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Abstract: The unbiased expectation theory stipulates that long-term interest rates are determined by
the market’s expectations of future short-term interest rates. According to this hypothesis, if investors
have unbiased expectations about future interest rate movements, the forward interest rates should be
good predictors of future spot interest rates. This hypothesis of the term structure of interest rates has
long been a subject of debate due to empirical and theoretical challenges. Despite extensive research,
a satisfactory explanation for the observed systematic difference between future spot interest rates
and forward interest rates has not yet been identified. In this study, we approach this issue from
an arbitrage theory perspective, leveraging on the connection between the expectation hypothesis
and changes in probability measures. We propose that the observed bias can be explained by two
adjustments: a risk premia adjustment, previously considered in the literature, and a stochastic
adjustment that has been overlooked until now resulting from two measure changes. We further
demonstrate that for specific instances of the Vasicek and Cox, as well as the Ingersoll and Ross,
stochastic interest rate models, quantifying these adjustments reveals that the stochastic adjustment
plays a significant role in explaining the bias, and ignoring it may lead to an overestimation of
the required risk premia/aversion adjustment. Our findings extend beyond the realm of financial
economic theory to have tangible implications for interest rate modelling. The capacity to quantify
and distinguish between risk and stochastic adjustments empowers modellers to make more informed
decisions, leading to a more accurate understanding of interest rate dynamics over time.
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1. Introduction

The unbiased expectations theory (UET), also known as the interest rate expectation
hypothesis, is commonly used in fixed-income markets, where forward rates are often used
to estimate future interest rates and make investment decisions. The theory suggests that
investors do not have a systematic bias in their expectations and that they do not prefer
one type of investment horizon over another. In other words, long-term forward rates are
expected to be, on average, the same as the compounded average of short-term interest rates
over the same period. According to this hypothesis, investors form their expectations about
future interest rates based on all available information, and the forward rates, which are the
market’s best estimate of future rates, are unbiased predictors of actual future spot rates.
This theory has been developed and refined over time through contributions from various
scholars in the field of finance and economics. Some early works that have been associated
with its development took place in the 1930s [1,2] and later on the 1970s/1980s [3–6].

However, it is important to note that the relationship proposed between forward and
spot rates is a theoretical concept and may not always hold true in practice. Various factors,
such as market sentiment, investor sentiment, and changing economic conditions, can
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cause deviations from the hypothesis, leading to differences between expected and actual
interest rate movements.

This hypothesis has been subject to empirical research and debate in the academic
literature. Some studies have provided evidence in support of the theory, suggesting
that forward rates do indeed provide unbiased predictions of future interest rates. Other
studies, however, have found evidence of deviations from the theory, indicating that market
participants may have systematic biases in their expectations, leading to discrepancies
between forward rates and actual future rates.

For example, research by [7,8] found that forward rates are generally good predictors of
future short-term interest rates, but they tend to overestimate long-term rates. Similarly, [9]
proposed the “excess volatility puzzle,” which suggests that long-term interest rates are
more volatile than what the UET would predict, implying that market participants may
have time-varying expectations.

More recent empirical studies have shown that there seems to be a systematic differ-
ence or bias between forward interest rates and expected future spot interest rates; see, for
instance, [10–14] or [15]. This bias has, thus, been a topic of extensive research and has been
found to persist despite various modifications and refinements to the expectation hypothesis.

The theory of the classical expectation hypothesis postulates that forward rates are
unbiased predictors of future spot rates under the real-life probability measure, P. The em-
pirical evidence, however, shows this does not hold in practice and proposes a risk premia
(or risk aversion) explanation for the identified bias. In other words, the literature implicitly
assumes the expectation hypothesis would work in a risk-neutral world, where the risk
aversion effect does not influence the value of interest rates, or equivalently, when we
take the expectation under the so-called risk neutral martingale measure Q. A “puzzle”,
however, arises when one realizes only abnormally high levels of risk aversion would
be able to explain the observed bias. [16] analysed the expectation hypothesis using U.S.
Treasury bills data. Based upon a representative agent with constant relative risk aversion
(CRRA), they concluded that only CRRA coefficients greater than 8 would support risk
aversion as an explanation for the bias. However, commonly observed CRRA coefficients
are much lower than these; see, for instance, [17], who refer to values of between 1 and 2 as
bounds for the CRRA coefficient.

Our research is motivated by observed discrepancies between forward and spot rates,
indicating a gap in the literature. We aim to systematically investigate and quantify the factors
contributing to this bias, challenging the traditional perspective embedded in the UET.

The existence of the expectation hypothesis bias has important implications for fi-
nancial markets, as well as implications for pricing fixed-income securities, interest rate
derivatives, and risk management strategies. Understanding the sources and implications
of this bias is crucial for financial practitioners, policymakers, and researchers.

Here we approach the expectation hypothesis bias from a different perspective based
upon arbitrage theory, probability measure changes, in the context of stochastic spot rate
models. From standard arbitrage theory, we know forward rates are the expected future
spot rates under the T-forward probability measures, so forward rates with different
maturities T are martingales under a different measure. Moreover, we also know the risk-
neutral measure Q will only coincide with the T-forward measures if we assume interest
rates are deterministic. However, in reality we know they are not; they are stochastic. Thus,
we take into account both risk aversion (the change of the measure from P to Q—risk
aversion adjustment, RA(t, T)) and stochastic effects (the change of the measure from Q
to the appropriate T-forward measure—stochastic adjustment, SA(t, T)) and show that
considering the stochastic effect, something not considered in the previous literature, helps
explain the puzzling results of [16].

Our research outcomes include theoretical and numerical results for two popular
instantaneous spot rate models: the Vasicek [18] and Cox–Ingersoll–Ross (CIR) [19] (the
CIR model henceforward) models. We present closed-form expressions for expected
instantaneous spot rates under the different measures P, Q, and T, decomposing the
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bias into SA and RA and offering insights into the underlying mechanisms behind the
expectation hypothesis bias. This approach aims to provide a deeper understanding of
the nature, direction, and magnitude of the bias, as well as its implications for market
participants. Above all, we seek to contribute to the development of more accurate pricing
models and risk management strategies in fixed-income markets.

In summary, our research contributes novel insights by addressing gaps in the existing
literature and providing a nuanced understanding of the expectation hypothesis bias. The
remaining of this paper is organised as follows. Section 2 presents a literature review on
the expectation hypothesis. Section 3 sets the notation and introduces preliminary concepts
about interest rate theory and measure changes. Section 4 presents the theoretical and
numerical results for the Vasicek and CIR models. Section 5 discusses the main results and
implications, and Section 6 concludes and presents avenues for future research. All formal
proofs are presented in the Appendix A.

2. Literature Review

Unbiased expectation theory (UET), which posits that long-term interest rates are de-
termined by the market’s expectations of future short-term interest rates, is a fundamental
concept in the field of fixed-income securities. According to the expectation hypothesis,
forward interest rates should be unbiased estimates of expected future spot interest rates.
However, empirical studies have consistently documented the existence of a systematic
difference or bias between forward interest rates and expected future spot interest rates,
known as the expectation hypothesis bias. This literature review aims to provide a compre-
hensive overview of the existing literature on the expectation hypothesis bias, including
its sources, implications, and various approaches that have been proposed to explain and
quantify this phenomenon.

There are several potential sources of the expectation hypothesis bias in fixed-income
markets that have been proposed in the literature. The commonly cited source is risk
aversion, which suggests that investors may require a premium for bearing uncertainty
about future interest rate movements. This risk aversion adjustment results in a bias in
the forward interest rates relative to expected future spot interest rates. Several studies
have explored the role of risk aversion in explaining the expectation hypothesis bias and
have found that it can account for only part of the observed bias [8,16,20,21]. Another
potential source of the expectation hypothesis bias is market segmentation, which suggests
that different market participants may have different expectations about future interest
rate movements, leading to differences between forward interest rates and expected future
spot interest rates. Market segmentation can arise from differences in information, trading
strategies, and market liquidity, among other factors. Some studies have found evidence of
market segmentation in fixed-income markets and have suggested that it can contribute to
the expectation hypothesis bias [22]. Additionally, time-varying risk premia have also been
proposed as a source of the expectation hypothesis bias. Time-varying risk premia may
result from changes in market conditions, macroeconomic factors, or investor sentiment
and can affect the relative pricing of forward interest rates and expected future spot interest
rates. Several studies have examined the role of time-varying risk premia in explaining the
expectation hypothesis bias and have found evidence of their significance [15,23,24]. More
recently, it has been proposed that examining investors’ well-known behavioural biases
when computing expectations could help explain what risk aversion seems to be unable to
explain [25].

Empirical methods, such as regression analysis and time series econometrics, have also
been employed to explain and quantify the expectation hypothesis bias. These methods
involve analysing historical data on interest rates, macroeconomic variables, and other
relevant factors to identify patterns and relationships that may explain the observed bias.
Empirical methods provide valuable insights into the potential sources of the expectation
hypothesis bias and their quantitative effects, but they are also subject to limitations such
as data availability, model specification, and potential confounding factors.
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Here we use arbitrage theory and probability measure changes to explain the phe-
nomenon, showing that the literature has been missing the fact that interest rates themselves
are stochastic, and that, in that case, we need to also consider the measure change from
the risk neural measure Q to the forward measure T that depends on the maturity of each
forward rate.

In the context of the UET, interest rates are, by definition, stochastic. In the above-
mentioned literature, the most common choices to model interest rates are either (i) to con-
sider dynamic versions of well-known deterministic models, such as the Nelson–Siegel [26],
Svensson [27] and Bjork–Christensen [28] models, assuming their factors to be stochas-
tic [29,30], or (ii) to adopt a pure stochastic interest rate model. Among the pure stochastic
models, short-rate models are the most used; see, e.g., [31,32] and the references there in,
as opposed to the alternative Heath, Jarrow, and Morton (HJM) [33] type of models or the
so-called market models [34,35]. For an empirical overview on short-rate models, we refer
to [36]. The common choice is, thus, to model the instantaneous spot rate as a stochastic
process and derive, by no arbitrage, the interest rate term structure and any other variables
of interest. It is also well-established that only short-rate models of the affine class allow
for closed-form solutions for zero-coupon bond prices [37]. Well-known extensions that
leave the affine class, and thus must reply on numerics, are the Black–Derman–Toy [38] ,
Black–Karasinski [39], Mercurio–Moraleda [40], and Cox CEV models [41], to mention just
a few.

Here, we opted to rely on an affine short-rate class of models and to choose the most
classical and popular—the Vasicek [18] and CIR [19] models. Although there have been
extensions of both models to time-varying drifts [42] and multi-dimensional factors [30],
the original versions allow for better parameter interpretations. Extensions of our results
within the class of affine term structure models are, in principle, feasible.

3. Preliminary Notes
3.1. Concepts

Let p(t, T) denote the price, at time t, of a non-defaultable zero-coupon bond (ZCB)
that pays 1 at maturity T. For all possible maturities T, we have by definition, p(T, T) = 1.
In general, the price p(t, T) is both time-, t, and maturity-, T, dependent.

For a fixed value of t, the price is a function of T, which provides prices for ZCB for all
possible maturities. The graph of this function is called “the discount curve at t” or “term
structure at time t”. This graph is differentiable with respect to T. For a fixed maturity T,
p(t, T) is a stochastic process. This process gives the prices at different moments in time for
the ZCB with a particular maturity T, and the trajectory is typically very irregular.

Once ZCBs are defined, we can think of several definitions of interest rates. Here, we
consider only the instantaneous version of rates, which is defined as follows.

Definition 1. The instantaneous forward rate, contracted at t with maturity T is defined as

f (t, T) = −∂ ln p(t, T)
∂T

(1)

The instantaneous spot rate or short rate at time t is defined as

r(t) = f (t, t) . (2)

Stochastic interest rate models focus on the dynamics of the instantaneous forward
rate defined in Equation (1) (forward rate models) or on the dynamics of the short rate in
Equation (2) (short-rate models). Here, we focus on short-rate models, and in that context,
the bank account is defined as

B(T) = exp
{∫ T

0
r(s) ds

}
i.e.,

{
dB(t) = r(t)B(t)dt
B(0) = 1

, (3)
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and the short-rate dynamics are modelled directly under the risk neutral measure Q,

drt = µ(t, rt)dt + σ(t, rt)dWQ
t (4)

where µ and σ are adapted processes under Q.
The general no-arbitrage pricing formula of any T claim X is given as follows:

Π(t;X ) = EQ
t,r

[
exp

{
−

∫ T

t
r(s) ds

}
X
]
= EQ

t,r

[
X

B(t, T)

]
(5)

where EQ
t,r[·] denotes the conditional expected value under the measure Q, and B(t, T) =

B(T)− B(t) denotes the discount factor between t and T.
So, in terms of pricing, we obtain that ZCB prices are given by

p(t, T) = EQ
t

[
exp

(
−

∫ T

t
r(s) ds

)]
(6)

where EQ
t (·) is the expectation under the risk-neutral measure Q, which can be solved by

solving the so-called term structure equation

∂F
∂t

(t, r) + µ(t, rt)
∂F
∂r

(t, r) +
1
2

σ2(t, rt)
∂2F
∂r2 (t, r)− rF(t, r) = 0 (7)

F(T, T) = 1 (8)

where F = p(t, T), with µ and σ as in Equation (4).

3.2. On the Measures P, Q, and T
3.2.1. On the Measures P and Q and Utility Functions

When moving from the risk-neutral world Q into the real world P, we need to consider
that investors are risk-averse. The common convention is to assume this leads to charging
a risk premium λ over the risk-free rate. We also know that changing measures only affect
the drift term in Equation (4). Therefore, the new drift under P becomes

µ∗(t, rt) = µ(t, rt) + λ (9)

where λ is the risk premium. This risk premium, in turn, is usually divided by “the market
price of risk ϵ” and “the units of risk”, as measured by the variance in the market,

λ = ϵσ2(t, rt) , (10)

where ϵ is the coefficient of relative risk aversion and σ is as in Equation (4).
The notion of the “price of risk” comes from the expected utility theory of [43], where

the concept of utility represents an individual’s subjective valuation of money, taking into
account both their risk attitude and their valuation of money as defined in a parametric
utility function. For instance, when valuing an asset, the agent’s risk preference, i.e.,
whether they are risk lovers or risk averse, impacts the price they are willing to pay
for it. The utility function plays a critical role in agent representative theory, where a
representative agent acts in a way that reflects the cumulative preferences and actions of
all agents with the goal of maximising their expected utility. One of the key assumptions
in the representative agent framework is that the market is complete. Additionally, it is
assumed that individuals have homogeneous beliefs and time-additive, state-independent
utility functions that are strictly concave, increasing, and differentiable.
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In this paper, we look into a particular type of utility functions that guarantee constant
relative risk aversion (CRRA),

U(x) =

{
x1−ϵ

1−ϵ if ϵ ̸= 1
ln x if ϵ = 1

(11)

CRRA = −U′′(x)x
U′(x)

=

{
ϵ if ϵ ̸= 1
1 if ϵ = 1

(12)

where ϵ is the coefficient of relative risk aversion and can be interpreted as our “price of
risk”. The constant ϵ is positive for risk-averse investors, zero for risk-neutral investors, and
negative for risk lovers. [44] also applied CRRA preferences, noting that these preferences
sustain the Black–Scholes model in equilibrium. In this direction, we refer to the works of
Ait-Sahalia and Lo [45] and He and Leland [46].

Thus, under P, the short-rate dynamics become

drt = µ∗(t, rt)dt + σ(t, rt)dWP
t (13)

where µ∗ is as defined in Equation (9) and σ is as in Equation (4). Given these assumptions
about investors’ preferences, the term structure equation under Q can be re-written as

∂F
∂t

(t, r) +
{

µ∗(t, rt)− ϵσ2(t, T)
}∂F

∂r
(t, r) +

1
2

σ2(t, rt)
∂2F
∂r2 (t, r)− rF(t, r) = 0 (14)

where ϵ is as in Equation (10) and µ∗ and σ are as in Equation (13). Recall that from
Equations (9) and (10) follow µ(t, T) = µ∗(t, T) − ϵσ2(t, T). If we recall the Girsanov
theorem and take a look at the change of the instantaneous spot rate model from the Q
measure to the P measure, we can identify the Girsanov kernel as φ = ϵσ(t, T).

3.2.2. On the Measures Q and T and the Stochasticity of Interest Rates

The risk-neutral measure uses the bank account B as numeraire, but one can also choose
to use any tradable asset as numeraire. If we choose to use T-ZCB, we obtain the so-called
T-forward measures, one for each possible maturity.

Using Bayes theorem, we know

Π(t;X ) = p(t, T)EQ
[

X
p(T, T)

· LT(T)
]

(15)

where LT is the Radon–Nikodym derivative LT(t) =
dT
dQ

, on Ft and a Q martingale on Ft.

Now, considering p(·, T) as the numeraire process and applying the technique pro-
posed by Geman et al. [47], we obtain

Π(t;X ) = p(t, T)ET
t,r

[
X

p(T, T)

]
= p(t, T)ET

t,r[X ] (16)

where ET
t,r[·] denotes a conditional expectation under the T-forward measure that is different

for each maturity T.
The expectation hypothesis result follows.

Lemma 1. Assume that for all T > 0, we have r(T)/B(T) in L1(Q), where B is the bank account
and r is the instantaneous spot rate. Then, for every T, the process f (t, T) is a QT martingale for
0 ≤ t ≤ T, and in particular, we have

f (t, T) = ET
t [r(T)] , (17)

where T is the forward measure.
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The result of the above lemma is fundamental as it tells us the T instantaneous
forward rate is the expected instantaneous spot rate at time T under the T-forward measure.
From there, we can derive the implicit biases following from the measure changes:

EP
t [r(T)] = f (t, T) + bias

= f (t, T) + RA(t, rt) + SA(t, rt)

where we have the following risk adjustment (RA) and stochastic adjustment (SA):

RA(t, rt) = EP
t [r(T)]− EQ

t [r(T)] (18)

SA(t, rt) = EQ
t [r(T)]− ET

t [r(T)] (19)

are responsible to the bias observed in the real life.
It follows that part of the bias has to do with risk aversion, as considered in the

literature, but another part has to do with a stochastic adjustment related to the fact we live
in a world with stochastic interest rates. As we will show, the size of both biases play an
important role in explaining the expectation hypothesis puzzle.

3.3. ATS Interest Rate Models

In this paper, we focus on the class of affine term structure models (ATS), for which it
is possible to obtain bond prices in closed form,

p(t, T) = eA(t,T)−B(t,T)rt , (20)

where A and B are deterministic functions that depend only on specific model parameters.
ATS models are a special class of models that assumes linearity for µ and σ2 in the

Q dynamics of the spot rate in Equation (4). It turns out that, for ATS models, the SDE in
Equation (14) can be written as a system of ODEs in A and B,

∂B(t, T)
∂t

+ α(t)B(t, T)− 1
2

γ(t)B2(t, T) = −1

B(T, T) = 0

∂A(t, T)
∂t

− β(t)B(t, T) +
1
2

δ(t)B2(t, T) = 0

A(T, T) = 0 ,

where µ and σ2 in Equation (4) have the special form µ(t, rt) = α(t) + β(t)rt, and σ2(t, rt) =
γ(t) + δ(t)rt with α, β, γ. and δ is deterministic.

By the definition of the instantaneous forward rate in Equation (1), we also obtain

f (t, T) = −∂ ln p(t, T)
∂T

= −∂A(t, T)
∂T

+
∂B(t, T)

∂T
rt . (21)

ATS have gained widespread popularity in the field of finance due to their versatility
and analytical tractability. These models, rooted in the work of Jarrow and Protter [48], are
essential tools for valuing fixed-income securities and interest rate derivatives. The appeal
of affine models lies in their ability to capture the dynamics of interest rates through a rela-
tively simple set of equations, making them accessible for both academics and practitioners.
The Vasicek [18] and Cox–Ingersoll–Ross [19] (CIR) models are the most prominent exam-
ples of affine models. Their popularity stems from their capacity to generate closed-form
solutions and their compatibility with empirical data, enabling more precise pricing and
risk assessment in fixed-income markets. For the same reason, we are able to determine
closed-form solutions for risk and stochastic adjustments of both models.
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4. Results

In this paper, we study the expectation hypothesis bias for two popular particular
instances of the ATS class of models.

4.1. Vasicek Model

The Vasicek instantaneous spot rate model is defined by

drt = k(θ − rt)dt + σdWQ
t , (22)

where rt is the instantaneous spot interest rate at time t, k is the speed of mean reversion, θ
is the long-term or equilibrium level of the interest rate, σ is the volatility of interest rates,
and WQ

t is a Wiener process under the risk-neutral measure Q representing the random
shock to interest rates at time t. It captures the stochastic nature of interest rate movements
in the risk-neutral world.

The Vasicek model belong to the class of ATS models and thus has a closed-form
solution for bond prices, making it analytically tractable. Its simplicity facilitates its ease of
use and interpretation. Bond prices are given by (20) with

A(t, T) =
(

θ − σ2

2k2

)
[B(t, T)− T + t]− σ2

4k
B2(t, T) (23)

B(t, T) =
1
k
[1 − e−k(T−t)] . (24)

From the above expressions, we know that only the parameter k representing how
quickly interest rates revert to the mean θ affects B(t, T), which is what multiplies rt in the
bond price expression. A(t, T) also depends on θ, the level to which interest rates revert,
and σ, which represents the random fluctuations in interest rates. This is a well-known
result. For further details, we refer to [49].

From (23) and (24) and the forward rate result in (21), we have the following result.

Lemma 2. Under the Vasicek model, with spot rate Q-dynamics as in Equation (22), we have

f (t, T)Vasicek = θ
(

1 − e−k(T−t)
)
− σ2

2k2

(
1 − e−k(T−t)

)2
+ e−k(T−t)rt . (25)

What is particularly striking about the above result is the fact that only the last
term is stochastic (as it multiplies rt). The first two terms are deterministic. The first
term established is a deterministic mean-reverting term, where

(
1 − e−k(T−t)

)
is a factor

that decreases exponentially with time, capturing the tendency of interest rates to revert
to the long-term mean. The second deterministic term accounts for the stochastic or
random component in the interest rate process. Its negative sign indicates that the volatility
adjustment is subtracted from the mean-reverting term.

Here, we are primarily interested in finding closed-form expressions for the adjust-
ments defined in Equations (18) and (19). Proposition 1 states our main Vasicek result.

Proposition 1. Under the Vasicek model with spot rate Q-dynamics as in Equation (22), and given
the definitions of risk adjustment and stochastic adjustment in Equations (18) and (19), respectively,
we find

RAVasicek(t, T) =
ϵσ2

k

(
1 − e−k(T−t)

)
, (26)

SAVasicek(t, T) =
σ2

2k2

(
1 − e−k(T−t)

)2
. (27)
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Notably, both adjustments are purely deterministic, as they do not even depend on rt.
As it turns out, this is a feature that is specific to the Vasicek model.

The risk adjustment (RA) closed form tell us it depends on investors’ aversion to risk
(ϵ). In particular, if we were to live in a risk-neutral world (ϵ = 0), there would be no RA.
In addition, RA increases with both risk aversion and volatility and thus can be interpreted
as the compensation required for holding a risky asset. The term ϵσ2

k can be seen as the risk
premium per unit of time, and (1 − e−k(T−t)) is a factor that adjusts this premium over the
investment horizon.

The stochastic adjustment (SA) does not depend on investors’ risk aversion (as we
would expect), and it increases with the volatility σ and reduces with the speed of mean
reversion k. It is a pure stochastic term because if interest rates were not stochastic, σ = 0,

it would be zero. The term
(

1 − e−k(T−t)
)2

adjusts the correction over the investment
horizon, reflecting how the stochastic adjustment varies with time.

In Table 1 we quantify both adjustments for various levels of risk aversion ϵ and
maturities T. The Vasicek model parameters, σ = 0.01, θ = 0.1 and k = 0.25, are from [50].
The results allow us to get a sense of the values of both RA and SA and how much they are
responsible for the expectation hypothesis bias. As it would be expected, for the case of
risk loving investors (ϵ = −1) RA is negative, for risk neutral (ϵ = 0) RA is zero and for
risk averse (ϵ > 0), the higher the relative risk aversion coefficient ϵ the higher is the RA,
and its weight on the overall bias. SA, on the other hand, does not depend on ϵ, consistently
with the formulas in Equations (26) and (27), increasing with maturity T, for fixed σ and
k. For ϵ = −1, we observe the total adjustment starts by being negative (for T = 1, 2), RA
dominates SA but as maturity increases (T = 5, 10) it becomes positive with SA dominating
RA. Naturally for ϵ = 0 there is no risk adjustment, as investors are risk neutral and the full
bias can be attributed to SA. For any fixed ϵ > 0, in absolute terms both adjustments tend
to increase with maturity T, but in relative terms the RA tends to decrease with maturity
and SA tends to increase. For the chosen parameter values the significance of the bias is
relative low overall, when measured as percentage of EP[r(T)], it does not go beyond 2.62%
of the level of interest rates.

In Table 2, we present the same statistics for the case when we allow for higher interest
rate volatility—σ = 0.05 (instead of 0.01 in Table 1). This increase in the “stochasticity”
of interest rates had the expected effect, resulting in considerably higher SA and, thus,
higher bias. This time, the bias size was as high as 44.9% when measured as a percentage
of EP[r(T)] and for ϵ = 5. However, even for lower relative risk aversion coefficients
between 1 and 2, we obtain relative sizes of bias that range from 25.27% to 31.38%. In terms
of RA, we also observed increased values for risk-loving investors (higher negative values)
and risk-averse investors (higher positive values). Notice that σ shows up in both formulas
in Equations (26) and (27), i, but for RA, it always comes multiplied by ϵ, so zero RA for
risk-neutral investors is guaranteed. The relative importance of SA over the full bias is
similar to that shown in Table 1.

An interesting question we aim at answering is if the new stochastic adjustment can
help explain the implicit high levels of relative risk aversion found in the literature. For that,
we need to consider the full bias (RA + SA) and implicitly derive what would be the risk-
aversion coefficient if one would think that only RA explains the full bias; i.e., we would
like to solve

RA∗(t, T) = RA(t, T) + SA(t, T) (28)

where on the l.h.s. RA∗ is as in (26) but depends on an implicit ϵ∗, and on the r.h.s. RA and
SA are as in (26) and (27). Corollary 1 tell us the answer in the case of the Vasicek model.
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Table 1. Vasicek calculations using Equations (25)–(27), as well as Equation (A2), for various ϵ and T
and fixed rt = 2.5%, θ = 0.1, σ = 0.01, and k = 0.25. All values are given in percentual terms.

ϵ = −1 ϵ = 0

T 1 2 5 10 1 2 5 10
f (t, T) 4.155 5.439 7.810 9.317 4.155 5.439 7.810 9.317
EP[r(T)] 4.150 5.435 7.823 9.348 4.159 5.451 7.851 9.384
SA(t, T) 0.004 0.012 0.041 0.067 0.004 0.012 0.041 0.067
RA(t, T) −0.009 −0.016 −0.029 −0.037 0.000 0.000 0.000 0.000
bias weight in EP[r(T)] −0.119 −0.062 0.156 0.328 0.094 0.227 0.519 0.718
SA weight in bias −79.340 −369.348 334.197 219.642 100.000 100.000 100.000 100.000
RA weight in bias 179.340 469.348 −234.197 −119.642 0.000 0.000 0.000 0.000

ϵ = 1 ϵ = 2

T 1 2 5 10 1 2 5 10
f (t, T) 4.155 5.439 7.810 9.317 4.155 5.439 7.810 9.317
EP[r(T)] 4.168 5.467 7.880 9.421 4.177 5.482 7.908 9.458
SA(t, T) 0.004 0.012 0.041 0.067 0.004 0.012 0.041 0.067
RA(t, T) 0.009 0.016 0.029 0.037 0.018 0.031 0.057 0.073
Bias weight in EP[r(T)] 0.306 0.514 0.879 1.105 0.517 0.800 1.237 1.489
SA weight in bias 30.671 44.038 58.797 64.737 18.113 28.237 41.640 47.860
RA weight in bias 69.329 55.962 41.203 35.263 81.887 71.763 58.360 52.140

ϵ = 3 ϵ = 5

T 1 2 5 10 1 2 5 10
f (t, T) 4.155 5.439 7.810 9.317 4.155 5.439 5.439 9.317
EP[r(T)] 4.186 5.498 7.937 9.495 4.203 5.530 5.530 9.568
SA(t, T) 0.004 0.012 0.041 0.067 0.004 0.012 0.012 0.067
RA(t, T) 0.027 0.047 0.086 0.110 0.044 0.079 0.079 0.184
Bias weight in EP[r(T)] 0.728 1.084 1.592 1.870 1.146 1.647 1.647 2.623
SA weight in bias 12.851 20.780 32.234 37.963 8.129 13.599 13.599 26.856
RA weight in bias 87.149 79.220 67.766 62.037 91.871 86.401 86.401 73.144

Table 2. Vasicek calculations using Equations (25)–(27), as well as Equation (A2), for various ϵ and T
and fixed rt = 2.5%, θ = 0.1, σ = 0.05, k = 0.25. All values in percentual terms.

ϵ = −1 ϵ = 0

T 1 2 5 10 1 2 5 10
f (t, T) 4.061 5.141 6.833 7.699 4.061 5.141 6.833 7.699
EP[r(T)] 3.938 5.058 7.138 8.466 4.159 5.451 7.851 9.384
SA(t, T) 0.098 0.310 1.018 1.685 0.098 0.310 1.018 1.685
RA(t, T) −0.221 −0.393 −0.713 −0.918 0.000 0.000 0.000 0.000
Bias weight in EP[r(T)] −3.132 −1.658 4.268 9.062 2.353 5.680 12.968 17.957
SA weight in bias −79.340 −369.348 334.197 219.642 100.000 100.000 100.000 100.000
RA weight in bias 179.340 469.348 −234.197 −119.642 0.000 0.000 0.000 0.000

ϵ = 1 ϵ = 2

T 1 2 5 10 1 2 5 10
f (t, T) 4.061 5.141 6.833 7.699 4.061 5.141 6.833 7.699
EP[r(T)] 4.380 5.844 8.565 10.302 4.601 6.238 9.278 11.220
SA(t, T) 0.098 0.310 1.018 1.685 0.098 0.310 1.018 1.685
RA(t, T) 0.221 0.393 0.713 0.918 0.442 0.787 1.427 1.836
Bias weight in EP[r(T)] 7.284 12.030 20.218 25.267 11.741 17.579 26.354 31.381
SA weight in bias 30.671 44.038 58.797 64.737 18.113 28.237 41.640 47.860
RA weight in bias 69.329 55.962 41.203 35.263 81.887 71.763 58.360 52.140

ϵ = 3 ϵ = 5

T 1 2 5 10 1 2 5 10
f (t, T) 4.061 5.141 6.833 7.699 4.061 5.141 6.833 7.699
EP[r(T)] 4.823 6.631 9.992 12.138 5.265 7.418 11.419 13.974
SA(t, T) 0.098 0.310 1.018 1.685 0.098 0.310 1.018 1.685
RA(t, T) 0.664 1.180 2.140 2.754 1.106 1.967 3.567 4.590
Bias weight in EP[r(T)] 15.789 22.469 31.613 36.570 22.865 30.694 40.159 44.903
SA weight in bias 12.851 20.780 32.234 37.963 8.129 13.599 22.203 26.856
RA weight in bias 87.149 79.220 67.766 62.037 91.871 86.401 77.797 73.144
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Corollary 1. For the Vasicek with model parameters k, ϵ and implicit risk aversion ϵ∗ defined as in
(28), we are given

ϵ∗ = ϵ +
1
2k

(
1 − e−k(T−t)

)
(29)

From Equation (29), it is clear the implicit risk aversion ϵ∗ is always bigger than the
true risk aversion ϵ, and the difference between them depends only on k, the speed of
mean reversion.

From Table 3, we see that not considering a stochastic adjustment (SA) would lead to
an increase in the implicit risk aversion coefficient ϵ∗ and the increase is bigger the larger
the maturity we consider. In particular, for risk-loving investors (ϵ = −1), we observe
that the increase in the implicit risk aversion ϵ∗ is such that for maturities higher than
2, they could be perceived as risk-averse instead of risk-lovers. Likewise, risk-neutral
investors (ϵ = 0) are perceived as risk-averse whenever one does not take into account SA.
The implicit risk-aversion coefficient for the risk averse (ϵ > 0) is higher for the lower mean
reversion parameter k, and we can clearly observe that this can lead to perceive investors
as much more risk-averse than they actually are.

Table 3. Vasicek: implicit risk aversion ϵ∗, as in Equation (29), as a function of maturity T and risk
aversion ϵ.

k = 0.05 k = 0.1

T|ϵ −1 0 1 2 5 T|ϵ −1 0 1 2 5
1 −0.512 0.488 1.488 2.488 5.488 1 −0.524 0.476 1.476 2.476 5.476
2 −0.048 0.952 1.952 2.952 5.952 2 −0.094 0.906 1.906 2.906 5.906
5 1.212 2.212 3.212 4.212 7.212 5 0.967 1.967 2.967 3.967 6.967
10 2.935 3.935 4.935 5.935 8.935 10 2.161 3.161 4.161 5.161 8.161
20 5.321 6.321 7.321 8.321 11.321 20 3.323 4.323 5.323 6.323 9.323

k = 0.25 k = 0.5

T|ϵ −1 0 1 2 5 T|ϵ −1 0 1 2 5
1 −0.558 0.442 1.442 2.442 5.442 1 −0.607 0.393 1.393 2.393 5.393
2 −0.213 0.787 1.787 2.787 5.787 2 −0.368 0.632 1.632 2.632 5.632
5 0.427 1.427 2.427 3.427 6.427 5 −0.082 0.918 1.918 2.918 5.918
10 0.836 1.836 2.836 3.836 6.836 10 −0.007 0.993 1.993 2.993 5.993
20 0.987 1.987 2.987 3.987 6.987 20 0.000 1.000 2.000 3.000 6.000

The difference between the implicit risk aversion and the true risk aversion, ϵ∗ − ϵ, is,
however, constant across the various levels of risk aversion as it only depends on k and T.
Figure 1 presents this difference for k = 0.05 and k = 0.25.

In Figure 1b we see the increase in implicit risk aversion in not higher than 2, while
empirical studies suggest it to be bigger. On the other hand, from Figure 1a, which takes
the case of k = 0.05, we see that even with the simple Vasicek model, it is possible to
have implicit risk aversion ϵ∗ much higher than the true relative risk aversion coefficient ϵ
and with values in line with the empirical literature.

The model we have studied up until now has its simplicity as an advantage, but it
also has some disadvantages. The Vasicek model assumes a constant volatility, which
may not capture the time-varying nature of interest rate volatility observed in the real
world. Market volatility tends to change over time, and models that incorporate this
feature may provide a better fit. The model also assumes normally distributed interest rate
changes. In reality, interest rates often exhibit fat tails and other deviations from normality,
particularly during periods of financial stress. These limitations may impact the accuracy
of the model in extreme market conditions. Finally, the model’s stationarity depends on the
chosen parameter values. If not carefully calibrated, the model may fail to exhibit stationary
behaviour, leading to unrealistic interest rate paths.
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(a) k = 0.05 (b) k = 0.25

Figure 1. Increase in implicit risk aversion, ϵ∗ − ϵ, for the Vasicek model.

The next model we look at is the CIR model of [19], which takes into consideration the
limitations of the Vasicek model, improving the dynamics of the spot interest rate rt to take
them into account. This extra realism is a plus of the CIR model but comes at the cost of
not so nice/harder to interpret formulas.

4.2. CIR Model

The [19] (CIR) instantaneous spot rate model is defined by

drt = k(θ − rt)dt + σ
√

rtdWQ
t (30)

where rt is the instantaneous short-term interest rate at time t, k is the speed of mean
reversion, θ is the long-term or equilibrium mean of the interest rate to which rates revert, σ

is the volatility of interest rates, and WQ
t is a Wiener process under the risk-neutral measure

Q representing the random shock to interest rates at time t.
Similarly to the Vasicek model, the CIR model also implies that interest rates mean-

revert to the level θ with a speed determined by k. But it incorporates a volatility term,
σ
√

rt, allowing it to capture the time-varying nature of volatility in interest rates. This
provides more flexibility than the constant volatility assumption of the Vasicek model. The
CIR model is commonly used in interest rate modelling due to its ability to capture the
observed behaviour of interest rates, such as mean reversion and volatility clustering. It
also ensures that interest rates remain non-negative and belong to the ATS class, allowing
for closed-form solutions for bond prices and other related financial derivatives.

Bond prices are given by p(t, T) = A0(T − t)e−B(T−t)rt , where

A0(x) =

[
2ηe

x
2 (k+η)

(η + k)(exη − 1) + 2η

] 2kθ
σ2

(31)

B(x) =
2(exη − 1)

(η + k)(exη − 1) + 2η
(32)

with the notation

η =
√

k2 + 2σ2 x = T − t . (33)

Note that CIR is affine as in Equation (20) with A(t, T) = ln A0(T − t). Under the CIR
model, we also obtain a closed-form expression for forward rates that depends only on
model parameters and the spot rate rt.
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Lemma 3. Under the CIR model, with spot rate Q-dynamics as in Equation (30), the forward rate
is given by

f (t, T)CIR =
2kθ(eηx − 1)

(η + k)(eηx − 1) + 2η
+

4η2eηx

((η + k)(eηx − 1) + 2η))2 rt (34)

where θ and k are as defined in Equation (30) and η and x are as defined in Equation (33).

The deterministic term grows with k, θ, and σ (through η), and the stochastic term
depends only on k and σ (through η).

Proposition 2. Under the CIR model, with spot rate Q-dynamics as in Equation (30) and given
the definitions of risk adjustment and stochastic adjustment in Equations (18) and (19), respectively,
we find

RACIR(t, T) =
kθ

k − ϵσ2

(
1 − e−(k−ϵσ2)x

)
− θ

(
1 − e−kx

)
+ e−kx

(
eϵσ2x − 1

)
rt , (35)

SACIR(t, T) = θ
(

1 − e−kx
)
+

2kθ(eηx − 1)
(η + k)(eηx − 1) + 2η

+

[
e−kx − 4η2eηx

((η + k)(eηx − 1) + 2η)2

]
rt . (36)

The first thing to notice concerning both adjustments is that they are no longer deter-
ministic (as was the case for Vasicek) as they depend on rt. That is, both adjustments have
a deterministic component and a stochastic component.

As would be expected, RA depends on the level of risk aversion, ϵ, and in particular,
if we have risk neutrality, we obtain zero RA. Recall that the risk adjustment RA formula
captures the difference between the expectations of the instantaneous short-term interest
rate rT under the objective measure P and the risk-neutral measure Q in the CIR model.
It involves terms related to mean reversion, risk aversion, and volatility, providing a
comprehensive adjustment over the investment horizon x = T − t.

The stochastic adjustment SA, on the other hand, does not depend on the risk aversion
ϵ; instead, it depends on the volatility through η. Note that when we have σ = 0, η = k.
Unfortunately, it is not possible to simplify the SA expression any further.

Tables 4 and 5 present the computations for the CIR model when we consider value
parameters that are similar to those considered for the Vasicek model. The main difference
is in the volatility term because now, the volatility is given by σ

√
rt, so we consider σ = 0.05

(Table 4) and σ = 0.25 (Table 5), which, when multiplied by rt = 2.5%, give volatilities of about
0.79% and 3.95% with the same order of magnitude as the Vasicek volatilities of 1% and 5%.

Comparing both tables, the first conclusion is that, in the higher volatility scenario,
the biases are considerably more relevant when measured as a percentage of E[rT ]. In
Table 4, the values range from −0.107% to 5.340%, while in Table 5, the values range from
−2.710% to 81.596%.

The negative values are associated only with the risk-loving investor case (ϵ = −1)
and for maturities lower than five years (T ≤ 5). For risk lovers, just as in the case of the
Vasicek model, SA is always positive, while RA is always negative. For lower maturities,
RA dominates, while for longer maturities, SA dominates.

For risk-neutral and risk-averse investors, the bias is always positive, and its relevance
increases with risk aversion ϵ and maturity T. The relative weight of SA over the full bias,
on the other hand, is more relevant for σ = 0.05 than σ = 0.25. This happens because
relative risk aversion in the model always shows up together with volatility, so the higher
the volatility, the higher is RA.
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Table 4. CIR calculations using Equations (34)–(36), as well as Equation (A4), for various ϵ and T
parameters and fixed rt = 2.5%, θ = 0.1, σ = 0.05, and k = 0.25. All values in percentual terms.

ϵ = −1 ϵ = 0

T 1 2 5 10 1 2 5 10
f (t, T) 4.156 5.439 7.796 9.258 4.156 5.439 7.796 9.258
EP [r(T)] 4.151 5.434 7.807 9.308 4.159 5.451 7.851 9.384
SA(t, T) 0.003 0.012 0.055 0.127 0.003 0.012 0.055 0.127
RA(t, T) −0.008 −0.017 −0.044 −0.076 0.000 0.000 0.000 0.000
Bias weight in EP [r(T)] −0.107 −0.092 0.139 0.548 0.073 0.212 0.703 1.352
SA weight in bias −68.577 −230.338 506.989 248.881 100.000 100.000 100.000 100.000
RA weight in bias 168.577 330.338 −406.989 −148.881 0.000 0.000 0.000 0.000

ϵ = 1 ϵ = 2

T 1 2 5 10 1 2 5 10
f (t, T) 4.156 5.439 7.796 9.258 4.156 5.439 7.796 9.258
EP [r(T)] 4.167 5.468 7.896 9.461 4.174 5.484 7.941 9.539
SA(t, T) 0.003 0.012 0.055 0.127 0.003 0.012 0.055 0.127
RA(t, T) 0.008 0.017 0.045 0.077 0.015 0.033 0.090 0.155
Bias weight in EP [r(T)] 0.254 0.516 1.265 2.154 0.434 0.819 1.825 2.954
SA weight in bias 28.872 40.985 55.262 62.251 16.856 25.736 38.081 45.022
RA weight in bias 71.128 59.015 44.738 37.749 83.144 74.264 61.919 54.978

ϵ = 3 ϵ = 5

T 1 2 5 10 1 2 5 10
f (t, T) 4.156 5.439 7.796 9.258 4.156 5.439 7.796 9.258
EP [r(T)] 4.182 5.501 7.986 9.618 4.197 5.535 8.078 9.780
SA(t, T) 0.003 0.012 0.055 0.127 0.003 0.012 0.055 0.127
RA(t, T) 0.023 0.050 0.135 0.234 0.038 0.084 0.227 0.395
Bias weight in EP [r(T)] 0.614 1.121 2.384 3.751 0.973 1.724 3.496 5.340
SA weight in bias 11.895 18.737 28.991 35.157 7.478 12.110 19.542 24.290
RA weight in bias 88.105 81.263 71.009 64.843 92.522 87.890 80.458 75.710

Table 5. CIR calculations using Equations (34)–(36), as well as Equation (A4), for various ϵ and T
parameters and fixed rt = 2.5%, θ = 0.1, σ = 0.25, and k = 0.25. All values in percentual terms.

ϵ = −1 ϵ = 0

T 1 2 5 10 1 2 5 10
f (t, T) 4.084 5.177 6.721 7.251 4.084 5.177 6.721 7.251
EP [r(T)] 3.976 5.056 6.847 7.758 4.159 5.451 7.851 9.384
SA(t, T) 0.075 0.274 1.130 2.133 0.075 0.274 1.130 2.133
RA(t, T) −0.183 −0.395 −1.004 −1.626 0.000 0.000 0.000 0.000
Bias weight in EP [r(T)] −2.710 −2.396 1.838 6.536 1.807 5.023 14.391 22.730
SA weight in bias −69.746 −226.050 897.964 420.669 100.000 100.000 100.000 100.000
RA weight in bias 169.746 326.050 −797.964 −320.669 0.000 0.000 0.000 0.000

ϵ = 1 ϵ = 2

T 1 2 5 10 1 2 5 10
f (t, T) 4.084 5.177 6.721 7.251 4.084 5.177 6.721 7.251
EP [r(T)] 4.352 5.888 9.091 11.672 4.556 6.371 10.633 14.986
SA(t, T) 0.075 0.274 1.130 2.133 0.075 0.274 1.130 2.133
RA(t, T) 0.193 0.437 1.240 2.288 0.397 0.920 2.782 5.602
Bias weight in EP [r(T)] 6.165 12.068 26.066 37.875 10.369 18.738 36.788 51.614
SA weight in bias 28.003 38.539 47.683 48.252 15.905 22.937 28.886 27.577
RA weight in bias 71.997 61.461 52.317 51.748 84.095 77.063 71.114 72.423

ϵ = 3 ϵ = 5

T 1 2 5 10 1 2 5 10
f (t, T) 4.084 5.177 6.721 7.251 4.084 5.177 6.721 7.251
EP [r(T)] 4.772 6.906 12.564 19.928 5.241 8.159 18.091 39.400
SA(t, T) 0.075 0.274 1.130 2.133 0.075 0.274 1.130 2.133
RA(t, T) 0.613 1.455 4.713 10.543 1.082 2.708 10.239 30.016
Bias weight in EP [r(T)] 14.421 25.037 46.505 63.612 22.079 36.545 62.846 81.596
SA weight in bias 10.919 15.836 19.337 16.827 6.494 9.184 9.938 6.635
RA weight in bias 89.081 84.164 80.663 83.173 93.506 90.816 90.062 93.365
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For the exercise of determining the implicit risk aversion, if we would consider the
bias to be explained only by risk aversion, as before, we have

RA∗(t, T) = RA(t, T) + SA(t, T)

but given the formulas in Equations (35) and (36), we need to find the implicit risk aversion
ϵ∗ numerically.

Table 6 presents the implicit risk aversion for combinations of k = 0.05, 0.25 and
σ = 0.05, 0.25. For a low speed of mean reversion k = 0.05 and low volatility σ = 0.065,
it seems the difference between the implicit and true risk aversion coefficient, ϵ∗ − ϵ,
is almost constant across risk aversion coefficients and increasing with maturity. If we
however consider k = 0.05 but σ = 0.25, we note that the implicit risk aversion is no
longer increasing with maturity, having a humped-shape with higher values in between
the maturities T = 2 and T = 5 depending on the true risk aversion.

Table 6. CIR: implicit risk aversion ϵ∗ as a function of maturity T and risk aversion ϵ for θ = 0.1 and
rt = 2.5%

k = 0.05 σ = 0.05 k = 0.05 σ = 0.25

T|ϵ −1 0 1 2 5 T|ϵ −1 0 1 2 5
1 −0.523 0.476 1.475 2.474 5.470 1 −0.511 0.461 1.434 2.409 5.341
2 −0.088 0.908 1.903 2.899 5.886 2 −0.097 0.807 1.721 2.643 5.455
5 0.999 1.979 2.958 3.936 6.873 5 0.501 1.193 1.937 2.728 5.326
10 2.257 3.200 4.134 5.079 7.895 10 0.532 1.056 1.693 2.435 5.088
20 3.506 4.361 5.216 6.077 8.682 20 0.342 0.748 1.350 2.139 5.005

k = 0.25 σ = 0.05 k = 0.25 σ = 0.25

T|ϵ −1 0 1 2 5 T|ϵ −1 0 1 2 5
1 −0.593 0.406 1.405 2.404 5.402 1 −0.582 0.396 1.375 2.355 5.301
2 −0.302 0.695 1.692 2.669 5.681 2 −0.296 0.640 1.580 2.526 5.387
5 0.244 1.234 2.217 3.214 6.184 5 0.112 0.920 1.753 2.612 5.313
10 0.664 1.642 2.620 3.598 6.534 10 0.254 0.943 1.686 2.483 5.139
20 0.890 1.856 2.823 3.789 6.691 20 0.260 0.871 1.555 2.319 5.030

Even when considering a higher speed of mean reversion k = 0.25, the same humped
shape result happens in the case of σ = 0.25. A surprising result is that the difference does
not increase with maturity; instead, it increases up to T = 5 and it then decreases.

Figures 2 and 3 allow for a visualisation of the difference ϵ∗ − ϵ. As in the Vasicek
model, the lower the speed of mean reversion, the higher the difference level tends to be.

(a) k = 0.05 (b) k = 0.25

Figure 2. Increase in implicit risk aversion, ϵ∗ − ϵ, for CIR with σ = 0.05, θ = 0.1, and rt = 2.5%.
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(a) k = 0.05 (b) k = 0.25

Figure 3. Increase in implicit risk aversion, ϵ∗ − ϵ, for CIR with σ = 0.25, θ = 0.1, and rt = 2.5%.

For σ = 0.05, the differences increase with maturities, but it is rather stable across risk
aversion coefficients. For lower mean reversion, one can explain an increase in implicit risk
aversion as high as 4 from long maturities, while for high mean reversion, the distortion
does not go beyond 2.

For σ = 0.25, we always obtain humped-shape differences with maximal points
between T = 2 and T = 5 and risk-aversion coefficients close to ϵ = 2. The curve is at a
slightly higher level for k = 0.05 than for k = 0.25, but the difference between implicit risk
aversion and true risk aversion does not go beyond 1.

5. Discussion

In the framework of the classical Vasicek and CIR interest rate models, we have
successfully computed and evaluated the UET bias, revealing two distinct components
stemming from separate measure changes. While the previous literature acknowledged
the impact of risk aversion on the UET, our emphasis lies in recognising that, in a world
characterised by stochastic interest rates—the only context in which discussing expectations
of future short rates makes sense—forward rates indeed represent the expectation of future
short rates under T-forward measures. It is imperative to consider both adjustments
comprehensively to avoid implicitly assuming excessive risk aversion coefficients.

Our findings extend beyond the realm of financial economic theory to have tangible
implications for interest rate modelling. The capacity to quantify and distinguish between
risk and stochastic adjustments empowers modellers to make more informed decisions,
leading to a more accurate understanding of interest rate dynamics over time. This nuanced
approach not only enhances the theoretical foundations of financial economic theory but
also directly contributes to the practical aspects of interest rate modelling. It equips
practitioners with a refined toolkit for capturing the intricacies of risk and stochasticity,
thereby improving the accuracy of predictions and supporting more effective decision-
making in the dynamic landscape of financial markets.

6. Conclusions

In summary, our research offers novel theoretical insights into the observed limitations
of forward rates as reliable predictors of future spot rates, thereby challenging the unbiased
expectation hypothesis.

For the well-established Vasicek and Cox–Ingersoll–Ross (CIR) models, we have suc-
cessfully derived and quantified what we term the “risk adjustment” (RA) and “stochastic
adjustment” (SA). The joint consideration of these components allows us to precisely define
the bias evident in the empirical literature, employing both no arbitrage principles and
measure changes.
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We acknowledge the limitations inherent in relying solely on these models. This could
potentially lead to an oversimplification of real-life adjustments. On the other hand, the use
of simple, very well-known models allow for closed-form results that are also interpretable.

Looking ahead, our results pave the way for future research avenues within the affine
class or short-rate models. Furthermore, beyond this class, one can numerically determine
the necessary expected values and compute their differences, enabling the measurement
of adjustments in other model types, including those of the Heath–Jarrow–Morton (HJM)
type. Lastly, there is potential to explore the direct modelling of SA and RA, i.e., directly
capturing measure changes, and to evaluate their implications in terms of interest rate
dynamics. This avenue could provide a more nuanced understanding of the underlying
mechanisms driving adjustments in different interest rate models, offering valuable insights
for future advancements in the field.
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Appendix A

Proof of Lemma 1. Setting X = r(T) in (15) and (16), we can work out the expected value
of r(T) under the T-forward measure,

ET
t,r[r(T)] =

1
p(t, T)

EQ
t,r

[
r(T) · e−

∫ T
t r(s) ds

]
= − 1

p(t, T)
EQ

t,r

[
∂

∂T
· e−

∫ T
t r(s) ds

]
= − 1

p(t, T)
∂

∂T
EQ

t,r

[
·e−

∫ T
t r(s) ds

]
= − pT(t, T)

p(t, T)
= −∂ ln p(t, T)

∂T
= f (t, T)

where pT(t, T) is the p(t, T) derivative on the order of maturity T.

Proof of Lemma 2. For the A and B Equations (23) and (24), we obtain

∂B(t, T)
∂T

= e−k(T−t)

−∂A(t, T)
∂T

= −
(

θ − σ2

2k2

)[
∂B(t, T)

∂T
− 1

]
+

σ2

2k
B(t, T)

∂B(t, T)
∂T

=

(
θ − σ2

2k2

)(
1 − e−k(T−t)

)
+

σ2

2k2

(
1 − e−k(T−t)

)
e−k(T−t)

= θ
(

1 − e−k(T−t) − 1
)
+

σ2

2k2

(
e−k(T−t) − 1

)(
1 − e−k(T−t

)
= θ

(
1 − e−k(T−t)

)
− σ2

2k2

(
1 − e−k(T−t)

)2
.

The results follow from Equation (21).
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Proof of Proposition 1. We start by determining the expected value of the instantaneous
spot rate under the Q measure. Taking the dynamics in (22) and using as an integrating
factor u(s) = eks, we obtain

EQ
t [r(T)] = e−kTektr(t) + e−kT

∫ T

t
ekskθds = r(t)e−k(T−t) + θ

(
1 − e−k(T−t)

)
. (A1)

Proceeding similarly under the P measure, we get

EP
t [r(T)] = e−kTektr(t) + e−kT

∫ T

t
eks

(
kθ + ϵσ2

)
ds = r(t)e−k(T−t) +

kθ + ϵσ2

k

(
1 − e−k(T−t)

)
(A2)

From the definition of risk adjustment, RA(t, rt) = EP
t [r(T)]− EQ

t [r(T)], and the result
follows. For the stochastic adjustment, we use SA(t, rt) = EQ

t [r(T)]− ET
t [r(T)] and the fact

ET
t (r(T)) = f (t, T) with f (t, T) from (25).

Proof of Corollary 1. It follows from definitions of RA and SA in Equations (26) and (27)
and solving the equation below w.r.t. ϵ∗ that

ϵ∗σ2

k

(
1 − e−k(T−t)

)
=

ϵσ2

k

(
1 − e−k(T−t)

)
+

σ2

2k2

(
1 − e−k(T−t)

)2
.

Proof of Lemma 3. Using η =
√

k2 + 2σ2 and x = T − t and defining τ1(x) = 2ηe
x
2 (k+η)

and τ2(x) = (n + k)(eηx − 1) + 2η, we can rewrite A0 and B in Equations (31) and (32) as

A(x) = ln A0(X) where A0(x) =
(

τ1(x)
τ2(x)

) 2kθ
σ2

, and B(x) =
2(eηx − 1)

τ2(x)
.

Note that ∂A
∂T = ∂A

∂x and ∂B
∂T = ∂B

∂x ; we then have

∂B(x)
∂x

=
2ηeηxτ2(x)− η(η + k)eηx2(eηx − 1)

τ2(x)2

=
2ηeηx[(η + k)(eηx − 1) + 2η]− 2η(η + k)eηx(eηx − 1)

τ2(x)2

=
2η[(η + k)eηx(eηx − 1) + 2ηeηx]− 2η[(η + k)eηx(eηx − 1)]

τ2(x)2

=
4η2eηx

τ2(x)2

−∂A(x)
∂x

= −
∂A0(x)

∂x
A0(x)

=

2kθ
σ2

(
τ1(x)
τ2(x)

) 2kθ
σ2 −1

[
∂τ1(s)

∂x τ2(x)− ∂τ2(x)
∂x τ1(x)

τ2(x)2

]
(

τ1(x)
τ2(x)

) 2kθ
σ2

= −2kθ

σ2

(
τ2(x)
τ1(x)

)[
η(η + k)e

x
2 (k+n)τ2(x)− η(η + k)eηxτ1(x)

τ2(x)2

]

= −2kθ

σ2

(
τ2(x)
τ1(x)

)[
1
2 (η + k)τ1(x)τ2(x)− η(η + k)eηxτ1(x)

τ2(x)2

]

= −2kθ

σ2

1
2 (η + k)((η + k)(eηx − 1) + 2η)− η(η + k)eηx

τ2(x)

= −2kθ

σ2
1
2

(
k2 − η2)(eηx − 1)

τ2(x)
=

2kθ

σ2
1
2

2σ2(eηx − 1)
τ2(x)

=
2kθ(eηx − 1)

τ2(x)
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The result follows from Equation (21).

Proof of Proposition 2.

EQ
t [r(T)] = e−kTektr(t) + e−kT

∫ T

t
ekskθds = rte−k(T−t) + θ

(
1 − e−k(T−t)

)
(A3)

EP
t [r(T)] = e−(k−ϵσ2)Te(k−ϵσ2)tr(t) + e−(k−ϵσ2)T

∫ T

t
kθe(k−ϵσ2)sds

= r(t)e−(k−ϵσ2)(T−t) +
kθ

(k − ϵσ2)

(
1 − e−(k−ϵσ2)(T−t)

)
(A4)

RA(t, rt) = EP
t [r(T)]− EQ

t [r(T)]

=

[
rte−(k−ϵσ2)x +

kθ

k − ϵσ2

(
1 − e−(k−ϵσ2)x

)]
−

[
rte−kx + θ

(
1 − e−kx

)]
= −rte−kx + rte−kxeϵσ2x − θ

(
1 − e−kx

)
+

kθ

k − ϵσ2

(
1 − e−(k−ϵσ2)x

)

SA(t, rt) =EQ
t [r(T)]− ET

t [r(T)] =
(

rte−kx + θ
(

1 − e−kx
))

−
(

2kθ(eηx − 1)
τ2(x)

+
4η2eηx

τ2(x)2 rt

)
References
1. Fisher, I. The Theory of Interest as Determined by Impatience to Spend Income and Opportunity to Invest it. Bull. Am. Math.

1930, 36, 783–784.
2. Hicks, J.R. Value and Capital: An Inquiry into Some Fundamental Principles of Economic Theory; Oxford University Press: Oxford,

UK, 1939.
3. Gibson, W.E. Price-expectations effects on interest rates. J. Financ. 1970, 25, 19–34.
4. Gibson, W.E. Interest rates and inflationary expectations: New evidence. Am. Econ. Rev. 1972, 62, 854–865.
5. Gibson, W.E. Price-Expectations Effects on Interest Rates: Reply. J. Financ. 1973, 28, 751–753. [CrossRef]
6. Shiller, R.J.; Siegel, J.J. The Gibson paradox and historical movements in real interest rates. J. Political Econ. 1977, 85, 891–907.

[CrossRef]
7. Fama, E.F. The information in the term structure. J. Financ. Econ. 1984, 13, 509–528. [CrossRef]
8. Fama, E.F.; Bliss, R.R. The information in long-maturity forward rates. Am. Econ. Rev. 1987, 77, 680–692.
9. Campbell, J.Y.; Shiller, R.J. Yield Spreads and Interest Rate Movements: A Bird’s Eye View. J. Fiancial Econ. 1991, 58, 495–514.

[CrossRef]
10. Bekaert, G.; Hodrick, R.J.; Marshall, D.A. On biases in tests of the expectations hypothesis of the term structure of interest rates. J.

Financ. Econ. 1997, 44, 309–348. [CrossRef]
11. Boudoukh, J.; Richardson, M.; Whitelaw, R.F. The Information in Long Maturity Forward Rates: Implications for Exchange Rates and the

Forward Premium Anomaly; Working Paper 11840; National Bureau of Economic Research: Cambridge, MA, USA, 1995.
12. Bansal, R.; Shaliastovich, I. A long-run risks explanation of predictability puzzles in bond and currency markets. Rev. Financ.

Stud. 2013, 26, 1–33. [CrossRef]
13. Yaron, A.; Bansal, R. Risks for the long run: A potential resolution of asset pricing puzzles. J. Financ. 2004, 59, 1481–1509.
14. Eraker, B. Affine general equilibrium models. Manag. Sci. 2008, 54, 2068–2080. [CrossRef]
15. Piazzesi, M.; Schneider, M.; Benigno, P.; Campbell, J.Y. Equilibrium yield curves, with comments and discussion. NBER Macroecon.

Annu. 2006, 21, 389–472. [CrossRef]
16. Backus, D.K.; Gregory, A.W.; Zin, S.E. Risk Premiums in the term structure. J. Econ. 1989, 24, 371–399. [CrossRef]
17. Hansen, L.P.; Singleton, K.J. Generalized instrumental variables estimation of Nonlinear rational expectations models. Economet-

rica 1982, 50, 1269–1286. [CrossRef]
18. Vasicek, O. An Equilibrium Characterization of the Term Structure. J. Financ. Econom. 1977, 5, 177–188. [CrossRef]
19. Cox, J.C.; Ingersoll, J.E.; Ross, S.A. A Theory of the Term Structure of Interest Rates. Econometrica 1985, 53, 385–407. [CrossRef]
20. Cox, J.C.; Ingersoll, J.E.; Ross, S.A. An Intertemporal General Equilibrium Model of Asset Prices. Econometrica 1985, 53, 363–384.

[CrossRef]
21. Dai, Q.; Singleton, K. Term structure dynamics in theory and reality. Rev. Financ. Stud. 2003, 16, 631–678. [CrossRef]
22. Longstaff, F.A.; Schwartz, E.S. Interest rate volatility and the term structure: A two-factor general equilibrium model. J. Financ.

1992, 47, 1259–1282.
23. Brennan, M.J.; Xia, Y. Assessing asset pricing anomalies. Rev. Financ. Stud. 2001, 14, 905–942. [CrossRef]

http://doi.org/10.2307/2978646
http://dx.doi.org/10.1086/260614
http://dx.doi.org/10.1016/0304-405X(84)90013-8
http://dx.doi.org/10.2307/2298008
http://dx.doi.org/10.1016/S0304-405X(97)00007-X
http://dx.doi.org/10.1093/rfs/hhs108
http://dx.doi.org/10.1287/mnsc.1070.0796
http://dx.doi.org/10.1086/ma.21.25554958
http://dx.doi.org/10.1016/0304-3932(89)90027-5
http://dx.doi.org/10.2307/1911873
http://dx.doi.org/10.1016/0304-405X(77)90016-2
http://dx.doi.org/10.2307/1911242
http://dx.doi.org/10.2307/1911241
http://dx.doi.org/10.1093/rfs/hhg010
http://dx.doi.org/10.1093/rfs/14.4.905


Mathematics 2024, 12, 105 20 of 20

24. Cochrane, J.H.; Piazzesi, M. Bond risk premia. Am. Econ. Rev. 2005, 95, 138–160. [CrossRef]
25. Bulkley, G.; Harris, R.D.; Nawosah, V. Can behavioral biases explain the rejections of the expectation hypothesis of the term 504

structure of interest rates? J. Bank. Financ. 2015, 58, 179–193. [CrossRef]
26. Nelson, C.R.; Siegel, A.F. Parsimonious modeling of yield curves. J. Bus. 1987, 60, 473–489. [CrossRef]
27. Svensson, L.E. Estimating and Interpreting Forward Interest Rates: Sweden 1992–1994; Working Paper 4871; National Bureau of

Economic Research: Cambridge, MA, USA, 1994.
28. Björk, T.; Christensen, B.J. Interest rate dynamics and consistent forward rate curves. Math. Financ. 1999, 9, 323–348. [CrossRef]
29. Litterman, R.B.; Scheinkman, J. Common factors affecting bond returns. J. Fixed Income 1991, 1, 54–61. [CrossRef]
30. Dai, Q.; Singleton, K.J. Specification analysis of affine term structure models. J. Financ. 2000, 55, 1943–1978. [CrossRef]
31. Guidolin, M.; Thornton, D.L. Predictions of Short-Term Rates and the Expectations Hypothesis of the Term Structure of Interest Rates;

European Central Bank: Frankfurt, Germany, 2008.
32. Vayanos, D.; Vila, J.L. A preferred-habitat model of the term structure of interest rates. Econometrica 2021, 89, 77–112. [CrossRef]
33. Heath, D.; Jarrow, R.; Morton, A. Bond pricing and the term structure of interest rates: A new methodology for contingent claims

valuation. Econom. J. Econom. Soc. 1992, 60, 77–105. [CrossRef]
34. Brace, A.; G, atarek, D.; Musiela, M. The market model of interest rate dynamics. Math. Financ. 1997, 7, 127–155. [CrossRef]
35. Jamshidian, F. LIBOR and swap market models and measures. Financ. Stochastics 1997, 1, 293–330. [CrossRef]
36. Chan, K.C.; Karolyi, G.A.; Longstaff, F.A.; Sanders, A.B. An empirical comparison of alternative models of the short-term interest

rate. J. Financ. 1992, 47, 1209–1227.
37. Duffie, D.; Kan, R. A yield-factor model of interest rates. Math. Financ. 1996, 6, 379–406. [CrossRef]
38. Black, F.; Derman, E.; Toy, W. A one-factor model of interest rates and its application to treasury bond options. Financ. Anal. J.

1990, 46, 33–39. [CrossRef]
39. Black, F.; Karasinski, P. Bond and option pricing when short rates are lognormal. Financ. Anal. J. 1991, 47, 52–59. [CrossRef]
40. Mercurio, F.; Moraleda, J.M. A family of humped volatility models. Eur. J. Financ. 2001, 7, 93–116. [CrossRef]
41. Cox, J. Notes on Option Pricing I: Constant Elasticity of Variance Diffusions. Unpublished Note, Stanford University, Graduate

School of Business, Stanford, CA, USA, 1975.
42. Hull, J.; White, A. Pricing interest-rate-derivative securities. Rev. Financ. Stud. 1990, 3, 573–592. [CrossRef]
43. Von Neumann, J.; Morgenstern, O. Theory of Games and Economic Behavior, 2nd rev ed.; Princeton University Press: Princeton, NJ,

USA. 1947.
44. Bick, A. On the Consistency of the Black-Scholes Model with a General Equilibrium Framework. J. Financ. 1990, 45, 673–689.

[CrossRef]
45. Aït-Sahalia, Y.; Lo, A.W. Nonparametric risk management and implied risk aversion. J. Econom. 2000, 94, 9–51. [CrossRef]
46. He, H.; Leland, H. On equilibrium asset price processes. Rev. Financ. Stud. 1993, 6, 593–617. [CrossRef]
47. Geman, H.; El Karoui, N.; Rochet, J.C. Changes of numeraire, changes of probability measure and option pricing. J. Appl. Probab.

1995, 32, 443–458. [CrossRef]
48. Jarrow, R.; Protter, P. A short history of stochastic integration and mathematical finance: the early years, 1880–1970. Lect.

Notes-Monograph Ser. 2004, 45, 75–91.
49. Björk, T. Arbitrage in Continuous Time; Oxford University Pres: Oxford, UK, 2009.
50. Zeytun, S.; Gupta, A. A Comparative Study of the Vasicek and the Cir Model of the Short Rate; Fraunhofer ITWW: Kaiserslautern,

Germany, 2007.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1257/0002828053828581
http://dx.doi.org/10.1016/j.jbankfin.2015.03.018
http://dx.doi.org/10.1086/296409
http://dx.doi.org/10.1111/1467-9965.00072
http://dx.doi.org/10.3905/jfi.1991.692347
http://dx.doi.org/10.1111/0022-1082.00278
http://dx.doi.org/10.3982/ECTA17440
http://dx.doi.org/10.2307/2951677
http://dx.doi.org/10.1111/1467-9965.00028
http://dx.doi.org/10.1007/s007800050026
http://dx.doi.org/10.1111/j.1467-9965.1996.tb00123.x
http://dx.doi.org/10.2469/faj.v46.n1.33
http://dx.doi.org/10.2469/faj.v47.n4.52
http://dx.doi.org/10.1080/13518470122553
http://dx.doi.org/10.1093/rfs/3.4.573
http://dx.doi.org/10.1111/j.1540-6261.1990.tb03711.x
http://dx.doi.org/10.1016/S0304-4076(99)00016-0
http://dx.doi.org/10.1093/rfs/5.3.593
http://dx.doi.org/10.2307/3215299

	Introduction
	Literature Review
	Preliminary Notes
	Concepts
	On the Measures P, Q, and T
	On the Measures P and Q and Utility Functions
	On the Measures Q and T and the Stochasticity of Interest Rates

	ATS Interest Rate Models

	Results
	Vasicek Model
	CIR Model

	Discussion
	Conclusions
	Appendix A
	References

