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Abstract: The paper is devoted to the effect of “stabilization by noise”. The essence of this effect is
that an unstable deterministic system is stabilized by stochastic perturbations of sufficiently high
intensity. The problem is that the effect of “stabilization by noise”, well-known already for more than
50 years for stochastic differential equations, still has no analogue for stochastic difference equations.
Here, a corresponding hypothesis is formulated and discussed, the truth of which is illustrated
and confirmed by numerical simulation of solutions of stochastic linear and nonlinear difference
equations. However, a problem of a formal proof of this hypothesis remains open.
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1. Introduction

The modern theory of stochastic processes, in particular, the theory of stochastic
differential equations, is well developed (see, for instance, the basic books [1–3]). However,
there are some simple formulated problems that have no solutions [4].

Here, the problem of “stabilization by noise” is considered, which is a very important
problem in the theory of stochastic systems. To explain the essence of this problem, consider
for the beginning Ito’s scalar linear stochastic differential Equation [2]

dx(t) = ax(t)dt + σx(t)dw(t), (1)

where a and σ are constants and w(t) is the standard Wiener process.
Let {Ω,F, P} be a basic probability space with the space of events Ω, the σ-algebra F,

the probability P and the expectation E. Consider two following definitions of stability that
are used in the theory of stochastic differential Equations [5,6].

Definition 1. The zero solution of Equation (1) is called stable in probability if for any ε > 0 and
ε1 ∈ (0, 1) there exists a δ > 0 such that the solution x(t) of Equation (1) satisfies the inequality
P{sup

t≥0
|x(t)| > ε} < ε1 for any initial value x(0) such that P{|x(0)| < δ} = 1.

Definition 2. The zero solution of Equation (1) is called:
- mean square stable if for each ε > 0 there exists a δ > 0 such that Ex2(t) < ε, t ≥ 0, for any
initial value x(0) such that Ex2(0) < δ;
- asymptotically mean square stable if it is mean square stable and for each initial value x(0) such
that E|x(0)|2 < ∞ the solution x(t) of Equation (1) satisfies the condition lim

t→∞
Ex2(t) = 0.

With Equation (1) the generator L is connected, defined on twice differentiable function
v(x) and having the form [2]
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Lv(x) = v′(x)ax +
1
2

v′′(x)σ2x2. (2)

Let us formulate two simple Lyapunov type theorems.

Theorem 1. Let there exist a twice differentiable function v(x) and positive constants c1, c2, c3,
satisfying the conditions

c1x2 ≤ v(x) ≤ c2x2, Lv(x) ≤ −c3x2.

The zero solution of Equation (1) is then asymptotically mean square stable.

Theorem 2. Let there exist a nonnegative twice differentiable function v(x), such that only
v(0) = 0 and Lv(x) ≤ 0. Then the zero solution of Equation (1) is stable in probability.

The proofs of these theorems in essentially more general form one can find in [5,6].

Corollary 1. If the condition
2a + σ2 < 0 (3)

holds then the zero solution of Equation (1) is asymptotically mean square stable.

Via (2), (3) and Theorem 1 for the Corollary 1 proof, it is enough to note that for the
Lyapunov function v(x) = x2 and some c > 0 the following condition holds

Lv(x) = 2ax2 + σ2x2 = (2a + σ2)x2 ≤ −cx2.

Note that the condition (3) means a < 0, i.e., the zero solution of the deterministic
equation ẋ(t) = ax(t) is asymptotically stable and for asymptotic mean square stability of
the zero solution of Equation (1) the level of noise |σ| must be small enough.

In contrast to this fact, more than 50 years ago Khasminskii showed [5] that instability
by the conditions a > 0 and σ = 0 the zero solution of Equation (1) becomes stable by the
presence of a noise of a sufficiently large level. More exactly, the following theorem holds.

Theorem 3. By the condition
0 < 2a < σ2 (4)

the so-called “stabilization by noise” occurs and the zero solution of Equation (1) becomes stable
in probability.

Proof. Using (4) and the generator (2) of Equation (1), for the Lyapunov function

v(x) = |x|ν, ν = 1 − 2a
σ2 ∈ (0, 1),

we have
Lv(x) =ν|x|ν−1ax +

1
2

ν(ν − 1)|x|ν−2σ2x2

≤aν|x|ν
(

1 + (ν − 1)
σ2

2a

)
= 0.

Via Theorem 2 from the condition Lv(x) ≤ 0, it follows that the zero solution of Equation (1)
is stable in probability. The proof is completed.

Despite the fact that for stochastic differential equations the effect of stabilization by
noise was established more than 50 years ago (see [5]), a similar statement for stochastic
difference equations has not yet been obtained.
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Below, a hypothesis about stabilization by noise for stochastic difference equations is
considered. This hypothesis is demonstrated and confirmed by numerical simulation of
solutions of linear and nonlinear stochastic difference equations;however, a formal proof of
this hypothesis remains an open problem.

Some Necessary Notations from Probability Theory

Let n ∈ Z
⋃

Z0 be a discrete time, Z = {0, 1, ...}, Z0 = {−1, 0}. Let {Ω,F, P} be a
basic probability space, Fn ∈ F, n ∈ Z, be a nondecreasing family of σ-algebras, E be the
expectation, V be the variance, (ξn)n∈Z be a sequence of Fn-adapted mutually independent
identically distributed random variables such that [7]

Eξn = 0, Eξ2
n = 1, n ∈ Z. (5)

Remark 1. Note that in all examples below for numerical simulation of solutions of the equation
under consideration the random value ξn is used in the form ξn =

√
12(η − 0.5), where η is a

random value uniformly distributed on the interval [0, 1] with Eη = 0.5 and Vη = 1/12. So,
Eξn = 0, Vξn = Eξ2

n = 1.

2. Linear Stochastic Difference Equation
2.1. Hypothesis

Consider now the scalar linear stochastic difference Equation [7]

xn+1 = a1xn + σ1xnξn+1, n ∈ Z, (6)

where a1 and σ1 are constants and ξn is a sequence of mutually independent random
variables with the conditions (5). From (6) and (5) it follows that

Ex2
n+1 = (a2

1 + σ2
1 )Ex2

n, n ∈ Z. (7)

Thus, the zero solution of Equation (6) is asymptotically mean square stable [7] if and
only if

a2
1 + σ2

1 < 1. (8)

As noted in [4], the problem of stabilization by noise for the difference Equation (6) is
now an unsolved problem.

Let us consider an analogue of the condition (4) for the linear stochastic difference
Equation (6) by the condition a1 > 1. For this aim, let us represent the difference analogue
of Equation (1) in the form (6). Let ∆ > 0 be the step of discretization,

tn = n∆, n ∈ Z, xn = x(tn), wn = w(tn).

The difference analogue of Equation (1) then takes the form

xn+1 − xn = axn∆ + σxn(wn+1 − wn). (9)

Note that E(wn+1 − wn)2 = ∆ [2]. So,

ξn+1 =
1√
∆
(wn+1 − wn) (10)

satisfies the conditions (5). Using (10), rewrite (9) as follows:

xn+1 = (1 + a∆)xn + σ
√

∆xnξn+1,

i.e., in the form (6) with the coefficients

a1 = 1 + a∆, σ1 = σ
√

∆. (11)
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From (11) we have

a =
a1 − 1

∆
, σ =

σ1√
∆

,

and via (4) we obtain

0 < 2
a1 − 1

∆
<

σ2
1

∆
,

i.e., the condition
0 < 2(a1 − 1) < σ2

1 . (12)

So, we obtain the following hypothesis, which naturally needs to be proven:

Hypothesis 1. If the condition (12) holds then the zero solution of Equation (6) is stable in probability.

2.2. Numerical Simulation

To illustrate Hypothesis 1, consider Equation (6) with a1 = 1.05, x0 = 0.2. In Figures 1–3,
100 trajectories (blue) of the solution of Equation (6) are shown, respectively, with σ1 = 0.2,
σ1 = 0.3 and σ1 = 0.4. The red line corresponds to the deterministic case σ1 = 0.

Figure 1. 100 trajectories (blue) of the solution xi of Equation (6) with a1 = 1.05, σ1 = 0.2. The
equilibrium x∗ = 0 is unstable, all trajectories with x0 = 0.2 go to infinity. The red line corresponds
to the deterministic case, i.e., σ1 = 0.

Figure 2. 100 trajectories (blue) of the solution xi of Equation (6) with a1 = 1.05, σ1 = 0.3. The
equilibrium x∗ = 0 is unstable, all trajectories with x0 = 0.2 fill whole space. The red line corresponds
to the deterministic case, i.e., σ1 = 0.
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Figure 3. 100 trajectories (blue) of the solution xi of Equation (6) with a1 = 1.05, σ1 = 0.4. Stabilization
by noise occurs and all trajectories with x0 = 0.2 converge to x∗ = 0. The red line corresponds to the
deterministic case, i.e., σ1 = 0.

Figure 4. 100 trajectories (blue) of the solution xi of Equation (6) with a1 = 1.05, σ1 = 0.5. Noise level
has increased, all trajectories with x0 = 0.2 converge to x∗ = 0 faster than in Figure 3. The red line
corresponds to the deterministic case, i.e., σ1 = 0.

Figure 5. 100 trajectories (blue) of the solution xi of Equation (6) with a1 = 1.05, σ1 = 0.6. Noise level
has increased, all trajectories with x0 = 0.2 converge to x∗ = 0 faster than in Figure 4. The red line
corresponds to the deterministic case, i.e., σ1 = 0.
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One can see that in Figure 1, all trajectories go to infinity, and in Figure 2 the trajectories
fill the whole space. In Figure 3, where the condition (12) holds (2(a1 − 1) = 0.1 < σ2

1 = 0.16),
the stabilization by noise occurs and all trajectories converge to the stable equilibrium x∗ = 0.
As the noise intensity increases, the trajectories converge to x∗ = 0 faster: in Figure 4 σ1 = 0.5,
in Figure 5 σ1 = 0.6.

Thus, the hypothesis about stabilization by noise for stochastic difference equa-
tions is confirmed by numerical simulation of solutions of the linear stochastic difference
Equation (6).

3. Nonlinear Stochastic Difference Equation

As an example of a nonlinear difference equation, consider the so-called bilinear dif-
ference equation. During the last two decades, rational difference equations, in particular,
rational bilinear difference equations have become very popular in research (see, for in-
stance, [8] and references therein). In particular, stability of the bilinear difference equation.

xn+1 = axn +
bxnxn−1

cxn + dxn−1
, n ∈ Z,

xn = ϕn, n ∈ Z0,

with positive parameters a, b, c, d and initial values ϕ−1, ϕ0 is studied in [8].
It is clear that, without loss of generality, one of the parameters b, c, d in this equation

can be equated to 1. Let d = 1. So, we will consider the bilinear difference equation

xn+1 = axn +
bxnxn−1

cxn + xn−1
, n ∈ Z,

xn = ϕn, n ∈ Z0,
(13)

with positive a, b, c and ϕ−1, ϕ0.
The following two statements, obtained in [8], for Equation (13) take the form:

Statement 1. If (1 − a)(c + 1) ̸= b then the unique equilibrium of Equation (13) is x∗ = 0.

Statement 2. If (1 − a)(c + 1) > b then the zero solution of Equation (13) is locally
asymptotically stable.

3.1. Equilibria of Equation (13)

Putting xn = x∗ for n ≥ −1, we obtain that the equilibrium x∗ of Equation (13) is
defined by the equation

x∗
(

1 − a − b
c + 1

)
= 0. (14)

It is clear that if
a +

b
c + 1

̸= 1 (15)

then x∗ = 0 only can be the equilibrium of Equation (13) (that coincides with Statement 1).
From the other hand, by the assumption

a +
b

c + 1
= 1 (16)

each x∗ ∈ R is a solution of Equation (14) and xn = x∗, n ≥ −1, is a solution of Equation (13).

Remark 2. Note that by the condition (16) from the equality xm = xm−1 = x∗ for some m ≥ 0
from (13) it follows that xn = x∗ also for all n > m.
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Note that via Remark 2 by the condition (16) and x0 = x−1 Equation (13) has the
equilibrium x∗ = x0. Let us assume that Equation (13) is exposed to stochastic perturbations
that are directly proportional to the deviation of the solution xn from the equilibrium x∗,
i.e., Equation (13) takes the form of the stochastic difference Equation [7]

xn+1 = axn +
bxnxn−1

cxn + xn−1
+ σ(xn − x∗)ξn+1, n ∈ Z, (17)

where σ is a constant. By that the solution xn = x∗ of Equation (13) is also the solution of
Equation (17).

Remark 3. Note that stochastic perturbations of the type (17) were first used for a system of
stochastic delay differential equations in [9] and later in many other different research both for
differential and for difference equations (see, for instance, [6,7] and references therein).

Putting in (17) xn = yn + x∗, we obtain

yn+1 = a(yn + x∗)− x∗ +
b(yn + x∗)(yn−1 + x∗)
c(yn + x∗) + yn−1 + x∗

+ σynξn+1

or

yn+1 = ayn + (a − 1)x∗ +
b[(x∗)2 + (yn + yn−1)x∗ + ynyn−1]

(c + 1)x∗ + cyn + yn−1
+ σynξn+1. (18)

Lemma 1. Let the condition (16) hold and x∗ ̸= 0. The linear part of Equation (18) then has
the form

zn+1 = αzn + βzn−1 + σznξn+1, n ∈ Z,

zn = ϕn, n ∈ Z0,
(19)

where
α = a +

b
(c + 1)2 , β =

bc
(c + 1)2 , α + β = 1. (20)

Proof. Using the equality

1
p + y

=
1
p
− y

p2 + o(y), where p ̸= 0 and lim
y→0

o(y)
y

= 0,

we have

b[(x∗)2 + (yn + yn−1)x∗ + ynyn−1]

(c + 1)x∗ + cyn + yn−1

= b[(x∗)2 + (yn + yn−1)x∗ + ynyn−1]

(
1

(c + 1)x∗
− cyn + yn−1

(c + 1)2(x∗)2 + o(y)
)

=
bx∗

c + 1
− b

(c + 1)2 (cyn + yn−1) +
b

c + 1
(yn + yn−1) + o(y).

(21)

Substituting (21) into (18), neglecting the nonlinear terms and using (14), we obtain

zn+1 = azn + (a − 1)x∗ +
bx∗

c + 1
− b

(c + 1)2 (czn + zn−1) +
b

c + 1
(zn + zn−1) + σznξn+1

=

(
a − 1 +

b
c + 1

)
x∗ +

(
a +

b
c + 1

− bc
(c + 1)2

)
zn +

(
b

c + 1
− b

(c + 1)2

)
zn−1 + σznξn+1

=

(
a +

b
(c + 1)2

)
zn +

bc
(c + 1)2 zn−1 + σznξn+1,

that via (20) gives (19). In addition, the equality α + β = 1 coincides with (16). The proof
is completed.
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3.2. Stability

Definition 3. The zero solution of Equation (18) is called stable in probability if for any ε > 0 and
ε1 ∈ (0, 1) there exists a δ > 0 such that the solution yn of Equation (18) satisfies the inequality
P{sup

n∈Z
|yn| > ε/F0} < ε1 for any initial function ϕ such that P{max

n∈Z0
|ϕn| < δ} = 1.

Definition 4. The zero solution of Equation (19) is called:
- mean square stable if for each ε > 0 there exists a δ > 0 such that Ez2

n < ε, n ∈ Z, for any initial
function ϕ(n) such that ∥ϕ∥2 = max

n∈Z0
E|ϕ(n)|2 < δ;

- asymptotically mean square stable if it is mean square stable and for each initial function ϕ(n)
such that ∥ϕ∥2 < ∞ the solution zn of Equation (19) satisfies the condition lim

n→∞
Ez2

n = 0.

Remark 4. It is clear that stability of the equilibrium x∗ of Equation (17) is equivalent to stability
of the zero solution of Equation (18). It is known [7] that the investigation of stability in probability
of the zero solution of a nonlinear stochastic difference equation with an order of nonlinearity
higher than one can be reduced to the investigation of asymptotic mean square stability of the zero
solution of the linear part of this equation. So, to obtain conditions for stability in probability of the
equilibrium x∗ of the nonlinear stochastic difference Equation (17) it is enough to get conditions for
asymptotic mean square stability of the zero solution of the linear stochastic difference Equation (19)
that in the case of x∗ ̸= 0 is the linear part of the nonlinear difference Equation (18).

Lemma 2. [7] If
|α|+ |β| <

√
1 − σ2 (22)

then the zero solution of Equation (19) is asymptotically mean square stable.

Lemma 3. [7] The inequalities

|β| < 1, |α| < 1 − β, σ2 <
1 + β

1 − β

[
(1 − β)2 − α2

]
, (23)

are the necessary and sufficient conditions for asymptotic mean square stability of the zero solution
of Equation (19).

Remark 5. Note that the stability conditions (22) and (23) are obtained via the general method of
Lyapunov functionals construction [7].

Example 1. Put in Equation (17) a = 0.5, b = 0.7, c = 1, σ = 0.5. The condition (22) holds:

a +
b

c + 1
= 0.85 <

√
1 − σ2 = 0.866. Besides, the conditions (22) and (23) give, respectively,

σ2 < 0.28 and σ2 < 0.32. In Figure 6, 500 trajectories (blue) of the solution of Equation (17) are
shown with the initial conditions x−1 = 0.8, x0 = 1.8 and the stable equilibrium x∗ = 0. One can
see that all trajectories converge to the stable equilibrium x∗ = 0. Note that this corresponds to
Statement 2.

Now place σ = 0.95 with the same values of all other parameters. The conditions (22) and (23)
do not hold. In Figure 7, 500 trajectories (blue) of the solution of Equation (17) with x∗ = 0 are
shown with the initial conditions x−1 = 0.01, x0 = 0.02. The zero solution is unstable and the
trajectories fill the whole space.

The red lines in the both Figures 6 and 7 correspond to the deterministic case, i.e., σ = 0.
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Figure 6. 500 trajectories (blue) of the solution xn of Equation (17) with a = 0.5, b = 0.7, c = 1, σ = 0.5,
x−1 = 0.8, x0 = 1.8 and stable equilibrium x∗ = 0. The red line corresponds to the deterministic case,
i.e., σ = 0.

Figure 7. 500 trajectories (blue) of the solution xn of Equation (17) with a = 0.5, b=0.7, c = 1, σ = 0.95,
x−1 = 0.01, x0 = 0.02 and unstable equilibrium x∗ = 0. The red line corresponds to the deterministic
case, i.e., σ = 0.

Remark 6. Note that by the conditions (22) and (23) the condition (15) holds, by which Equation (13)
has the equilibrium x∗ = 0 only. However, the linear Equation (19) is obtained by the conditions (16)
and x∗ ̸= 0. Thus, strictly speaking, Equation (19) cannot be used for studying the zero equilibrium.
So, below the equilibrium x∗ ̸= 0 is considered.

Example 2. Put a = 0.65, b = 0.7, c = 1, σ = 0.15, x∗ = 2.7. Wherein a +
b

c + 1
= 1, therefore,

the condition (16) holds, the conditions (22) and (23) do not hold. In Figure 8, the red straight
corresponds to the constant solution xn = x∗, n ≥ −1, 500 trajectories (blue) of the solution of
Equation (17) are shown with the initial conditions x−1 = x∗ − 0.1 = 2.6, x0 = x∗ − 0.2 = 2.5.
The solution xn = x∗ is unstable, so, the trajectories fill the whole space.

Put now σ = 0.45 with the same values of all other parameters. In Figure 9, one can see that
all 500 trajectories converge to the solution xn = x∗ = 2.7 of Equation (17). Putting σ = 0.75,
i.e., increasing once more the level of noise, we obtain (see Figure 10) that all 500 trajectories
converge to the solution xn = x∗ = 2.7 of Equation (17) faster than in Figure 9. So, the solution
xn = x∗ = 2.7 of Equation (17), that is unstable by the small level of noise (σ = 0.15), becomes
stable by increasing the level of noise, i.e., stabilization by noise occurs.
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Figure 8. 500 trajectories (blue) of the solution xn of Equation (17) with a = 0.65, b = 0.7, c = 1,
σ = 0.15, x−1 = 2.6, x0 = 2.5 and unstable equilibrium x∗ = 2.7. The red straight corresponds to the
constant solution xn = x∗, n ≥ −1, σ = 0.

Figure 9. 500 trajectories (blue) of the solution xn of Equation (17) with σ = 0.45 and the same values
of all other parameters as in Figure 8. All trajectories converge to the stable equilibrium x∗ = 2.7.

Figure 10. 500 trajectories (blue) of the solution xn of Equation (17) with σ = 0.75 and the same values
of all other parameters as in Figure 8. All trajectories converge to the stable equilibrium x∗ = 2.7
faster than in Figure 9.
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4. Conclusions

The very important problem of “stabilization by noise”, which for more than 50 years
has been well known for stochastic differential equations, is studied here for stochastic dif-
ference equations. Via numerical simulation of solutions of linear and nonlinear stochastic
difference equations, the hypothesis about a possibility of stabilization by noise is demon-
strated and confirmed also for stochastic difference equations. However, a formal proof of
this hypothesis remains until now an unsolved problem.
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