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Abstract: This paper introduces a new 3D chaotic attractor in a gene regulatory network. The
proposed model has eighteen parameters. Formulas for characteristic numbers of critical points
for three-dimensional systems were considered. We show that the three equilibrium points of the
new chaotic 3D system are unstable and deduce that the three-dimensional system exhibits chaotic
behavior. The possible outcomes of this 3D model were compared with the results of the Chua circuit.
The bifurcation structures of the proposed 3D system are investigated numerically, showing periodic
solutions and chaotic solutions. Lyapunov exponents and Kaplan-Yorke dimension are calculated.
For calculations, the Wolfram Mathematica is used.
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1. Introduction

Deterministic chaos of nonlinear dynamic systems is not chaos, usually understood
as complete disorganization and randomness of events; modern ideas about chaos are to
some extent closer to the original ancient Greek ones: “chaos” like a boundless disordered
mass from which everything that exists arose.

Chaos theory is a branch of science that deals with complex systems and their behavior.
Meteorologist Edward Lorenz made a major contribution to chaos theory [1]. During the
1960s, Lorenz developed a computer program that simulated the motion of air masses
within the Earth’s atmosphere [2]. The Lorenz model demonstrated a susceptibility to
initial conditions [3]. Tiny variations in input data resulted in significant discrepancies in
outcomes over time. This reliance on the starting conditions was termed chaos. Lorenz
coined a famous feature of chaos called the “butterfly effect”, the notion that a butterfly stir-
ring the air in Hong Kong today can transform storm systems in New York next month [4].
After Lorenz’s studies, many chaotic systems have been presented to the literature Rossler
system [5], Chen system [6], LU system [7], Sprott system [8] and others. For a long time,
chaos theory was considered a kind of mathematical abstraction that had no confirmation in
real conditions. Now it has applications in various scientific disciplines, including physics
[9], biology (in the study of uneven heart rate and an uneven number of diseases) [10],
meteorology, economics [11], finance [12], geology [13], computer science, engineering,
algorithmic trading, politics [14], population dynamics [15], robotics [16], philosophy [17]
and mathematics.

Chaos is a complex phenomenon defying easy classification or identification. Although
there exists no universally accepted definition for chaos, the solutions of chaotic systems
typically exhibit the characteristics [18].

Characteristics of chaos:
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• chaotic behavior is characterized by the presence of an attractor to which all nearby
solutions tend to converge over time, provided there is ample time for the process [19];

• a common feature of chaotic solutions lies in the geometric structure of their attractors.
These attractors often exhibit intricate and unconventional shapes, characterized by
a twisted and “strange” appearance. This strangeness is indicative of a fractional
(fractal) dimension, although it’s important to note that this isn’t always the case [19];

• sensitivity to initial conditions [18].

Nonlinear ordinary differential equations are the most widespread formalism for
modeling genetic regulatory networks [20]. The main contributions of the present study
are summarized as follows:

• formulas for characteristic numbers of critical points for three-dimensional systems
were considered;

• the new chaotic attractor is obtained;
• the three-dimensional system (7) can have attractors of various kinds;
• the irregular behavior of solutions near the chaotic attractor is conceivable and may

manifest within a narrow parameter range.

2. Materials and Methods
2.1. Chua Circuit

Leon O. Chua is a renowned electrical engineer and computer scientist who has made
significant contributions to the fields of electronics, circuits, and nonlinear science. He was
born on 28 June 1936, in Manila, Philippines. He is a professor in the Electrical Engineering
and Computer Sciences department at the University of California, Berkeley. The pro-
fessor’s scientific projects are related to cellular neural network technologies, bifurcation
theory, nonlinear dynamics, and chaos theory. Leon Chua aimed to show that it was
possible to create chaos. For this purpose, in 1983 he assembled an electrical circuit [21].
It is a simple oscillatory circuit demonstrating a series of bifurcations and a transition to
chaos. In the simple case, Chua’s equations can be written in the following form:

dx
dτ

= α(y − x − f (x)),

dy
dτ

= x − y + z,

dz
dτ

= −βy,

(1)

f (x) =


bx + a − b, x ≥ 1,
ax, |x| ≤ 1,
bx − a + b, x ≤ −1,

(2)

where x, y, z-phase variables, α, β, a, b-parameters (α > 0, β > 0, a < 0, b < 0). Consider

a = −8
7

; b = −5
7

, α = 9, β = 14. (3)

We will replace the piecewise linear function with a cubic polynomial [22].

f (x) =
1
16

x3 − 7
6

x. (4)

The initial conditions are

x(0) = 0.1; y(0) = 0.2; z(0) = 1. (5)

The nullclines are depicted in Figure 1.
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Figure 1. The visualization of nullclines for the system (1). (x−red, y−green, z−blue).

The system possesses precisely three critical points, determined and illustrated as
the intersection points of the nullclines in Figure 1. There are three critical points at
(1.633, 0,−1.633), (0, 0, 0) and (−1.633, 0, 1.633). Linearization around these points provides
us with the characteristic numbers λ. The characteristic numbers are considered in Table 1.

Table 1. Characteristic numbers.

The Critical Point λ1 λ2 λ3

(1.633, 0,−1.633) −4.3563 0.1782 − 3.1315 i 0.1782 + 3.1315 i
(0, 0, 0) 2.4730 −0.9865 − 2.7734 i −0.9865 − 2.7734 i

(−1.633, 0, 1.633) −4.3563 0.1782 − 3.1315 i 0.1782 + 3.1315 i

The type of two critical points is a saddle-focus with one-dimensional stable and
two-dimensional unstable manifolds. The type of critical point (0, 0, 0) is a saddle-focus
with two-dimensional stable and one-dimensional unstable manifolds. The chaotic attractor
is depicted in Figure 2 and the graph of solutions is depicted in Figure 3.

In the equilibrium state at the origin, one root is real and positive, indicating the
direction in which the initial disturbance will grow. A pair of complex conjugate roots
with a negative real part signifies the presence of rotational motion and twisting of the
trajectory towards a singular critical point in the plane of rotation. For each of the other
two equilibrium states, the motion is unstable in the plane of rotation (the real parts of the
complex conjugate pair are greater than zero). At the same time, there exists a direction in
which the phase trajectory approaches the critical point.
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Figure 2. Chua’s double-scroll attractor: Phase portrait for the system (1).
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Figure 3. Solutions (x, y, z) of the system (1) with the initial conditions x(0) = 0.1; y(0) = 0.2; z(0) = 1.

Lyapunov exponents after 5000 steps were L1 = 0.3329, L2 = −0.0012, and L3 =
−2.9923. The largest Lyapunov exponent was greater than 0 as shown in Figure 4.

The Lyapunov exponents characterize the exponential expansion or contraction of
phase-space entities, such as one-dimensional lengths, two-dimensional areas, and three-
dimensional volumes. The largest Lyapunov exponent denoted as LE1 characterizes the
average rate of divergence over time between two adjacent trajectories separated by a
specific distance δ. The sum of the first n Lyapunov exponents describes the divergence
or convergence rate of an n-dimensional phase-space volume [23]. The paper [24] states
that the presence of at least one positive Lyapunov exponent leads to the divergence of
neighboring trajectories, classifying the phase-space motion as “chaotic”, but the positivity
of the calculated senior Lyapunov’s exponent is not the criteria of occurrence in the system
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of chaotic dynamics [25,26]. The computation of the full Lyapunov exponent spectrum is
a rather mathematically complicated issue. Computations are performed using Wolfram
Mathematica. For Lyapunov exponents calculation the package “lce.m for Mathematica”
was used [27].

Figure 4. Lyapunov exponent spectrum of Chua circuit (1).

Meanwhile, according to the Kaplan–Yorke formula,

DKY = j +
1

|Lj+1|

j

∑
i=1

Li = 2 +
L1 + L2

|L3|
= 2.1109 (6)

the fractal dimension also further verifies that the new system has a chaotic behavior [28].
For a dissipative dynamical system, the sum of all Lyapunov exponents should equate to a
negative value [29]. Only dissipative dynamical systems have attractors [30].

2.2. 3D Gene Regulatory System

Consider the system

dx
dt

=
1

1 + e−µ1(w11x+w12y+w13z−θ1)
− v1x,

dy
dt

=
1

1 + e−µ2(w21x+w22y+w23z−θ2)
− v2y,

dz
dt

=
1

1 + e−µ3(w31x+w32y+w33z−θ3)
− v3z,

(7)

where µi, θi and vi are the parameters, wij are the coefficients of the so-called regulatory matrix

W =

 w11 w12 w13
w21 w22 w23
w31 w32 w33

. (8)

The parameters of the GRN have the following biological interpretations:

• vi—degradation of the i-th gene expression product;
• wij—the connection weight or strength of control of gene j on gene i. Positive values of

wij signify activating influences, whereas negative values denote repressing influences;
• θi—The impact of external stimuli on gene i is reflected in its ability to modulate the

gene’s responsiveness to activating or repressing factors [31].
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The nullclines and the critical points for the system are defined by the relations

x =
1
v1

1
1 + e−µ1 (w11x+w12y+w13z−θ1)

,

y =
1
v2

1
1 + e−µ2 (w21x−w22y+w23z−θ2)

,

z =
1
v3

1
1 + e−µ2 (w21x+w22y+w33z−θ3)

.

The sigmoidal function f (t) = 1
1+e−µ is used in (7). Sigmoidal functions exhibit a

continuous increase from zero to one and possess a solitary inflection point. While various
sigmoidal functions exist, the one mentioned above is particularly suitable for analysis and
visualization [32]. Such systems were considered in [20,33–35].

2.3. Linearized System

The linearized system for any critical point (x∗, y∗, z∗)
u′

1 = −v1u1 + µ1w11g1u1 + µ1w12g1u2 + µ1w13g1u3,
u′

2 = −v2u2 + µ2w21g2u1 + µ2w22g2u2 + µ2w23g2u3,
u′

3 = −v3u3 + µ3w31g3u1 + µ3w32g3u2 + µ3w33g3u3,

where

g1 =
e−µ1(w11x∗+w12y∗+w13z∗−θ1)

[1 + e−µ1(w11x∗+w12y∗+w13z∗−θ1)]2
, (9)

g2 =
e−µ2(w21x∗+w22y∗+w23z∗−θ2)

[1 + e−µ2(w21x∗+w22y∗+w23z∗−θ2)]2
, (10)

g3 =
e−µ3(w31x∗+w32y∗+w33z∗−θ3)

[1 + e−µ3(w31x∗+w32y∗+w33z∗−θ3)]2
. (11)

One has

A − λI =

∣∣∣∣∣∣
µ1w11g1 − v1 − λ µ1w12g1 µ1w13g1

µ2w21g2 µ2w22g2 − v2 − λ µ2w23g2
µ3w31g3 µ3w32g3 µ3w33g3 − v3 − λ

∣∣∣∣∣∣
and the characteristic equation is

det|A − λI| = −λ3 + λ2(−v1 − v2 − v3 + µ1w11g1 + µ2w22g2 + µ3w33g3) + λ(g1v3µ1w11+

+µ2w22g2v3 + g1g2w21µ1µ2w12 − g1g2w11w22µ1µ2 + g1g3w31w13µ1µ3−

−g1g3w11w33µ1µ3 + g2g3w32w23µ2µ3 − g2g3w22w33µ2µ3 − v1(v2 + v3 − g2w22µ2 − g3w33µ3)+

+v2(−v3 + g1w11µ1 + g3w33µ3)) + v1(v2(−v3 + g3w33µ3) + g2µ2(v3w22 + g3w32w23µ3−

g3w22w33µ3)) + g1µ3(v2(v3w11 + g3(w31w13 − w11w33)µ3) + g2µ2(v3(w21w12 − w11w22)+

+g3(−w31w22w13 + w21w32 w13 + w31w12w23 − w11w32 w23 − w21w12w33 + w11w22 w33)µ3)) = 0.

The characteristic equation can be rewritten as

−λ3 + Aλ2 + Bλ + C = 0, (12)

where
A = −(v1 + v2 + v3) + g1w11µ1 + g2w22µ2 + g3w33µ3,
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B = µ1µ2w31w13g1g3 − µ2µ3w32w23g2g3 + µ1µ2w21w12g1g2
−(µ2w22g2 − v2)(µ3w33g3 − v3)− (µ1w11g1 − v1)(µ3w33g3 − v3)
−(µ1w11g1 − v1)(µ2w22g2 − v2),

C = (µ1w11g1 − v1)(µ2w22g2 − v2)(µ3w33g3 − v3) + µ1µ2µ3w21w32w23g1g2g3
+µ1µ2µ3w31w12w23g1g2g3 − µ1µ3w31w13g1g3(µ2w22g2 − v2)
−µ2µ3w32w23g2g3(µ1w11g1 − v1)− µ1µ2w21w12g1g2(µ3w33g3 − v3).

Theorem 1. The vector field ( f1(x, y, z), f2(x, y, z), f3(x, y, z)), where f1, f2 and f3 are the right
sides of the equations in (7), is directed inward on the boundary of the domain Q3 := {(x, y, z) :
0 < x < 1

v1
, 0 < y < 1

v2
, 0 < z < 1

v3
}.

Proof of Theorem 1. Take one of faces of the parallelepiped Q3, for example, x = 0. The

vector field there in the x direction is f1 − v1, x = f > 0. Take face x =
1
v1

. The vector field

in the x direction is f1 − v1, x = f1 − v1,
1
v1

= f1 − 1 < 0. In both cases, the vector field

along the x axis is directed inside Q3. Similarly, other faces of Q3 can be considered.

Theorem 2. System (7) has at least one equilibrium (critical point). All equilibria are located in the
open box Q3 := {(x, y, z) : 0 < x < 1

v1
, 0 < y < 1

v2
, 0 < z < 1

v3
}.

This follows from the result of the mapping of a topological ball into itself. The second
assertion follows from the fact that nullclines meet and can intersect only in Q3.

3. Results
3.1. 3D Chaotic Attractor

The system (7) with the matrix

W =

 0.06 −0.825 0.19
1.915 1.76 −0.32

3.7 0.128 0.985

 (13)

and µ1 = 4, µ2 = 5.02, µ3 = 8, v1 = v2 = v3 = 1 and

θ1 =
w11 + w12 + w13

2
,

θ2 =
w21 + w22 + w23

2
,

θ3 =
w31 + w32 + w33

2
has three critical points. Linearization around these points provides us with the characteris-
tic numbers λ.

The initial conditions are

x(0) = 0.592; y(0) = 0.85; z(0) = 2. (14)

The nullclines are depicted in Figure 5.



Mathematics 2024, 12, 100 8 of 17

Figure 5. Nullclines x1—red, x2—green, x3—blue of the system (7) with the regulatory matrix (13).

The characteristic equation for critical points is (12). The coefficients of characteristic
Equation (12) are considered in Table 2.

Table 2. Coefficients of characteristic Equation (12).

The Critical Point A B C

(0.4398, 0.4545, 0.0032) −0.725248 −0.557956 −0.787449
(0.5, 0.5, 0.5) 1.2388 0.195983 1.59353

(0.5602, 0.5455, 0.9968) −0.725248 −0.557956 −0.787449

Characteristic numbers are considered in Table 3.

Table 3. Characteristic numbers.

The Critical Point λ1 λ2 λ3

(0.4398, 0.4545, 0.0032) −0.9780 0.12638 − 0.888361 i 0.12638 + 0.888361 i
(0.5, 0.5, 0.5) 1.82477 −0.292985 − 0.887376 i −0.292985 + 0.887376 i

(0.5602, 0.5455, 0.9968) −0.9780 0.12638 − 0.888361 i 0.12638 + 0.888361 i

The type of two critical points is a saddle-focus with one-dimensional stable and two-
dimensional unstable manifolds. The type of critical point (0.5, 0.5, 0.5) is a saddle-focus
with two-dimensional stable and one-dimensional unstable manifolds. The chaotic attractor
is depicted in Figures 6 and 7. The graph of solutions is depicted in Figures 8 and 9.
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Figure 6. The visualization of chaotic attractor of the system (7) with the regulatory matrix (13).

Figure 7. The visualization of chaotic attractor of the system (7) with the regulatory matrix (13),
other view.
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Figure 8. Solutions (x, y, z) of the system (7) with the regulatory matrix (13).

100 200 300 400 500
t

0.2

0.4

0.6

0.8

1.0

1.2

1.4

8x, y, z<

Figure 9. Solutions (x, y, z) of the system (7) with the regulatory matrix (13).

Lyapunov exponents after 5000 steps were L1 = 0.0398, L2 = −0.0026 and L3 =
−0.7665. The largest Lyapunov exponent was greater than 0 as shown in Figure 10.

Figure 10. Lyapunov exponent of the system (7) with the regulatory matrix (13).
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3.2. Bifurcation

The bifurcation theory of differential equation systems, first introduced in the works
of Jules Henri Poincare (1854–1912), elucidates qualitative, abrupt alterations in the phase
portraits of these systems as their parameters undergo continuous and smooth changes [36].
We take w23 as a bifurcation parameter (that is, the third element in the second row) in the
regulatory matrix (13). Computations are performed using Wolfram Mathematica. Results
of calculations for the system (7) with regulatory matrix (13), changing the parameter w23.
are considered in Table 4.

Table 4. Results of calculations for the system (7) with regulatory matrix (13), changing the
parameter w23.

w23 x∗, y∗, z∗ λ1 λ2 λ3

−0.569
(0.2673, 0.6735, 0.00002) −0.9998 −0.0051 − 0.6838 i −0.0051 − 0.6838 i

(0.5, 0.5, 0.5) 2.0836 −0.4224 − 1.2107 i −0.4224 + 1.2107 i
(0.7327, 0.3265, 0.99998) −0.9998 −0.0051 − 0.6838 i −0.0051 + 0.6838 i

−0.5
(0.3190, 0.6015, 0.0001) −0.9990 0.0849 − 0.7646 i 0.0849 + 0.7646 i

(0.5, 0.5, 0.5) −0.3913 −0.3913 − 1.1361 −0.3913 + 1.1361
(0.6810, 0.3985, 0.9999) −0.9990 0.0849 − 0.7646 i 0.0849 + 0.7646 i

−0.4
(0.3885, 0.5144, 0.0007) −0.9941 0.1319 − 0.8505 i 0.1319 + 0.8505 i

(0.5, 0.5, 0.5) 1.9197 −0.3404 − 1.0104 i −0.3404 + 1.0104 i
(0.6115, 0.4856, 0.9993) −0.9941 0.1319 − 0.8505 i 0.1319 + 0.8505 i

−0.3
(0.4521, 0.4406, 0.0046) −0.9698 0.1214 − 0.8932 i 0.1214 + 0.8932 i

(0.5, 0.5, 0.5) 1.7985 −0.2799 − 0.8520 i −0.2799 + 0.8520 i
(0.5479, 0.5594, 0.9954) −0.9698 0.1214 − 0.8932 i 0.1214 + 0.8932 i

−0.241
(0.4873, 0.4023, 0.0133) −0.9247 0.1061 − 0.8937 i 0.1061 + 0.8937 i

(0.5, 0.5, 0.5) 1.7130 −0.2371 − 0.7312 i −0.2371 + 0.7312 i
(0.5127, 0.5977, 0.9868) −0.9247 0.1061 − 0.8937 i 0.1061 + 0.8937 i

−0.24
(0.4879, 0.4017, 0.0135) −0.9235 0.1059 − 0.8935 i 0.1059 + 0.8935 i

(0.5, 0.5, 0.5) 1.7114 −0.2363 − 0.7289 i −0.2363 + 0.7289 i
(0.5121, 0.5983, 0.9865) −0.9235 0.1059 − 0.8935 i 0.1059 + 0.8935 i

0 (0.5, 0.5, 0.5) −0.7071 0.9729 − 0.3612 i 0.9729 + 0.3612 i

8 (0.5, 0.5, 0.5) −3.7550 2.4969 − 3.1062 i 2.4969 + 3.1062 i

Lyapunov exponents are considered in Table 5.

Table 5. Lyapunov exponents.

w23 LE1 LE2 LE3

−0.569 −0.0106 −0.0149 −0.9997
−0.5 −0.00002 −0.1529 −0.9907
−0.4 0.0026 −0.2235 −0.8975
−0.3 0.0309 −0.0127 −0.7389
−0.241 0.0512 −0.0062 −0.6901
−0.24 0.0020 −0.0260 −0.7109

0 −0.0029 −0.6131 −0.9340
8 0.0016 −0.9139 −1.5327

Periodic attractors are depicted in Figures 11–13. Graphs of solutions are depicted in
Figures 14–16. The chaotic attractor is depicted in Figure 17 and the graph of solutions is
depicted in Figure 18.
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Figure 11. The visualization of the periodic attractor, w23 = −0.569.

Figure 12. The visualization of the periodic attractor, w23 = −0.4.



Mathematics 2024, 12, 100 13 of 17

Figure 13. The visualization of the periodic attractor, w23 = 8.
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Figure 14. Solutions (x, y, z) of the system (7) with the regulatory matrix (13), w23 = −0.569.
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Figure 15. Solutions (x, y, z) of the system (7) with the regulatory matrix (13), w23 = −0.4.
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Figure 16. Solutions (x, y, z) of the system (7) with the regulatory matrix (13), w23 = 8.
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Figure 17. The visualization of the chaotic attractor, w23 = −0.2401.
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Figure 18. Solutions (x, y, z) of the system (7) with the regulatory matrix (13), w23 = −0.2401.

4. Discussion

A definite similarity was found between the Chua circuits and systems of the form (7),
which are used in the mathematical modeling of genetic and neuronal networks. An analy-
sis of critical points and their mutual positions in the Chua system motivated us to study
similar configurations in GRN systems. The local analysis of critical points gave hints of
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what should be arranged in GRN systems to get similar behavior of trajectories as in the
Chua system. For this, multiple parameters, built into GRN systems, were useful. The
desired behavior can be reached by shifting the nullclines, changing θ parameters, or/and
changing the elements of the regulatory matrix, and regulating the form of sigmoidal
functions by changing µ parameters. Looking at the data being collected during the study,
one may observe some properties that eventually lead to chaotic behavior. As an example,
Tables 1–3 with the local characteristics of the critical points, should be mentioned. The
bifurcation analysis made in the article concerns the varying of one parameter. The changes
in the characteristics of critical points and fractal dimensionality of the chaotic attractor,
give rise to conclusions and may indicate directions of further numerical experiments.
Some questions arise. For instance, the monotone change in the parameter w23 leads to
generally non-monotone changes in characteristics of the critical points and KY fractal
dimensionalities of the chaotic attractor. Analyzing the collected data may lead to the for-
mulation of directions for further studies. The questions that should be answered: what is
the minimal (or optimal) number of critical points needed for the birth of a strange attractor;
what is the minimal configuration (positions, local characteristics) that ensures a transition
to chaotic behavior; is the transition to chaotic behavior in the studied system possible
without passing through the stable periodic solution stage; could sufficient conditions be
formulated to ensure passage to chaotic behavior from a given configuration; what is the
description of this configuration; what are the necessary conditions concerning passage
to chaotic behavior; is it possible to pass from periodic attractors to chaotic ones through
continuous change of KY dimensionality; generally, what is the role of jump changes in a
system to go to the strange (chaotic) attractor?

This list can be continued and answering some, or all, of the formulated questions
concerning the system (7) (with matrix (13), at least) would indicate the essential progress
in understanding the process of formation of a chaotic attractor. So further investigations in
this direction promise results, which may be relevant and important for the general theory
of dynamical systems.
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