κ sin(ω(t − 1) + θ) means the center yielded by
the perturbation function [33] for t-th SFNN-1, where c̃rd is the benchmark center. κ, ω and
θ denote three hyper-parameters used to cause tiny periodic perturbations in center for
simulating the variation in opinions of expert groups. bt

rd = b̃rd is the reciprocal of width
without variation, where b̃rd means the benchmark reciprocal of width. Figure 2 shows an
instantiation of nonstationary fuzzy set (NFS) based on Gaussian functions with t = 1 : 30,
xid = −10 : 10, c̃rd = 0, κ = 0.8, ω = 1, θ = 0 and σ̃rd = 2.5.

-10 -5 0 5 10

xid

0

0.2

0.4

0.6

0.8

1

7

Figure 2. An instantiation of NFS based on Gaussian functions with variation in center.

Layer 3 (Rule layer): each node of this layer is a rule node indicating a term of a fuzzy
rule. For the r-th rule of the t-th SFNN-1, the firing strength based on the product T-norm
is calculated by:

f t
r (xi) =

D

∏
d=1

µAt
rd
(xid). (4)

Layer 4 (Normalization layer): for each rule, the normalized firing strength is calcu-
lated in this layer. The corresponding strength of the r-th rule in the t-th SFNN-1, f̄ t

r (xi), is
given as

f̄ t
r (xi) =

f t
r (xi)

∑R
k=1 f t

k(xi)
. (5)

Layer 5 (Defuzzification layer): the defuzzification operation is applied in this layer. It
multiplies each output conclusion in the first-order fuzzy rule with each normalized firing
strength. The output of the r-th node in the t-th SFNN-1 is f̄ t

r (xi)zt
r, where zt

r is called the
consequent parameter of the r-th rule in the t-th SFNN-1.

Layer 6 (Summation layer): by summing the outputs of Layer 5, the actual output of
each SFNN-1 is yielded in this layer:

yt
i =

R

∑
r=1

f̄ t
r (xi)zt

r. (6)
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Layer 7 (Output/Integration layer): through ensemble learning (such as an averaging
or voting mechanism), this layer synthetically considers all outputs of T sub-networks.
Due to the various centers of the GMFs over time, the SNFNN-1 is in fact a set of shifts
of type-1 SFNN-1.

Remark 1. The constructed nonstationary seven-layer network can be regarded as a special kind of
ensemble network. Thus, it performs better than a simple type-1 FNN, especially for robustness, as
illustrated by the experiments of Section 3.3.

To realize the rule selection (RS), the Group Lasso regularization is added to the
objective function. Compared with other Lasso regularization [35–37], it can induce row or
column sparsity, thus producing sparsity of rules in a grouped manner, which provides
the possibility for rule selection [38]. Therefore, the following objective function of each
SFNN-1 contains two parts, that is, the mean square error (MSE) and the Group Lasso
penalty term:

E(wt) =
1
2

n

∑
i=1

(yt
i − oi)

2 + λ
R

∑
r=1

∥∥vt
r
∥∥

2, (7)

where wt =
[
ct

1; . . . ; ct
R; bt

1; . . . ; bt
R; vt

1; . . . ; vt
R
]

is the weight vector containing all parame-

ters, ct
r =

[
ct

r1, . . . , ct
rD
]⊤, bt

r =
[
bt

r1, . . . , bt
rD
]⊤, vt

r = [vt
r0, vt

r1, . . . , vt
rD]

⊤, r = 1, . . . , R, and λ
is the hyper-parameters of the penalty term.

The gradients of Equation (7) with respect to wt are calculated by

∂E(wt)

∂wt =

(
∂E(wt)

∂ct
11

, . . . ,
∂E(wt)

∂ct
RD

,
∂E(wt)

∂bt
11

, . . . ,
∂E(wt)

∂bt
RD

,
∂E(wt)

∂vt
10

, . . . ,
∂E(wt)

∂vt
RD

)T

, (8)

where
∂E(wt)

∂ct
rd

=
n

∑
i=1

(yt
i − oi)

(
zt

r − yt
i
)

f̄ t
r (xi)

(
xid − ct

rd
)(

bt
rd
)2, (9)

∂E(wt)

∂bt
rd

= −
n

∑
i=1

(yt
i − oi)

(
zt

r − yt
i
)

f̄ t
r (xi)

(
xid − ct

rd
)2(bt

rd
)
, (10)

∂E(wt)

∂vt
r0

=
n

∑
i=1

(yt
i − oi) f̄ t

r (xi) + λ
vt

r0
∥vt

r∥2
, (11)

∂E(wt)

∂vt
rd

=
n

∑
i=1

(yt
i − oi) f̄ t

r (xi)xid + λ
vt

rd
∥vt

r∥2
, (12)

and r = 1, . . . , R, d = 1, . . . , D.
For an initial weight vector wt,(0), the updating formula of SNFNN-1 based on the

typical gradient descent method is as follows:

wt,(m+1) = wt,(m) − η
∂E(wt,(m))

∂wt,(m)
, (13)

where m = 0, 1, 2, . . . is the m-th iteration, and η > 0 is the learning rate.
To select the appropriate rules, we introduce a threshold ζ. The rules are selected in

the following way:
Cond.RS : I f

(
||vt

r||2 ≥ τ
)
,

then (the r-th rule is retained).
(14)

where
τ = min{||vt

r||2}+ ζ
(
max{||vt

r||2} − min{||vt
r||2}

)
. (15)

To concisely construct the SNFNN model, we train a SFNN network in advance according
to the above update method and rule selection method. Use this trained network as the
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baseline network to generate T sub-networks according to the perturbation function, taking
the variation in center as an example in this paper. Then, fine-tune the consequent parameters
of each sub-network, while the centers and the reciprocals of widths are not retrained. Finally,
we gain the outputs of all sub-networks, and then comprehensively consider all these outputs
to yield the final output. Algorithm 1 summarizes the training procedure of SNFNN-1. Note
that the fine-tuning process of Step 12 can be parallelized to save time.

Algorithm 1 Training procedure of SNFNN-1

Input: The training sample set X and its labels o, the bandwidth h of Mean Shift algorithm,
the initial consequence parameters V(0), the learning rate η, the penalty parameter λ,
the maximum iterations M and the stop threshold Θ for the model to converge, the
hyper-parameter ζ for rule selection, the hyper-parameters of periodic perturbation
function T, κ, ω and θ.

Output: The SNFNN-1 model and final results
1: Adopt the Mean Shift algorithm to partition the input space and generate S cluster

centers as the initial centers of membership functions, {c(0)r }R
r=1, where R = S.

2: Calculate all widths {σr}R
r=1 via Equation (2), where σr = [σr1, . . . , σrD]

⊤. Then gain the

initial reciprocals of widths {b(0)
r }R

r=1, where b(0)
r = σ

(0)
r

3: Define the initial weight vector w(0), including all initial centers {c(0)r }R
r=1, reciprocals

of widths {b(0)
r }R

r=1 and consequent parameters V(0).
4: Calculate the outputs of each layer of a SFNN-1 sub-network in turn by using Equations

(3)–(6). Here, we can think of t = 1.
5: According to Equation (7), calculate the objective function of this SFNN-1.
6: Train this model based on the gradient descent method (13) until it converges.
7: By (15), calculate the thresholds τ. Use the Cond.RS (14) to select the important rules.
8: Retrain the SFNN-1 by using the selected rules until it converges.
9: Use this retrained SFNN-1 as the benchmark sub-network of SNFNN-1. The retrained

centers and reciprocals of widths of this base model are regarded as the benchmark

centers {c̃sdd}d=1:D
r=1:R and benchmark reciprocal of widths

{
b̃rd
}d=1:D

r=1:R , respectively. The
retrained consequent parameters is denoted by V.

10: By Equation (3), we get T nonstationary MFs of SNFNN-1. Here, the perturbation
function adopts the variation in center [33] to generate T various centers and T iden-
tical reciprocals of widths, separately denoted as {ct

rd}
d=1:D
r=1:R and

{
bt

rd
}d=1:D

r=1:R , where
t = 1, 2, . . . , T.

11: Let Vt = V, where t = 1, 2, . . . , T. Then, according to the T nonstationary MFs and Vt,
construct the whole SNFNN-1 model, which owns T SFNN-1 sub-networks. For various
sub-networks of SNFNN-1, calculate their outputs of each layer based on the various
centers, the identical reciprocals of widths and the identical consequent parameters.

12: For each SFNN-1 sub-network, only fine-tune the consequent parameters Vt by using
the gradient descent method, while the centers and widths are no longer trained.

13: Via the ensemble learning, generate the final result of SNFNN-1 after comprehensively
considering all outputs of T sub-networks.

14: Return the whole SNFNN-1 model and its final results.

3. Comparative Results and Analysis

To illustrate the superiority of SNFNN-1, we conduct experiments on six commonly
used UCI datasets. For fairness, the first-order MGNF [16] and the NFNN-FCMnet-GD [17]
serve as the comparison algorithms. The NFNN-FCMnet-GD is a zero-order nonstationary
FNN (NFNN-0) with fuzzy c-means network-based fuzzy partition and typical gradient
descent method. The experiments are conducted in PyTorch 3.9.13 framework on an Intel
i5, 2.80 GHz CPU with 8.00 GB RAM.
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3.1. Datasets and Experimental Settings

The UCI datasets used in this paper are downloaded from [39]. Their specific informa-
tion is detailed in Table 1, including the number of samples, dimensions and classes. Before
training, all sample inputs are normalized by z-score normalization [40] with a standard
deviation of 1 and a mean of 0.

Table 1. Description of the datasets.

Datasets Samples Dimensions Classes

Iris 150 4 3
Balance 625 4 3

Liver 345 6 2
Vertebral 310 6 3

Glass 214 9 6
Vehicle 846 18 4

In the experiments, we employ 10-fold cross-validation [5,38] to reduce the impact of
initial settings when dividing the training and testing sets. Here, the specific approach of
10-fold cross-validation is to divide the data set into 10 parts as evenly as possible, select one
part in turn as the testing set, and the other nine parts as the training set, thus performing
10 training and testing runs. Finally, the results of 10 times are averaged to eliminate the
adverse effects caused by the unbalanced data division in a single division and avoid
over-fitting. The consequent parameters V(0) are initialized to 10−8. Through grid search,
the suitable bandwidth value h of the Mean Shift algorithm and penalty parameter λ of the
objective function are set for each dataset. The setting of learning rate η references [41] to
make the curves of objective function non-oscillatory. The maximum iterations M is set to
be 1000 and the stop threshold Θ is 10−20 for the convergence. The hyper-parameter ζ of
rule selection is set to be 0.1. The hyper-parameters of periodic perturbation function T, κ,
ω and θ are set to be 30, 0.1, 0.3 and 0, respectively.

3.2. Competitive Performance of SFNN-1 and SNFNN-1

This section evaluates the performance results of SFNN-1 as well as SNFNN-1 on the
above six datasets.

To show the effect of Group Lasso in Equation (7), for different datasets, the variation
trend of L2-norm of each rule is drawn in Figure 3. For a clear view, we only draw the
experimental results of a single training run on each dataset. It can be seen from Figure 3 that
the Group Lasso regularization is able to effectively separate important and unimportant
fuzzy rules. Then, we can select the useful fuzzy rules combining the rule selection (RS)
method (14) to reconstruct a concise SFNN-1 model and fine-tune it.
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Figure 3. L2-norm curves of fuzzy rules of a single training run for SFNN-1 on different datasets
(each curve represents a fuzzy rule): (a) Iris. (b) Balance. (c) Liver. (d) Vertebral. (e) Glass (there are
too many legends to display). (f) Vehicle.

To illustrate the effectiveness of RS, we present the comparison results between SFNN-1
without RS and SFNN-1, as shown in Table 2. These results are the average of 10-fold cross-
validation. In Table 2, the average number of fuzzy rules for each SFNN-1 sub-network, the
average training accuracy and the average testing accuracy (abbreviated to R̄, TrAcc and TeAcc,
respectively) are computed as the evaluation metrics. Specifically, R̄ represents the average
number of fuzzy rules obtained by running the model 10 times. TrAcc and TeAcc separately
represent the average training accuracy and testing accuracy of 10 runs, where the training or
testing accuracy for a single run is the fraction of training or test sample points that are correctly
classified (the model output is consistent with the true class label) in the total training or test
sample points. The standard deviation is provided within parentheses.

Table 2. Performance results of SFNN-1.

Datasets SFNN-1 without RS * SFNN-1 *
R̄ TrAcc TeAcc R̄ TrAcc TeAcc

Iris 3.9 0.9733
(±0.0052)

0.9733
(±0.0466) 2.0 0.9844

(±0.0042)
0.9800

(±0.0322)

Balance 6.0 0.9102
(±0.0094)

0.9041
(±0.0550) 3.3 0.9346

(±0.0205)
0.9279

(±0.0455)

Liver 4.8 0.7713
(±0.0106)

0.7105
(±0.0803) 2.0 0.7488

(±0.0144)
0.7250

(±0.0493)

Vertebral 6.9 0.8789
(±0.0089)

0.8613
(±0.0664) 2.9 0.8860

(±0.0109)
0.8645

(±0.0677)

Glass 27.1 0.7663
(±0.0196)

0.6714
(±0.1341) 5.9 0.7892

(±0.0265)
0.6950

(±0.1154)

Vehicle 10.4 0.8345
(±0.0053)

0.8003
(±0.0266) 3.9 0.8399

(±0.0047)
0.8108

(±0.0302)
* Bold indicates the better one among the comparison results of the two algorithms.
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From Table 2, we can observe that the performance of SFNN-1 yields higher TrAcc
and TeAcc with a smaller number of fuzzy rules compared to the SFNN-1 without RS on
all datasets. This reveals the effectiveness of our rule selection.

Moreover, taking the Iris dataset as an example, we give the detailed information
about consequent parameters of the proposed SFNN-1 after a single training run. Here, we
can think of t = 1. The number of rules after adopting the RS method is two. Due to the
multi-outputs (i.e., three label classes) of Iris, the consequent parameters can be expressed
as a three-dimensional tensor as follows:

(V1)⊤ = [[[−0.0193, 0.0007, 0.0062, 0.0206, 0.0007],

[1.2925, 0.1781, 0.1137,−0.7817,−0.4882],

[−0.2616,−0.1785,−0.1226, 0.7487, 0.4868]],

[[0.5076,−0.0070, 0.0185,−0.2632,−0.1031],

[−0.0377,−0.0075,−0.0002,−0.0030,−0.0099],

[0.2319, 0.0127,−0.0131, 0.0945, 0.0592]]].

(16)

The consequent output is expressed by a matrix Z1 and its all elements are given as follows:

z1
11(xi) = −0.0193 + 0.0007xi1 + 0.0062xi2 + 0.0206xi3 + 0.0007xi4,

z1
12(xi) = 1.2925 + 0.1781xi1 + 0.1137xi2 − 0.7817xi3 − 0.4882xi4,

z1
13(xi) = −0.2616 − 0.1785xi1 − 0.1226xi2 + 0.7487xi3 + 0.4868xi4,

z1
21(xi) = 0.5076 − 0.0070xi1 + 0.0185xi2 − 0.2632xi3 − 0.1031xi4,

z1
22(xi) = −0.0377 − 0.0075xi1 − 0.0002xi2 − 0.0030xi3 − 0.0099xi4,

z1
23(xi) = 0.2319 + 0.0127xi1 − 0.0131xi2 + 0.0945xi3 + 0.0592xi4.

(17)

Given a test sample xj = [−1.7489,−0.3564,−1.3413,−1.3130]⊤ whose label class is 1,
the normalized firing strength calculated from the antecedent of SFNN-1 is that f̄1(xj) =

[ f̄ 1
1 (xj); f̄ 1

2 (xj)] = [0.0033; 0.6529]. And we can gain that Z1 = [−0.0513, 2.6301,−1.5492;
1.0016,−0.0076, 0.0099]. Then, according to Equation (6), we can calculate the final output
of SFNN-1 as follows:

y1
j = [

2

∑
r=1

f̄ 1
r (xj)z1

r1;
2

∑
r=1

f̄ 1
r (xj)z1

r2;
2

∑
r=1

f̄ 1
r (xj)z1

r3]

= [0.9962; 0.0059; 0.0019].

(18)

The index of the occurrence of the largest element in y1
j is taken as the output category of the

model with respect to the test sample xj. Thus, the category is 1, which is consistent with
the actual label class. These analyses illustrate the validity of the consequent parameters
after rule selection.

To show the competitive performance of SNFNN-1, we compare the results of SFNN-1 and
SNFNN-1 on different datasets, as shown in Table 3. Compared with SFNN-1, we can see that
SNFNN-1 has the same or better performance (i.e., same or higher TrAcc and TeAcc) on all datasets.

Table 3. Performance results of SNFNN-1.

Datasets SFNN-1 * SNFNN-1 *
TrAcc TeAcc TrAcc TeAcc

Iris 0.9844 (±0.0042) 0.9800 (±0.0322) 0.9844 (±0.0042) 0.9800 (±0.0322)
Balance 0.9346 (±0.0205) 0.9279 (±0.0455) 0.9467 (±0.0241) 0.9391 (±0.0471)

Liver 0.7488 (±0.0144) 0.7250 (±0.0493) 0.7491 (±0.0148) 0.7250 (±0.0493)
Vertebral 0.8860 (±0.0109) 0.8645 (±0.0677) 0.8867 (±0.0116) 0.8677 (±0.0704)

Glass 0.7892 (±0.0265) 0.6950 (±0.1154) 0.7944 (±0.0272) 0.6950 (±0.1238)
Vehicle 0.8399 (±0.0047) 0.8108 (±0.0302) 0.8427 (±0.0074) 0.8155 (±0.0310)

* Bold indicates the better one among the comparison results of the two algorithms.
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3.3. Robustness of SNFNN-1

To further indicate the superiority of SNFNN-1, we add the Gaussian noise to the
centers, reciprocals of widths and consequence parameters, abbreviated as C-noise, W-noise
and Co-noise, respectively. Let N-noise denote the case without noise.

Figure 4 shows the robustness comparison between SFNN-1 and SNFNN-1. For
obvious contrast, the means of the used Gaussian noises are all set to be 0, but the standard
deviations are set differently for various datasets, whose values are described in the caption
of Figure 4. From Figure 4, we can see that our SNFNN-1 owns a more stable performance
than SFNN-1 on all datasets, which reveals the strong robustness of SNFNN-1.
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Figure 4. Robustness comparison (box plot) between SFNN-1 and SNFNN-1 on different datasets
(in parentheses is the standard deviation of C-noise, W-noise and Co-noise): (a) Iris (1.2; 1.2; 0.3).
(b) Balance (0.6; 0.6; 0.4). (c) Liver (0.8; 0.8; 0.4). (d) Vertebral (0.8; 0.8; 0.2). (e) Glass (0.6; 0.6; 0.1).
(f) Vehicle (1.2; 1.2; 0.1).
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3.4. Comparison with Other Algorithms

In this subsection, we compare our proposed models (SFNN-1 and SNFNN-1) with two
other related advanced algorithms (first-order MGNF [16] and NFNN-FCMnet-GD [17]).
The respective comparison results of single networks (first-order MGNF and SFNN-1) and
nonstationary networks (NFNN-FCMnet-GD and SNFNN-1) are shown in Tables 4 and 5.
Note that the results of NFNN-FCMnet-GD in Table 5 are directly taken from [17].

Table 4. Comparison between first-order MGNF and SFNN-1.

Datasets First-Order MGNF [16] * SFNN-1 *
R̄ TeAcc R̄ TeAcc

Iris 3.0 0.9600 (±0.0466) 2.0 0.9800 (±0.0322)
Balance 3.0 0.9230 (±0.0365) 3.3 0.9279 (±0.0455)

Liver 2.0 0.7015 (±0.0681) 2.0 0.7250 (±0.0493)
Vertebral 3.0 0.8613 (±0.0681) 2.9 0.8645 (±0.0677)

Glass 6.0 0.6916 (±0.0837) 5.9 0.6950 (±0.1154)
Vehicle 4.0 0.8049 (±0.0359) 3.9 0.8108 (±0.0302)

* Bold indicates the better one among the comparison results of the two algorithms.

Table 5. Comparison between NFNN-FCMnet-GD and SNFNN-1.

Datasets NFNN-FCMnet-GD [17] * SNFNN-1 *
R̄ TeAcc R̄ TeAcc

ine Iris 4.0 0.9703 (±0.0237) 2.0 0.9800 (±0.0322)
Balance 4.0 0.9231 (±0.0171) 3.3 0.9391 (±0.0471)

Liver 3.0 0.7128 (±0.0384) 2.0 0.7250 (±0.0493)
Vertebral 4.0 0.8377 (±0.0502) 2.9 0.8677 (±0.0704)

Glass 7.0 0.6774 (±0.0662) 5.9 0.6950 (±0.1238)
Vehicle 5.0 0.7171 (±0.0376) 3.9 0.8155 (±0.0310)

* Bold indicates the better one among the comparison results of the two algorithms.

From Table 4, we can observe that our SFNN-1 shows higher TeAcc with similar or
fewer fuzzy rules than its comparison on all datasets, which illustrates the superiority of
SFNN-1. From Table 5, it can be seen that our SNFNN-1 wins NFNN-FCMnet-GD in terms
of both R̄ and TeAcc on all datasets. These results also illustrate the effectiveness of using
Group Lasso for rule selection from the side.

4. Conclusions and Future Work

In this paper, we propose a first-order sparse TSK nonstationary fuzzy neural network,
abbreviated as SNFNN-1, based on the Mean Shift-based fuzzy partition and the Group
Lasso regularization. It makes the neural network more interpretable/translatable and
improves the self-learning of fuzzy rules/sets. Compared with the zero-order nonstationary
fuzzy neural network, SNFNN-1 has stronger nonlinear representation ability. In addition,
to optimize the structure of SNFNN-1, it employs two techniques: the Mean Shift-based
fuzzy partition and the rule selection method based on Group Lasso. The used Mean
Shift-based fuzzy partition is able to adaptively yield a appropriate number of clusters and
a rich fuzzy rule base, while the proposed rule selection method based on Group Lasso
can remove redundant or useless rules and simplify the network structure. The whole
architecture of SNFNN-1 can be seen as an integrated model of multiple sub-networks
with variation in center, width or noise. Each sub-network is a first-order sparse TSK fuzzy
neural network. Our SNFNN-1 generates first-order nonstationary fuzzy sets, which is
able to deal with uncertainties and does not face the difficulties of type-reduction operation
from type-2 to type-1 as the type-2 fuzzy inference mechanisms does. Moreover, the
proposed SNFNN-1 can model the “intraexpert” variability and “interexpert” variability.
Quantitative simulations support the efficiency of the proposed models.

In the future work, it is necessary to further discuss the differences and connections among
nonstationary fuzzy sets, type-1 fuzzy sets and type-2 fuzzy sets, and to really use them to
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solve practical industrial problems. In addition, it is well-known that solving high-dimensional
problems is difficult for fuzzy neural networks due to the computational overflow caused by
the product T-norm operator. Therefore, determining how to improve the proposed model and
apply it to solve high-dimensional problems is also an important future work.
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