. mathematics

Article

Delta Calculus on Time Scale Formulas That Are Similar
to Hilbert-Type Inequalities

Haytham M. Rezk (%, Juan E. N4poles Valdés >*7, Maha Ali 3, Ahmed I. Saied * and Mohammed Zakarya °

check for
updates

Citation: Rezk, H.M.; Valdés, ].E.N.;
Ali, M,; Saied, A.L; Zakarya, M. Delta
Calculus on Time Scale Formulas That
Are Similar to Hilbert-Type
Inequalities. Mathematics 2024, 12, 104.
https:/ /doi.org/10.3390/math12010104

Academic Editor: Janusz Brzdek

Received: 15 October 2023
Revised: 24 November 2023
Accepted: 4 December 2023
Published: 28 December 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt;
haythamrezk@azhar.edu.eg

Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste,

Av. Libertad 5450, Corrientes 3400, Argentina

3 Department of Mathematics, College of Arts and Sciences, King Khalid University, P.O. Box 64512,

Abha 62529, Sarat Ubaidah, Saudi Arabia; mayoali@kku.edu.sa

Department of Mathematics, Faculty of Science, Benha University, Benha 13511, Egypt; as0863289@gmail.com
Department of Mathematics, College of Science, King Khalid University,

P.O. Box 9004, Abha 61413, Saudi Arabia; mzibrahim@kku.edu.sa

Correspondence: jnapoles@exa.unne.edu.ar

Abstract: In this article, we establish some new generalized inequalities of the Hilbert-type on time
scales’ delta calculus, which can be considered similar to formulas for inequalities of Hilbert type.
The major innovation point is to establish some dynamic inequalities of the Hilbert-type on time
scales’ delta calculus for delta differentiable functions of one variable and two variables. In this paper,
we use the condition a]-(s]') = 0and aj(s]-,zj) = aj(w]', n]') =0,VYj=1,2,...,n. These inequalities will
be proved by applying Holder’s inequality, the chain rule on time scales, and the mean inequality.
As special cases of our results (when T = N and T = R), we obtain the discrete and continuous

inequalities. Also, we can obtain other inequalities in different time scales, like T = qZ, qg>1

Keywords: Hilbert-type inequalities; Holder’s inequality; mean inequality; kernels; delta integrals;
time scales
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1. Introduction
During the early 1900s, Hilbert made the discovery of this inequality (refer to [1])

1 1
[eS) 2 [ 2

Yo . (1)

s=1 n=1

Here, {a;}%°, and {c,}%, are real sequences satisfying 0 < Y°,4? < oo and

0 < Y%, 2 < co. This particular expression is known as Hilbert's double series inequality.

In [2], Schur demonstrated that 7r in (1) is the most optimal constant achievable.
Additionally, he unveiled the integral counterpart of (1), which later became recognized as
the Hilbert integral inequality, taking the form

/OOO /Ooo deﬁ < n(/ooo fz(ﬂ)dnf (/Ooo gz(r)dr> %, )

where f, g are measurable functions satisfying 0 < [;° f2(7)dy < ccand 0 < [~ ¢*(7)dT <
o0,

In [3], an extension of (1) is presented as follows: suppose [,r > 1with1/14+1/r =1,
{as}, {cn}%_, are real sequences satisfying 0 < Y-° ; al, < coand 0 < Y07 ¢!, < o, then
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Phemean(Be) (24) ®

r \s=1 n=1

Here, 71/ sin(7t/r) is the optimal constant.
In [4], the authors derived the integral counterpart of (3) as

1 1
© = f(n)g(v) n /°° . ’ /°° ! l
JATISNTT < )
/0 /O pr TS gazElJy Fman ) { ) 80T (4)
Here f,g > 0 are measurable functions satisfying 0 < fooo f"(n)dn < coand 0 <
fO T)dT < o0.

In [5] new inequalities akin to the ones presented in (3) and (4) were established as
follows: letI,r > 1 with 1/14+1/r = 1. Consider sequences a;, : {0,1,2,...,s} CN— R
and ¢y : {0,1,2,...,n} C N — Rwherea(0) = c(0) = 0. Then

1
iim < D(lrs,n) i(s—w+l)|Va | '
e e LU LA o ’

w=1
1
n I
x<z(n—19+1)|wﬁl> . (5)
8=1
Here, Vay, = ay —ay 1, Veg = cg —cy_1 and

1 1 -
D(l,r,s,n) = Es%an].

Moreover, ifl,r > 1with1/14+1/r =1, f(w) and g(&) are real-valued continuous functions
with f(0) = g(0) = 0, then

[ s e < o [/ a-wlrae)

x(/OT(Tﬂ)\g’(ﬂ)\ldﬂ)%. ©)

-1

M(Lr,n,1) = %nng.

Here,

In [6], Chang-Jian et al. proved some new inequalities of Hilbert type in the difference
calculus with “n-dimension” and derived their integral analogues. These inequalities are
outlined as follows: let r; > 1 such that 1/1; +1/r; = 1 and a;(wj) are real sequences
defined for w; =0,1,2,...,5, where si € N and a]-(O) =0;j = 1,2,...,n. Define the
operator V as Va;(w;) = aj(w;) — aj(w; — 1). Then

n
w1=1wy=1 wy=1 Y7 j=1
n =
<Z w]>/ 17
j

Here, 01
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Also, they proved that if h; > 1, 1;,r; > 1 are constants with 1/r; +1/1; = 1, f](w])
are real valued differentiable functions defined on [0, 77;), where 77; € (0, 00) and £;(0) = 0;
j=12,...,n then
dw]> ,

/m /nn If wj)v‘dwn dw1<LH</ — w; ‘f (w))-f/(wj)
(8)

=

where
n 1
noq jzlﬁ_n n ,l
— )
t=(n- 1) Ty
j=1"] =1

Furthermore, they established that if [;, 7; > 1 such that 1/r; + 1/1; =1, a](w],z]) are
real sequences defined for (w] z]) where w] =0,1,2,...,5,2 =0,1,2,...,n;s;,n €N
and 4;(0,z;) = aj(w;,0) =0Vj =1,2,...,n. Define the operators V; and Vz by

Vla]-(w]-,z]-) = a](w],z]) — a](w] — 1,2]'),

VZLZ]'(ZU]',Z]') = a](w],z]) — {Ilj(w]',Z]' — 1)

Then
51 Sn tn anl‘ﬂj(w]‘,zj‘ﬂ
)y Z DD T
w1=1z1=1 wp=1z,=1 " ]Elg
<Z w]-z]-/l]-)
j=1
1
n i i
< R Yo Y (sj—wj+1)(t—z+1)|VaViaj(w),z)) |7 | . )
j=1 wjzlzjzl
Here,

1_

R=(n-1 3)271 " e

j=1" j=1

""\H

For more details about Hilbert type inequalities, see the papers [5-8]. As applications
of our work, we refer to the papers [9,10]. In recent decades, a novel theory, known as time
scale theory, has emerged, aimed at unifying continuous calculus and discrete calculus. The
results presented in this paper encompass classical continuous and discrete inequalities
as special cases when T = R and T = N, respectively. Moreover, these inequalities can

be extended to analogous inequalities on various time scales, such as T = qZ forg > 1.
Many researchers have delved into dynamic inequalities on time scales, and for a more
comprehensive understanding of these dynamic inequalities on time scales, readers are
referred to papers [11-17].

The primary objective of this paper is to establish analogous formulas for Hilbert-type
inequalities (7) and (8) within the framework of time scales in delta calculus. It is important
to note that these formulas are derived under specific conditions, which are a;(s;) = 0
and a;(s;, zj) = aj(wj,n;) =0Vj=1,2,...,n. These conditions differ from those utilized in
a previous work [6]. The outcomes of our research provide novel insights and estimations
for these specific categories of inequalities. In particular, we have introduced multivariate
summation inequalities for extensions of the Hilbert inequality, which were previously
unproven. Additionally, we have obtained their corresponding integral expressions. The
proofs of these results are based on the application of Holder’s inequality on time scales
and the mean inequality.
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The paper is structured as follows: After this introductory section, the subsequent
section offers an overview of fundamental concepts in time scale calculus, which serve as
the basis for our proofs. The final section is dedicated to presenting our main findings.

2. Basic Principles

In what follows, the time scale T is a nonempty closed subset of R, and it could be an
interval, a union of intervals, or even a set of isolated points. The real numbers (continuous
case), integers (discrete case), and various amalgamations of the two constitute the most
prevalent instances of time scales. Given v € T, we establisho : T —+ Tand y: T — R
aso(v):=inf{a € T:a > v} and u(v) := o(v) — v > 0. These components are referred
to as the forward jump operator and the forward graininess function, correspondingly.
Considering a function & : T — R, we introduce the notation:

S7(v) =S(o(v)) YveT.
Additionally, we establish the interval ¢ within the context of T as:
bp:=4NT ¢CR

Below, we present the concept of the delta derivative along with its properties. We also
delve into the chain rule, integration by parts, Fubini’s theorem, and the mean inequality,
which are discussed and analyzed in the references [4,18-21] and others.

Definition 1 ([20]). We use the term “A differentiable” to describe a function S being differentiable
atv € T, if Ve > O, there is a neighborhood W of v such that for some B the inequality

[S(0(v)) = S(w) = Blo(v) —w)| <elo(v) —w|, weW
is true and, in this case, we write 3*(v) = B.

Theorem 1 (Properties of delta-derivatives [20]). Assume S is a function and let v € T, then

1. If S is differentiable at v, then ¥ is continuous at v.
2. If S is continuous at v and v is right-scattered (i.e., o(v) > v), then I is differentiable at

v with
S(o(v)) — S(v)

#(v)
3. Ifvisright-dense (i.e., 0(v) = v), then S is differentiable if the limit

34(0) =

x e
i 3(0) = 3(@)
w—v v—w

exists as a finite number. In this case,

Example 1.
1. IfT =R, theno(v) =v, u(v) = 0and

3% (v) = lim
w—o U —

!, . .
where S is the usual derivative.
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2. IfT=2Ztheno(v)=v+1, u(v) =1and
3(@(3)) -
p(©)
where A is the usual forward difference operator.

3. If’]I‘:qi ={v:0v=4g5ke€Z qg>1}yU{0}, then o(v) = qv, u(v) = (g — 1)v and

S _ (04 1) - 3(0) = AS(0),

S(qv) = S(v)
(-1

Theorem 2 (Chain Rule [20]). Given that Y : T — R is a continuous and A differentiable and
S : R — R is continuously differentiable, then

I%(0) = A3 (v) = Yo e T\ {0}.

U

(SoY)*(v) =S (Y(1))Y2(v) for T € [0,0(0)]. (10)

Definition 2 ([20]). A function  is characterized as rd—continuous when it exhibits continuity
at every right-dense point within T and possesses finite left-sided limits at left-dense points in T.
We use the symbol C,;(T,R) to represent the sets of all rd-continuous functions, and the symbol
C(T, R) to represent the set of all continuous functions.

The following is a description of the concept of an integral on time scales.
Definition 3 ([20]). R is A antiderivative of ¥ if
RA(v) = S(v) holds Vo e TF,

As a result, for a,c € T, we deduce the integral of 3 as
c
/ S(v)Av = R(c) — R(a).
a

It is widely acknowledged that any rd-continuous function possesses an antiderivative.
As a result, we can deduce the following outcomes.

Theorem 3 ([20]). If vy, v € T, then

(/U %(ﬁ)Aﬁ)A — 3(0). (1)

0

Theorem 4 ([20]). Ifa,c,T € T, o, p € Rand I,Y € Cy([a, c]t, R), then
JE0S(0) + BY(0)]AS = a [£I(5)A5 + B [ Y(5)AS;
[*3(5)A6 = 0;

[23(0)A6 = [S(8)A + [£3(0) 5,

If3(6) > 0; Vée[a CT,thenf 5)As > 0.

| [ 3(6)A8 5)|As.

Lemma 1 (Integration by parts [19]). Ifa,c € T and w, x € C,4([a, c|p, R), then

SINISENS S

/Cw((s)KA(&)A& — [w(d)x(O)]° — / WA (8)K7(8)A. (12)

Theorem 5 ([19]). Leta,c € Tand S € C4(T,R). Then
(i) IfT =R, then

~C

./;%((S)Aéz/ 3(6)d6.

Ja
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(ii) IfT =Z, then
c c—1
/ 3(6)A6 = ¥ S(5)
a d=a
5
(iii) If T = g*, then ) log, c~1
/ 3OAs=(q-1) Y 43(q").
a k=log, a
Lemma 2 (Holder’s Inequality [19]). Ifa,c € Tand ,Y € Cyy([a, c]p, RT), then
1 1
¢ ¢ i c A
/ 3(6)Y(5)A6 < {/ w(d)%’f(&)ms] U w(é)Y)‘((S)Ab’] , (13)
a a a

whereny > 1and 1/ +1/A =1.

Let Ty, T, be time scales, CC,; denote the set of functions (1, &) on Ty x Ty, where
Q is rd—continuous in 7, § and CC/,; denote the set of all functions CC,4, for which both
the A; partial derivative with respect to T and A, partial derivative with respect to § exist,
and are in CC,,.

Lemma 3 ([18], Theorem 3.3). Let ,A € Twithn < A, f,g € CCpy([17, Al X% [17, A]p, R) and
v,v > 1suchthat1/v+1/v =1. Then,

A A
/ﬂ /W (T, )3(T,6)| A Tiol

< | / ' / "I 6" Areag] % [ / ! / "lst o) "ot

Lemma 4 (Fubini’s theorem [21]). If 7,A,c,d € T and S € CCpy([n, Al % [c,d]p, R) is
A—integrable, then

/nA (/d 3(r, §)A2€> we= [ </; S m”) fat

Lemma 5 (Mean inequality [4]). Ifa;, B; > 0forj=1,2,...,s, then

1
v

(14)

25:1 ,B
S ] ]
( i=1 0‘18)

< 1 157

. . (15)
j=1 (T 5j)zj=1ﬁ]

3. Main Results

Throughout this paper, we will operate under the assumption that the functions are
rd-continuous, and we will also consider the existence of the integrals. To substantiate our
results, it is necessary to prove the following lemma.

Lemma 6. Let l]-,r]- > 1 with 1/lj+1/rj = 1andwj > 0, wherej =1,2,...,n. Then

m

w; j=1T;
b (D)
< N (16)

RN G

j=17

Proof. By utilizing Lemma 5 with «; = w; and ; = 1/1;, we deduce that
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S 1
I j=1"1;
w]’ < —. (17)
j=1 ( s l>2],1 A
j=1T;
Since Z]szl(l/l]-) = ?:1 (1—=(1/r)) =s— ;:1(1/1*]-), then (17) becomes
Y
1 s Wiy
Sw].[fg (]:11]-) .,
e 1\ B 7
: (s-=f)
which is (16). O
Theorem 6. Let aj,e; € T, I;,r; > 1such that 1/1;+1/r; = Tand A; € Cyy([aj, &j] 1, R) with
Aj(gj) =0;j=1,2,...,s. Then
=114 (&)
/ / - LA A
S €] E;'/) j= 1?
1
S
< A (/ (e&) — ap)| A2 @[ Aé;) , (1)
=1 \"%
where
s 1
s 1 ]':1575 s 1
A=|s-) — [1(—a)". (19)
—~ 7y -
j=1"] j=1
Proof. By utilizing the property (5) of Theorem 4, we deduce that
CI ST
/ }\] (Z])AZ] S/ ‘}\] (Z]))AZ] (20)
JE; JE;
Since A;(e;) = 0, then
Sj £
/gj AP (z)dzj = Az = Ajle)) = Ai(E) = =A(E)),
and then
/;; A (z))z| = |A(E)|- (21)
]
Substituting (21) into (20), we observe that
|Ai(g)| < / ‘)LA zj ‘Az] forj=1,2,.
therefore ; .
8]‘ A
[T <TT [ rr)|az. (22)
j=1 =17

Applying (13) on fgjj‘A]-A(zj)‘Azj with I,7; > 1, (z) = ]/\f(zj)] and Y(zj) = 1,

we have
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&j &
AR (z:)|Az; < /
J enlaz (gj

and then

- i A - Il & A T %
[T/ Melas < TIeE-)" / A2 (z))| "z
=1 g j=1 gj

By substituting (23) into (22) and applying (16) on IT;_, (ej—¢j) /1) with w; = ¢ —Gj,
we acquire

s s Ls CTIN r; %
I < Te-e) TI{ L] sz
j=1 j=1 =1 \"%
s &6 Z§:1%}‘ . , 1
< (B ") EJ‘A.A(Z‘)‘”AZ' " (24)
s 1\ Ehn g !
(= jzlﬂ) "

Dividing (24) on ( ]5.:1 8/1_751> = and integrating over ¢; froma; toe;, j =1,2,...,s,
j

we conclude that

[T

(T ”?f")z"ﬂ?
(gL
=17 a

(5 H/(

]

AN j)‘rjAz]) 'AG1 . AG,

()| 8z ) 'z, (25)

\‘b—t

Again, using (13 on [ (fé ’/\A zj) Ag;with I;, 7 > 1, 3(&;) =
(f’:j] A

/j] (/; A].A(zj)"fAz]> az < < Az]A§]> ’ (/jf A@) ’
= (g- ”f)llf (/: /éjj‘A]'A(Zj)‘rjAZjACf> P

)’

(zj)‘ Azj> g and Y (;) = 1, we obtain

A

and then
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=
)ss

f1f (e

< ]Ii{ j—aj ll(/sj/ ’/\A z] Az]Ag‘])
= ]]3 —a] (/ / A8 (z) AZJACJ> : (26)

Substituting (26) into (25), we obtain

Ai(8
/ / [y ’| CAZ . AZs
S S] @}) ] lq

/
1
7

5;<s—f:;> Flfﬂfj %Sl</%/ A8(z) AzAg>. 27)

j=1 j=1 j

Now, using (12) on f;j/ (fgjj‘)\jA(zj)rjAzj) AZ; with w(Z)) f
KA((j]-) =1, we find that

A?(é?
- (£

- /:j’/\fA(gf)‘rj (0(&5) — a;)Ag;, (28)
]

z] ’ Az; and

AN (z))

"
’A4>Ag

7 fi
]AZ]'> K(é(])

aj

+ [T "x @pag
)

where x(¢;) = ¢; — a;. Combining (28) with (27), we obtain

v
lj

< (s—E:) " TG -ap)?
j=1"] j=1
Xi(/:j A8@)|” (@) - )A€,>rj
= ]
- ([l e -oes)

Hence, (24) is proved. O

Corollary 1. Let T = Z in Theorem 6, aj,€j € N, l],r > 1 such that 1/r + 1/l = 1and )t be
real sequences with Aj(ej) = 0;j =1,2,.. s Then, o(Gj) = ¢+ 1and

e1—1 e—1 es—1 S. 1| ].g]- | s (&1
Yo X ) SAH 2 (& —aj+1)[a(E)]7

G1=a1 8r=ay  Gs=as ( s ZC]) ~ ” Gj=aj

j

j=1
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Here, A is the forward difference operator and A is specified as in (19).

Corollary 2. Let T = R in Theorem 6, aj, € € R, l]', rp > 1 such that 1/rj + 1/lj = 1and
Aj € C([aj, €], R) with Aj(ej) = 0;j =1,2,...,s. Then, ¢(¢;) = &; and

/ / S];A@)}g d§S<AH</

=

<

M| @ - )d@) ,

where A is given by (19).

Corollary 3. Let T = qifor q>1,1;,r; > 1suchthat 1/r; +1/1; = 1 and A; be real sequences
with Aj(e;) = 0;j=1,2,...,s. Then, 0(g;) = q¢; and

logqes—l logqsl—l (q—l)”Hizl §j|/\j(§j)|

... T
&=log as  &=log, ; (Z]S;l e/-l—éj) j=11;
- j

T

logq gj—1 j
< AH( ) ‘1—1)(4@'ﬂj)@MMﬂ@ﬂ”) ,

éf,] logq ;

where A is given by (19) and

BgA;(G)) = Aj(qéj)__lgj(gj)

In the following, we generalize the last theorem for two variables.

VCJ S T\ {0}

Theorem 7. Let aj,¢j,€j € T, Ij,r; > 1such that 1/1;+1/r; = 1, A; € CC;d([aj,sj}T X
[a;, €]  R) with Aj(t;, ;) = Aj(e;, &) = 0for & € [, e]}T and T € [aj, €] pi=12..s

Then
A 7
/ / / / ] 1’ T] é(])‘ s lAzgl"'AzgsAlfl...Alfs
( M) =1 ;
lj
=P (/ [ @) - @) - ) ) \”AZQA@) L
where

B = (S—i1> ] ! ﬁ(e]—a])%(sj—a])% (30)

=1
Here, the A —derivative of A(T, &) is the A—derivative with respect to the first variable T and
the Ay —derivative of A(t, &) is the A—derivative with respect to the second variable ¢.

Proof. Applying the property (5) of Theorem 4, Fubini’s theorem and using the hypothesis
)L](T],E]) = /\]‘(Gj, gj) = 0, we obtain
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/ / ‘)\AZAl t],l9] AzﬂjAlz]‘

v

€j /Ej AA

AS2N(z:, 9:) Ao B A z;

/T]_ g jr Uj jEo14
S [ET,A M

= A2z, 0:) | ApdiAz;

/Tj/gj[](ff)] 2Vj21%j

€j €. A M

= /g (/{ [)\j 2(2]-, 19]-)} Alz]-> A219]'
] ]

ENOUN A
/@'j (/\jz(ej,ﬁj)—/\jz(I}',ﬂj))Azﬂj

[Aiej ej) — Aj(ej, &) + Aj(T3, ) — Aj(T,€5)|

and then
H|A 7, )| g / / A2 (25, 85) a9y (31)
=1

AzAl

Applying (14) on [T [./|A

g(zj, ;) = ‘AJAZAl( ],19])' we see that

], o; ’Azﬁ Mz with [j,r; > 1, f(zj,19]-) = 1 and

)\]-AZAl (Z]', 19]) ‘AzﬁjAlz]‘

1
T:

I/ /Ej
AzAl ], ] ‘ A219A12> (/ / A9 A12> ]

1 r
1

N :
= (e—1)7(¢j— l(/ / ‘AAZAl zj, 9 )A26A12]>],

IN

T

and then
S 6]' /S] AA
[] A28 (2. 9)| Ay® Ay z;
jzl/Tj éj ‘ ] 177 ‘ ] ]

[T(e-5)" @ll(/e’/ A )| AZW>/

j=1

IN

S

I CEM ’

1 s
& —¢j)" H(
j=1 =1\"Y

Substituting (32) into (31) and applying (16) on w; = (€; — T;) (¢; — &;), we obtain

1
i AA T j
/\] 2 I(Z]', 19])‘ ]A219]'A12]'> . (32)

=

€

IN

el < M- e-a ([ f

A8 (25, 8))| gt Alz>

N
[

IN

( : 1(€fffl)<€f¢f>>27 1 s
- , j
( 1)5 S (/ / ‘AAZAI zj, 9 ‘ AT b ) . (33)
s j=17j
s— }:1}]

Note that
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T

€ ]
(/ 1/ )AAZAl ], ‘ A0 A12]>
€1 A2A1 Ll € &
/ / Zl/ 191)‘ A2191A121 ce / / A
T Ts Gs

and then
1

j
/ / / / < AZAl ]’ ] ‘ A219 AlZ > AZ@] cee AzgsA]T] N A1TS

- LL L
LU LD :

j
= H/ / < AZAI Z], ‘ A219 Alz]> Az(:jAlTj.

1
s
7

A A
52 1(25/195

€j

g

AZAl 21,191)‘ A2191A1-Z'1> NG T

sAZAl (Zs/ 195) ) | NrlsATs

(34)

s 1
c (5)e=g) \ BT : 4 e
Dividing (33) on ijl T , integrating over ¢; from a; to ¢; and over
j

Tj from a;j to €; forj=1,2,...,s and using (34), we conclude that

Ai(T, &)
/ / / / ] 1’ 2a2 |Zq lAzgl---A2€SA1T1...A1’rS
< W) =17
lj

€; Ti
/ / / / (/ ! /@ ‘)\A2A1 Z], ’ Azl9 A12]> AZgl ...A2€SA1T1 ...A1T5
]

- (“::) H/ef/ (/ef/ 48201 (2, 8) [ gt Alz]>rjA7_CjA1Tj. (35)
p=

1
AZAl (Z],l9 )’ Ny Y; Alz]) jAz@jAlTj with expo-

€J

Again, using (14) on f I (
nents 7, l; > 1and f(g;,7j) = 1
1

j
3(&, ) = (/ /(AAZAl 2,0, ‘A20A12]> ,

we observe that
A (

it f(/ AL

€

1
A A i
1(z;,87)] 828, Alz-) Mot

A2A1 ], ]‘ A219A12 A2€]A1T> (/ / A2€]A1T>

&

T

]
AZAl Z], ‘ Azl? Alz]Az(;(]AlT]> ,
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and then

n//(

<H(

Tj
AZAI Z], ‘ A219 A12]> Az(;"]'AlT]'

1
r

A j
Az 1 ], ‘ A219 AlZ]Azg]AlTJ>

N‘H
N‘H
VR

1
€ H € Ty
(/’/1/’/ A% (21, 07) [ 88, Alz]AZC]All']> . (36)

Substituting (36) into (35) and applying the Fubini theorem, we see that

Ai(T, &)
/ / / / ] 1| ] i | s lAzgl'--A2€sA1T]...A1TS
( M) =1
lj

s 1

s 1 =1 7/'_5 5 ll [L
(S—Z%r]) [1(ej—a;)7(ej—aj)
j=

T

]

IN

s q i 1r] S s L L
= (S - ) [1(ej—a;)7(ej—a;)"
j

i=1"]

AL (L el oo

]

~

].AZAI (zj, 19])‘ Azﬂ}Alz )Al’r with

Now, by applying (12) on f;;f ( fr?[ ;J

j

€
W(Tj)_/][/ ]AAZAI z],ﬂ)‘ Azﬁ]Alz] and «*(1) =1,

we find that

€

/ (/]V A% (2,0 ‘Azﬂ]Alz]>A17]
e

€]' Sj ]

= K(T-)/
! T l &
€j S]' AA T
] ]

€; € r;
j

j

STNY
]

(Z],ﬁ)‘ Azl9 A1Z]

aj

AlTj

Al T, (38)

where x(7;) = T; — a;. By integrating (38) over ¢; from a; to ¢; and using the Fubini theorem,
we have
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A]Z A]TjAng]'

[ (/ [ ] s
- [ [t 1 1
= [ et [ oo
N W

]

Again, using (12) on the term fgf [fé ‘)LAZAl T, 0 )‘ Ay 0; } Ao with
w(T)) / ‘/\AZA1 T, 9 )‘ A2 0; and x4 (Cj) =
we see that
/‘81 &
Jaj |- Q’j
€ 7
= x(¢) (/g"‘/\fzm (7j, ﬁj)\ ’Aw])
j
€ ’
+ / " (@) M0 (3, 8)| g

= /u (o (&) - ’/\AZAl 7, &)
]

]-AZAI (7, 8; )‘ AyY 1 ArGj

&

aj

s jr (40)
where « (&) = &; — a;. Substituting (40) into (39) and applying Fubini’s theorem, we obtain
tsH €] €
L e
aj 74y
€]‘ S AZ 1
= /e ~a) A <@Jf@\A (5, &7)| 828 | 1
j
_ /a] /a (o(&) —a; ‘AAzAl T, 5])‘ Mgt

- / / (@ (&) —a) ‘AAZA] ]/GJ)‘ AT (41)

Alz]> A1T]A2§]

Substituting (41) into (37), we obtain

Ai(T, &)
/ / / / ] 1’ 2 | s lAzgl"'A2§sA1'L’]...A1TS
l;‘

)jl”sfnq—@><]—@

j=1

[N
<=

i

. (A%f%dn>a»w@»@ﬂﬁﬁ%wéﬁﬁﬁﬁm>
AN

= B] /] /] (0 (1) = a)) (&) — ) |2 (5, @)\”Az@mj) ]
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Hence, (29) is proved. O

Corollary 4. Let T = Z in Theorem 7, aj,€j,€j € Z, ri, lj > 1 such that 1/rj + 1/lj = 1and

A; be real sequences with Aj(Tj,e;) = Aj(ej,&j) = 0 for & € [aj, €] and 7j €

j=12,...,5.Then,o(7) =1+ 1,0(5;) = ¢+ 1and

es—1 e1—1 es—1 e1—1 H;:l‘)\j(”fj/ g])’

Y YL ¥ —
Ts=as T1=m Gs=as G1=a1 < s (e]-’rj)(sjg]-)) j=1
j=1 l]»

e

gj—1 ¢j—1 1]
<B H(E Y. (5 —aj+1) (G —aj+1)[A2812 (1/61”)

Q']_a]T] aj

where B is given by (30).

a;,€;|, where
[] ]]

7

Corollary 5. Let T = R in Theorem 7, aj,€j,€ € R, ri, lj > 1 such that 1/1’]- + 1/l]- =1

and Aj € CC'([aj, €] x [aj €], R) with Aj(7j,¢;) = Aj(ej,&;) = 0 for & €

T € [aj, ej]T, where j =1,2,...,s. Then, o (1j) = 7, 0(&;) = &j and

1] AT, &)
[ //< =T
Iij

s & [€ 20 .
_Blj{</aj /a]- (Tj—af)(gj—aj) ](T] ])

where B is given by (30).

1’]‘ %

[aj, e]-]T and

Corollary 6. Let T = g% for g > 1, aj,ej,€; € T, rj,lj > 1such that 1/rj+1/1; = 1 and

A; are real sequences with Aj(T;,e;) = Aj(€j,¢j) = 0 for & € [aj €] and Tj €

j=12,...,5. Then, o(1;) = qtj, 0(&;) = q&; and

logqesfl logqelfl logqes,l logqsl,l

(7 — D> Ty 58] Ai(7,¢)]

DD D VD Y

j=1 i

S
Tszlogqasrlzlogqal gszlogqascfl:logqal < s (e/-—rj)(sj—gj)) =
I

j=1 \ yj=log, a; {;=log, a;

s log, ej—1 log, €j1
SBH< Y Y (m-a)g-a)a- g]AHm@])\)

[11]', ej} , where

1
"

]

Here, B is given by (30) and the A%—derivative of A(7,¢) is the Ag—derivative with respect to
the first variable T and the A%—derivative of A(7,¢) is the Ag—derivative with respect to the second

variable ¢.

4. Conclusions

In this study, a generalization of the Hilbert-type inequalities within the framework
of time scales in delta calculus. We should note that we used different conditions from
some previous results; thus, various refinements of the classic Hilbert-type inequalities are
obtained. Throughout the work, it is shown that some known results from the literature
are obtained as particular cases of ours. In future research, we aim to showcase these

inequalities by utilizing nabla calculus on time scales.
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