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Abstract: In order to perform a surgical procedure, substantial numbers of sterile instruments should
be readily available to surgeons through the containers referred to as surgical trays and peel packs.
After the procedure, all instruments in the opened containers, regardless of whether they have been
used or not, must go through the labor-intensive re-sterilization process. Empirical studies have
shown that the utilization rate of instruments within trays is very low due to not having optimized
tray configurations. Additionally, surgical trays often include instruments that are not likely to
be used but are included “just in case”, which imposes an additional cost on hospitals through
unnecessary instrument re-sterilization. This study is the first analytical attempt to address the issue
of configuring surgical trays based on the likelihood of instrument usage through formulating and
solving a probabilistic tray optimization problem (PTOP). The PTOP model can serve as a decision
support for surgeons by providing them with the tray’s probability of being used for optimally
configured trays and its associated reprocessing costs. The PTOP is constructed upon an integer
non-linear programming model. A decomposition-based heuristic and metaheuristic method coupled
with two novel local search algorithms are developed to solve the PTOP. The application of this model
can be illustrated through a case study. We discuss how hospitals could benefit from our model in
reducing the costs associated with opening trays unnecessarily before a procedure. Additionally, we
conducted a risk analysis to estimate the level of confidence for the recommended solution.

Keywords: healthcare operations; surgical instruments; probabilistic tray optimization problem;
operations research; meta-heuristics; decision support systems

MSC: 90C90

1. Introduction

In the United States, health expenditures are projected to grow by 5.4 percent an-
nually to reach $6.2 trillion by 2028 [1]. Hospitals account for about one-third of health
expenditure [1], and operating rooms are the main cost drivers within hospitals [2,3]. An
improvement in managing sterile instruments and disposable surgical supplies is one
area where operating rooms could reduce costs. Surgeons request these items on their
preference cards for performing procedures. The surgeons’ preference cards also indicate
which surgical supplies must be opened before a procedure. Several recent studies have
introduced methodologies for managing disposable surgical supplies based on historical
data and determining the quantity to include in a surgeon’s preference card to be opened
before procedures [4,5]. For sterile instruments, the ones that surgeons require to perform a
procedure must have already been packed into surgical trays and peel packs. However,
the trays are not surgeon specific, and a tray type may contain instruments requested by
multiple surgeons, which leads to some instruments remaining unused during a procedure.
After the procedure, if a tray is opened, all instruments in the tray, regardless of whether
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the instruments are used or not, must proceed to the Sterilization Processing Department
(SPD) for cleaning, inspections and grouping into trays. Our research focuses on managing
sterile instruments.

There is evidence that shows a high proportion of instruments in trays are not used
during the procedures, which causes millions of dollars of cost burden on hospitals. Stockert
and Langerman [6] observed that about 82.9% of instruments had not been used across
four busy surgical services (i.e., Bariatric Surgery, Plastic Surgery, Otolaryngology, and
Neurosurgery). In another study, Mhlaba et al. [7] reported that the utilization rate for
the plastic soft tissue tray and the major laparotomy tray was 14% and 29%, respectively.
Koyle et al. [8] have also indicated a utilization rate of 42% for the pediatric inguinal hernia
repair tray.

A direct observation of tray usage has been conducted by the authors of this manuscript
at the SPD of Geisinger Health System for the Laparoscopic and Plastic major trays. The
Geisinger Health System is an integrated healthcare organization located in Pennsylvania,
USA that has 12 hospitals serving more than three million people. For a single observation
of Laparoscopic and Plastic trays, the utilization rates were 25% and 18%, respectively. Fig-
ure 1 illustrates a Plastic tray with 14 of the 79 instruments used during a procedure. Since
the operations of the SPD are very labor-intensive, the cost associated with the unnecessary
processing of instruments is significant. Farrokhi et al. [9] reported an annual cost saving
of $60,000 by reducing 70% of instruments in the trays for two procedures. Then, they
projected that the institution could achieve a $2.8 M annual saving by similar instrument
reductions in all trays. Harvey et al. [10] also reported that two procedures of the female
pelvic medicine and the minimally invasive gynecologic could annually save $151,691
by safely removing unused instruments from their surgical trays. Nast and Swords [11]
indicated that improvements in the management of surgical trays in a way that more than
50% of their instruments could be reduced could lead to at least 20% of cost savings.
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Better management of surgical trays would not only result in immediate cost savings
but also allow for indirect cost reductions. The frequent handling of the trays in the SPD and
operating rooms is the main reason for the development of Work-Related Musculoskeletal
Disorders (WRMSDs) among Perioperative Nurses and Technicians (PNT) [12–15]. The
occurrence of WRMSDs diminishes the productivity of the PNTs, which has financial impli-
cations for hospitals through the absenteeism of PNTs from work. In addition, improved
surgical trays could allow for cost savings through a reduced setup time required for
counting the instruments before and after the procedures [8,11], as the average cost of
running an operating room is estimated to be $63.64 per minute [16].

For improving the management of surgical trays and their sterile instrument com-
ponents, a hospital has to make three types of decisions: (1) determine the configuration
of the trays regarding the type and the number of instruments; (2) assign the configured
trays to surgeons and procedures; and (3) determine the quantity of each tray type [2,17,18].
The two former decisions depend on the surgeon’s preferences in the type and quantity
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of requested instruments. The last decision is driven by the frequency and scheduling
of the cases. This problem of configuring surgical trays is known as the tray optimization
problem (TOP).

Despite the importance and significant impact of managing surgical trays on hospital
costs, there have been relatively few studies devoted to addressing it. Van De Klundert et al. [19]
developed an integer linear programming model for the TOP and proved that the TOP is
an NP-hard problem. Florijn [20] focused on developing an optimization model for the
TOP with the objectives of minimizing the number of trays, the handling of trays, and the
number of instruments. Reymondon et al. [21] developed a non-linear mathematical model
to solve the TOP. Dobson et al. [22] designed a heuristic for solving the TOP and showed
that the optimal solution of the TOP depends on both the surgeon’s preferences and the
operation rooms’ schedules. Dollevoet et al. [17] also formulated the TOP and defined
capacity constraints to incorporate the capacity of trays into modeling. They proposed
three solution methodologies: row and column generation, greedy heuristics, and genetic
algorithm. Ahmadi et al. [2] designed a bi-objective optimization model for the TOP to
concurrently enhance the utilization rate of the instruments and decrease the tray types
required for each procedure. They took the weight of the trays into account to avoid
composing overweight trays to decrease the risk of WRMSDs. They also developed an
iterated local search heuristic for solving the designed model. For a comprehensive review
of sterile instrument management papers, readers are referred to Ahmadi et al. [18] and Dos
Santos et al. [23]. Harris and Claudio [24] formulated the TOP using a goal programming
approach. Most recently, Deshpande et al. [25] developed an integer programming model
and used real instrument usage data to address the TOP.

All aforementioned papers developed deterministic models for the TOP based on
the assumption that the instances of instruments required for performing a procedure
are precisely known in advance. However, this is not true in practice. Even if an instru-
ment is requested by a surgeon for a procedure, it may be unneeded for a specific patient.
Instruments are included to ensure the quality of care, which leads to having to repro-
cess instruments that were not used during a procedure, which imposes a high cost on
the system.

A recently published paper utilized the empirical usage distributions of disposable
surgical supplies to determine the optimal quantity to be included on the surgeon’s pref-
erence cards and to be opened before the procedure [4]. The authors used a newsvendor
approach to formulate the problem of designing surgeons’ preference cards and evaluated
their model under different service levels. However, this research does not address the
configuration of surgical trays. In our research, we considered the fact that the true usage
of instruments highly depends on the surgeon’s preferences, as well as the condition of
patients during the procedure. Therefore, we extended the conventional deterministic TOP
to the probabilistic tray optimization problem (PTOP), which enabled us to configure trays
based on the likelihood of instrument usage. To this aim, the cost components (i.e., the
cost associated with inventory, sterilization, and processing of instruments), along with the
historical data about instrument usage, could be incorporated to configure trays. To solve
the PTOP, we constructed a heuristic algorithm based on the well-known p-median prob-
lem. In addition, we developed an empowered genetic algorithm with two local searches
to solve the PTOP. The performances of different solution approaches were investigated
through a case study.

The designed probabilistic optimization method captures instruments that are never
(or rarely) used and has them grouped separately from the instruments with a high chance
of usage. It provides surgeons with the tray’s probability of being used and the associated
costs. This information, along with case consideration, enables surgeons to better decide
whether to open a tray before a procedure or to only open the tray if it is needed during a
procedure. Since hospitals incur high costs for the supplies and instruments to function
properly, and a great quantity of these items are left unused, the implementation of the
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proposed model is expected to have a broad financial impact by eliminating unnecessary
healthcare costs.

The rest of this paper is organized as follows. In Section 2, the PTOP is described in
detail. In Section 3, the mathematical model describing the PTOP is formulated, followed
by solution methods presented in Sections 4 and 5. In Section 6, the incorporated case
study, along with the computational results, are reported. In Section 7, managerial insights
are discussed. Finally, the conclusion and discussion about implementing our model are
covered in Section 8.

2. Problem Description

In order to perform a procedure in an operating room (OR), surgeons request a list
of sterile instruments, which have already been grouped into trays and peel packs, to be
available in the OR. The trays and peel packs associated with these sterile instruments
are included on the surgeons’ preference cards. A collection of surgeons’ preference cards
can be shown using a matrix whose rows and columns represent surgeon procedures
and instruments, respectively. The elements of this matrix indicate the number of each
instrument a surgeon has requested to perform a given procedure. A sample of the matrix
constructed based on two surgeons and three procedures (i.e., six surgeon-procedure
combinations) and five instruments has been shown in Table 1. For example, surgeon-
procedure 5 requested one instance of instrument 3, while surgeon-procedure 6 requested
two instances of instrument 3. Therefore, if two instances of instrument 3 are placed in
the same tray type, and the tray type is assigned to surgeon-procedure 5 and surgeon-
procedure 6, every time surgeon-procedure 5 performs that particular procedure, one
instance of instrument 3 that was not requested would be sent in the tray. These unrequested
instruments cause unnecessary reprocessing such as inspection, re-sterilization, packaging,
and handling, all of which can be reduced through an improved tray configuration.

Table 1. An example of surgeons’ preference cards.

Surgeon-Procedures
Instrument

1 2 3 4 5

1 0 2 0 3 1

2 0 1 3 0 1

3 2 3 2 1 2

4 1 1 1 0 2

5 2 2 1 0 2

6 2 0 2 1 0

In addition, not all of the instruments requested by surgeons are used. Whether an
instrument is used for a procedure depends on the patient’s condition during the procedure,
so surgeons often request extra instruments to be included in the trays just in case. By
grouping instruments that are unlikely to be used in separate trays from those that are
frequently used, surgeons can decide whether to open the trays before or during the
procedure. Not opening the trays that contain less frequently used instruments before the
procedure can lead to the decreased reprocessing of unused instruments.

The above-discussed issues can be addressed by solving the probabilistic tray op-
timization problem (PTOP), which consists of two decisions: configuring surgical trays
based on the likelihood of instrument usage and then assigning the configured trays to the
surgeon procedures. In order to formally describe the PTOP, we can define the usage of the
jth copy of instrument i for surgeon-procedure k as a random variable with Pijk probability
of being used. In other words, there is a Pijk chance that the jth copy of instrument i will be
used during surgeon-procedure k, and 1− Pijk chance that the instrument will not be used.
Throughout the rest of this paper, for the sake of simplicity, the procedure is used instead of
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the tuple surgeon-procedure so that each surgeon performing a given procedure is treated as
a unique procedure.

To show the probability of usage associated with each instance of instruments, the
matrix describing the PTOP (i.e., Table 1) is converted to a zero-one matrix, namely a
procedure-instrument incidence matrix (PIIM), with the same number of rows as the
original PTOP matrix. Each column i in the original PTOP matrix is converted to Ni
columns in the PIIM, where Ni = max

k
{Aik} and Aik is the requested quantity of item i

for procedure k. The entries in the PIIM, aijk, are equal to “1” if the jth copy of instrument
i is requested for procedure k and 0 otherwise, where aijk ≥ aij′ k if j < j′. The PIIM
corresponding to the PTOP example shown in Table 1 is provided in Table 2.

Table 2. The binary representation of the surgeons’ preference cards.

Surgeon-Procedures
Instrument

1 2 3 4 5

1 0 0 1 1 0 0 0 0 1 1 1 1 0

2 0 0 1 0 0 1 1 1 0 0 0 1 0

3 1 1 1 1 1 1 1 0 1 0 0 1 1

4 1 0 1 0 0 1 0 0 0 0 0 1 1

5 1 1 1 1 0 1 0 0 0 0 0 1 1

6 1 1 0 0 0 1 1 0 1 0 0 0 0

Each column of the PIIM stands for an instance of an instrument, which can be treated
as a single instrument. For example, the first column of PIIM stands for the first instance of
instrument 1, the second column stands for the second instance of instrument 1, the third
column stands for the first instance of instrument 2, and so on. One of our assumptions in
this study is that each surgeon performed a procedure only one time in a given day, and
therefore, instruments are not reused within a day. Given this assumption, it is obvious that
for each instrument i, at least Ni instances needed to be stocked in an inventory to ensure
that what surgeons requested on their preference cards would be available within a tray in
the OR. For the instruments and procedures in the PIIM, we could show the probability
of each instrument’s usage, denoted by Pijk, as presented in Table 3, where Pijk ≥ Pij′ k if
j < j′. For example, Table 3 shows that the first instance of instrument 1 had an 80% chance
of being used during procedure 3, while its second instance had a 15% chance of usage
during the same procedure.

Table 3. The probability distribution of instruments’ usage.

Proc.
Instrument

1 2 3 4 5

1 0.00 0.00 0.95 0.70 0.00 0.00 0.00 0.00 0.76 0.25 0.18 0.95 0.00

2 0.00 0.00 0.56 0.00 0.00 0.48 0.26 0.12 0.00 0.00 0.00 0.80 0.00

3 0.80 0.15 0.70 0.53 0.01 0.60 0.18 0.00 0.45 0.00 0.00 0.75 0.14

4 0.90 0.00 0.40 0.00 0.00 0.68 0.00 0.00 0.00 0.00 0.00 0.85 0.12

5 0.45 0.15 0.15 0.05 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.65 0.20

6 0.85 0.20 0.00 0.00 0.00 0.39 0.25 0.00 0.78 0.00 0.00 0.00 0.00

The specific question to be answered in this research is how to cluster instruments into
containers (i.e., trays and peel packs) to decrease the expected number of instruments that
were reprocessed without being used. A container is defined as a “peel pack” if it holds a
single instrument by itself; otherwise, the container can be referred to as a “tray type”. The
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next section describes the formulated mathematical model followed by a solution approach
for answering this question.

3. Mathematical Formulation

We assumed that instrument usages were mutually independent and did not account
for correlated instruments that are often used together. In the absence of data, we were not
able to directly verify this assumption.

• Indices

i: Index for instrument, i ∈ {1, 2, 3, . . . , I}.
ij: Index for jth copy of instrument i, j ∈ {1, 2, 3, . . . , Ni} where Ni is the maximum

number of instruments of type i that can be required in one procedure.
k: Index for procedure, k ∈ {1, 2, 3, . . . , K}.
t: Index for container (i.e., tray or peel pack), t ∈ {1, 2, 3, . . . , T}.

• Parameters

aijk: The elements in the PIIM.
Pijk: The probability that jth copy of instrument i will be used during procedure k.
Wi: Unit weight of instrument i.
Fk: Frequency of procedure k performed in a year.
L: Weight limit for each tray type established by AAMI and AORN.
C1: The unit cost of reprocessing an instrument in a tray.
C2: The unit cost of reprocessing an instrument in a peel pack.
C3: The unit cost associated with administration and handling of a tray type.
C4 : The unit cost associated with administration and handling of a peel pack.
M: A big number.

• Objective function

Min f = f1 + f2 + f3 + f4

f1 : C1

[
T

∑
t=1

(1− et)
K

∑
k=1

ytkFk

(
I

∑
i=1

Ni

∑
j=1

zijt

)(
1−

I

∏
i=1

Ni

∏
j=1

(
1− zijtPijk

))]
(1a)

f2 : C2

[
T

∑
t=1

et

K

∑
k=1

ytkFk

I

∑
i=1

Ni

∑
j=1

zijtPijk

]
(1b)

f3 : C3

T

∑
t=1

K

∑
k=1

Fkxtytk(1− et) (1c)

f4 : C4

T

∑
t=1

K

∑
k=1

Fkxtytket (1d)

This is subject to:

I

∑
i=1

Ni

∑
j=1

zijtWi ≤ xtL, ∀t ∈ {1, . . . , T}, (2)

T

∑
t=1

ytkzijt ≥ aijk, ∀ i ∈ {1, . . . , I}, j ∈ {1, . . . , J},k ∈ {1, . . . , K}, (3)

I

∑
i=1

Ni

∑
j=1

zijt ≤ (1− et)M + 1, ∀t ∈ {1, . . . , T}, (4)
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I

∑
i=1

Ni

∑
j=1

zijt ≥ 2− 2et, ∀t ∈ {1, . . . , T}, (5)

T

∑
t=1

zijt = 1, ∀i ∈ {1, . . . , I}, j ∈ {1, . . . , J}, (6)

zijt ∈ {0, 1}, xt ∈ {0, 1}, ytk ∈ {0, 1}, ∀ k ∈ {1, . . . , K}, i ∈ {1, . . . , I},
et ∈ {0, 1}, t ∈ {1, . . . , T}, j ∈ {1, . . . , Ni}.

(7)

In the first component of the objective function, the term
I

∏
i=1

Ni
∏
j=1

(
1− zijtPijk

)
indicates

the probability that none of the instruments in tray type t are used for procedure k, i.e., the

probability that tray type t remains unused. Therefore,
(
1−

I
∏
i=1

Ni
∏
j=1

(
1− zijtPijk

))
describes

the likelihood of tray t being used during a procedure k. Multiplying this expression by

the total number of instruments in the tray (i.e.,
I

∑
i=1

Ni
∑

j=1
zijt) yields the expected number of

instruments that are exposed during the procedure. Likewise,
I

∑
i=1

Ni
∑

j=1
zijtPijk describes the

expected number of instruments in peel packs that are exposed during the procedure. Thus,
component (1a) is the total expected reprocessing cost of the instruments in trays, including
the cost of re-sterilization, the cost of inspection, and the cost of packing instruments into
trays. Component (1b) is the total expected reprocessing cost of instruments in peel packs.
Component (1c) is the total administrative cost associated with handling and stocking tray
types. Creating more tray types as a result of separating the existing trays into additional
smaller trays induces higher logistics costs that are related to stocking and transporting
them. Finally, component (1d) is the total administrative cost of peel packs. It should also
be noted that the model assumes that the reprocessing costs only depend on whether an
instrument is in a tray or a peel pack, and the costs associated with instruments that are
in the same tray are the same. Even though the sterilization time varies with the type of
instrument, it is very difficult to quantify the time and, therefore, the cost of sterilizing
every single instrument.

Constraint set (2) imposes a weight limit for trays to not exceed a user-specified
value. In order to prevent or reduce ergonomic, sterilization, and drying issues, the
Association for the Advancement of Medical Instrumentation (AAMI) recommends that
the weight of surgical trays not exceed 25 pounds [26]. Constraint set (3) respects the
surgeons’ preferences in the type and quantity of instruments. Constraint sets (4) and (5)
can determine whether an instrument is in a peel pack or placed in a tray. It can be recalled
that the peel packs and tray types are distinguished by the number of instruments in the
container. If two or more instruments are grouped together to be placed in a container,
this is referred to as a tray, but if a single instrument is placed in a container by itself, this
is defined as a peel pack. Constraint set (6) ensures that each instrument has only been
assigned to one tray. Constraint set (7) imposes binary conditions of decision variables.
Since the objective function (1) and constraint set (3) involve non-linear terms, this model is
an integer non-linear programming model (INLP).

Lemma 1. The PTOP described by (1)–(7) is NP-hard.

Proof of Lemma 1. Karp [27] proved that the set-covering problem is an NP-hard problem.
Here, we showed that the set-covering problem was not more complex than the determinis-
tic version of the PTOP. This meant that the set-covering problem was reducible to PTOP in
polynomial time complexity.
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We defined an instance of a set-covering problem by a universe U = {1, . . . , n} and a
set S containing subsets of U . The objective was to find the cover C, where C ⊆ S , had the
smallest cardinality such that its union was U . Then, we defined U as the set of instruments,
S as the collection of all possible containers, and a single procedure K = 1.

For simplicity, instruments of the same type were assumed to be indexed sequentially.
For example, the first copy of instrument 1 was indexed 1, the second copy was indexed
2, and so on. We also set C3 = C4 = 0, C1 = C2 = 1, and ai1 = 1 for i ∈ U . For a given
container t ∈ S , zit = 1 if i ∈ t . Thus, for a given container t ∈ S , zit, et , and xt become a
parameter instead of a variable.

We also assumed that Pi1 = 1 for all instruments i ∈ U (i.e., deterministic version of
the PTOP), and F1 = 1. The PTOP can be written as:

Min f = ∑
t∈S

(1− et)yt1 ∑
i∈U

zit + ∑
t∈S

etyt1 ∑
i∈U

zit

For a given t ∈ S if |t| = ∑
i∈U

zit = 1 then et = 1 (i.e., the container is a peel pack),

and if |t| = ∑
i∈U

zit ≥ 2 then et = 0 (i.e., the container is a tray). Thus, the objective

function becomes:
Min f = ∑

t∈S
yt1 ∑

i∈U
zit

This is subject to:
∑
t∈S

yt1zit ≥ 1,∀i ∈ U ,

yt1 ∈ {0, 1},∀t ∈ S .

This matches the ILP formulation of the set-covering problem. �

Lemma 1 implies that the PTOP cannot be solved in a reasonable time with any INLP
solver, even for small sizes. Given this challenge, a heuristic and a metaheuristic algorithm
were developed to solve the formulated PTOP. To this aim, the PTOP can be decomposed
into two sub-problems, namely the probabilistic tray configuration problem (PTCP) and
the probabilistic tray assignment problem (PTAP).

The PTCP deals with the problem of grouping instruments into trays and/or peel
packs. More specifically, the PTCP determines which instruments and in what quantities
should be grouped into the same tray, as well as which instruments should be wrapped as
a peel pack. In the next step, the PTAP utilizes the solution of the PTCP and determines
which tray types and peel packs should be assigned to each surgeon and procedure to
provide all the instruments listed on the preference card. In the following sections, we
design and discuss a heuristic and a metaheuristic for dealing with PTCP. These approaches
determine the values for three out of four decision variables of the PTOP (i.e., zijt, xt, and
et). In order to cope with PTAP, which is the problem of determining values of the ytk
decision variables, the solution generated by solving the PTCP can be fixed to the PTOP so
that the PTAP becomes the trivial problem of solving an integer linear programming with
objective function (1) subject to the constraint set (3).

4. Heuristic for Solving PTCP

The clustering heuristic provides an approximate solution to the PTCP by formulating
the PTCP as a p-median model. The p-median model has a long history of use in several
problems, such as location-allocation problems [28,29] and cell formation problems [30,31].
In this approach, the PTCP is formulated as an undirected graph, where each node repre-
sents an instrument, and each arc represents the expected number of exposed instruments
when the respective two instruments in an arc are placed in the same tray. We wish to
select some of the instruments as median vertices (to represent containers) and assign other
instruments to these containers in such a way that can minimize the total distance between
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the selected containers and other instruments. We can define an undirected complete
graph G = (V, E), where the set of vertices V is the set of instances of the instruments

(|V| =
I

∑
i=1

max
k
{Aik}). Additionally, there are |V| potential containers to which instruments

can be assigned. Two vertices ij and mn (i.e., jth copy of instrument i and nth copy of
instrument m, respectively) are connected by an arc (ij, mn) ∈ E. Associated with each

arc (ij, mn), there is a distance dijmn . The dijmn =
K
∑

k=1
Fk2
(
1−

(
1− pijk

)
(1− pmnk)

)
which

indicates the expected number of instruments ij and mn that are exposed in the required
procedures−and therefore need to be re-sterilized−when two instruments ij and mn are
placed in the same container and are assigned to all procedures. It should be noted that if
the container holding two instruments ij and mn is assigned to a procedure k, for which
these instruments are not requested (i.e., pijk = 0 and pmnk = 0), then it contributes a value
of 0 in the dijmn calculation. The PTCP decides which instruments are stored in each of the
predetermined P containers, which might be trays or peel packs, and assigns instruments
to these P containers. The formulated integer programming model for solving PTCP in the
p-median context is provided below.

Min
I

∑
i=1

Ni

∑
j=1

I

∑
m=1

Nm

∑
n=1

dijmn hijmn (8)

I

∑
m=1

Nm

∑
n=1

hijmn = 1, ∀ i ∈ {1, . . . , I}, j ∈ {1, . . . , Ni}, (9)

I

∑
m=1

Nm

∑
n=1

hmnmn = P (10)

I

∑
i=1

Ni

∑
j=1

hijmn Wi ≤ hmnmn L, ∀ m ∈ {1, . . . , I}, n ∈ {1, . . . , Ni}. (11)

where hijmn is a binary decision variable, which is equal to one if the jth copy of instrument
i and the nth copy of instrument m are placed in the same tray type and is equal to 0. The
set of decision variables

{
hijmn

}
m=i,n=j indicates the candidate containers that need to be

created. The dijmn values can be collected into a symmetric distance matrix whose diagonal
values

{
dijmn

}
m=i,n=j indicate the expected number of instruments to be re-sterilized when

the instrument is placed in a container by itself (i.e., peel packed). The objective function (8)
minimizes the sum of the expected number of instruments to be re-sterilized. The constraint
set (9) ensures that each instrument is assigned to exactly one potential container. The
constraint set (10) ensures that P containers are assembled, and constraint set (11) prevents
tray configurations that violate the weight limit.

Solving the formulated p-median problem provides an approximate solution to the
PTCP, and in the next step, by fixing the decision variables corresponding to the PTCP in
the model described in Section 3, we can solve the PTAP. However, the p-median model
only accounts for a pre-specified number of containers. Therefore, the p-median model and

then PTAP can be solved iteratively by choosing the extreme value for P =
I

∑
i=1

max
k
{Aik},

which implies that all instruments are peel-packed and decreases the value of P by one in
each iteration until no feasible solution can be generated for the selected P. A summary of
the proposed p-median based heuristic is presented in Algorithm A1 of Appendix A.

In order to show how the p-median-based heuristic works, let us consider the PTOP
example presented in Table 1. According to the PIIM (see Table 2), there exist 13 instances
of instruments, each of which can be a candidate for a container. Therefore, the highest
possible value for P is 13. Using the probabilities of instrument usage presented in Table 3,
the values for dijmn by assuming Fk = 1 for all procedures k are shown in Table A1 of
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Appendix A. In the following, the results of solving the p-median model are reported,
where the instruments have a unit weight (W = 1 pound) and the capacity of the tray is
restricted to not exceed 5 pounds. Therefore, each container can hold a maximum of five
instruments, which implies that at least three containers are needed to be able to generate a
feasible solution. It should be noted that the values of the weight of the instruments and
the capacity of the trays for this small example were chosen arbitrarily just to show the
applicability of the p-median model when solving the PTCP.

Figure 2 illustrates the obtained solution for the PTCP when four containers are
considered (i.e., P = 4). As Figure 2 shows, the instruments are clustered into three tray
types and one peel pack. The capacities of tray type 1 and tray type 2 are fully utilized
as each contains five instruments. Tray type 3 contains two instruments of {1, 6}, and
instrument 12 is placed in a peel pack.
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5. Metaheuristic for Solving PTCP

The Genetic Algorithm (GA) is a kind of evolutionary algorithm that can solve in-
tractable optimization problems based on stochastic search. Researchers have reported the
successful application of GA to many different large space optimization problems, such as
the shortest path [32,33] and inventory management [34–36]. The first step in implementing
a GA is to encode a solution to the problem, denoted either as a chromosome or individual.
Each chromosome is composed of genes, and each gene carries some information. The GA
starts by generating a group of initial chromosomes. This group constitutes the population
of the first generation. Each individual in the population is evaluated through the objective
function and receives a fitness value. Individuals with a better fitness value have a higher
chance of surviving for the next generation. Individuals are selected for removal to the mat-
ing pool for reproduction based on their fitness values. Reproduction is performed by the
use of the crossover operators so that the generated child inherits some information from
their parents. Mutation operators are incorporated to increase diversity among generations.
In addition, to avoid the traditional GA from being stuck in a local optimum, we designed
two local search algorithms called combining local search (CLS) and decomposing local
search into the GA to improve its exploration capability.

5.1. Solution Encoding

A solution to the PTCP is encoded as a vector of integer numbers defining the index
of containers to which instruments are assigned. The cardinality of the vector is equal to

the total number of instances of instruments stocked in an inventory (i.e.,
I

∑
i=1

max
k
{Aik},

which is the number of columns in the PIIM). The instruments are also presented in the
order of the columns of the PIIM. For example, given the PIIM of Table 2 and 13 possible
containers, including trays and peel packs, the vector [4,12,4,3,4,2,6,2,4,6,2,3,3] means that
the first, the third, the fifth, and the ninth instruments are placed in container 4. The second
instrument is in container 12 by itself. The fourth, twelfth and thirteenth instruments are
placed in container 3. The sixth, eighth and eleventh instruments are in container 2. Finally,
the seventh and the tenth instruments are in container 6. Therefore, containers 4, 3, 2,
and 6 can be labeled as trays of instruments since they contain more than one instrument,
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while container 12 is a peel pack since it holds a single instrument. Thus, the above vector
indicates that the instruments can be grouped into four tray types and one peel pack. A
sample of solution encoding is illustrated in Figure 3.
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5.2. Fitness Function

The fitness function can be used to assess the quality of chromosomes, of which
chromosomes with better fitness values are more likely to survive. For a given chromosome
which is a solution to the PTCP and determines values of zijt, xt, and et, the PTAP is solved
to determine the values of the ytk decision variables. It can be recalled that the PTAP is an
integer linear programming model of the objective function (1) subject to the constraint set
(3). Finally, the fitness value corresponding to each chromosome is defined as 1

f , where f is
the value of the objective function (1).

5.3. Genetic Operators
5.3.1. Selection Operator

This operator selects individuals in the current population for reproduction. There
exist various selection operators such as tournament selection, random selection, and
roulette-wheel selection. In this study, the roulette-wheel selection operator was chosen, in
which the chance of individuals being selected for reproduction was proportional to their
fitness value.

5.3.2. Crossover Operators

Two cut-point crossover operators: this operator randomly selects two genes as the cut-
points within the selected parents and then interchanges the sections before and after these
points to produce two new solutions [37]. The mechanism of this operator is shown in
Figure 4.
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Uniform crossover operator: this operator fills each gene of the offspring by copying
the corresponding gene from one or the other parent with a 50% probability [38]. To do
so, a binary vector with the same length as the parents can be generated using a uniform
distribution. Each gene’s value in the offspring is copied from the first parent if the value
of the corresponding gene in the binary vector is “1”; otherwise, the gene’s value of the
offspring is copied from the second parent (see Figure 5).
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5.3.3. Mutation Operators

Swap Operator: As illustrated in Figure 6, this operator swaps two arbitrary genes in
a parent.
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Inversion operator: this operator randomly selects two genes and then reverses the
sequence of the section between the selected genes (Figure 7).
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Shifts operator: this operator selects one gene to transfer it from its current position to
the first position and shifts the rest of the genes forward (Figure 8).

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 28 
 

 

these points to produce two new solutions [37]. The mechanism of this operator is shown 
in Figure 4. 

4 4 10 3 2 1 6 2 4 1 7 4 3

3 4 1 5 5 8 7 7 1 5 13 4 7 4 4 10

3 2 1 6 2

4 1 7 4 3

3 4 1

5 5 8 7 7

1 5 13 4 7

 
Figure 4. Two cut-point crossover operator. 

Uniform crossover operator: this operator fills each gene of the offspring by copying the 
corresponding gene from one or the other parent with a 50% probability [38]. To do so, a 
binary vector with the same length as the parents can be generated using a uniform dis-
tribution. Each gene’s value in the offspring is copied from the first parent if the value of 
the corresponding gene in the binary vector is “1”; otherwise, the gene’s value of the off-
spring is copied from the second parent (see Figure 5). 

4 4 10 3 2 1 6 2 4 1 7 4 3

3 4 1 5 5 8 7 7 1 5 13 4 7

0 0 1 0 10 1 1 0 1 0 0 1Random binary vector

3 4 10 5 5 1 7 2 1 1 13 4 3  
Figure 5. Uniform crossover operator. 

5.3.3. Mutation Operators 
Swap Operator: As illustrated in Figure 6, this operator swaps two arbitrary genes in 

a parent. 

4 4 10 3 2 1 6 2 4 1 7 4 3 4 4 10 1 2 1 6 2 4 3 7 4 3

 
Figure 6. Swap mutation operator. 

Inversion operator: this operator randomly selects two genes and then reverses the se-
quence of the section between the selected genes (Figure 7). 

4 4 10 3 2 1 6 2 4 1 7 4 3 4 4 10 1 4 2 6 1 2 3 7 4 3

 
Figure 7. Inversion mutation operator. 

Shifts operator: this operator selects one gene to transfer it from its current position to 
the first position and shifts the rest of the genes forward (Figure 8). 

4 4 10 3 2 1 6 2 4 1 7 4 3 4 4 10 3 21 6 2 4 1 7 4 3  
Figure 8. Shifts mutation operator. 

Shuffle operator: this operator randomly selects two genes in a solution and then ran-
domly updates the values of the section between these two genes (Figure 9). 
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Shuffle operator: this operator randomly selects two genes in a solution and then
randomly updates the values of the section between these two genes (Figure 9).
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If any of the mutation and crossover operators result in an infeasible solution by
violating the weight limit constraint, a repairing mechanism can be performed to bring
the solution into the feasible region. In the repairing mechanism, as long as there are trays
that exceed the weight limit, the lightest instruments from those trays can be moved to the
lightest trays to ensure that the weight limit constraint is met.

5.4. Combining Local Search (CLS)

The CLS attempts to reduce the number of containers in a given solution. For this
purpose, some containers should be selected, and then their instruments should be com-
bined together to become a single container. The selection of containers occurs based on
their contribution to the objective function. Given that a container t holds I instruments,
its contribution to the objective function is equal to the cost component f1 (i.e., expres-
sion 1a) for the instrument trays and is equal to the cost component f2 (i.e., expression
1b) for the peel packs, where the container is assumed to be assigned to all procedures
(i.e., ytk = 1, ∀ t ∈ {1, . . . , T} and k ∈ {1, . . . , K}). Therefore, the contribution of a tray t,
denoted as Ot, can be calculated as follows:
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Ot = C1

[
K

∑
k=1

ytkFk

(
I

∑
i=1

Ni

∑
j=1

zijt

)(
1−

I

∏
i=1

Ni

∏
j=1

(
1− zijtPijk

))]
, ∀ t ∈ {1, . . . , T}| t is a tray, (12)

Ot = C2

K

∑
k=1

Fk

I

∑
i=1

Ni

∑
j=1

zijtPijk, ∀ t ∈ {1, . . . , T}| t is a peel pack. (13)

In the next step, three walk points are considered in the search scheme as follows.
Walk 1: combining the two containers with the lowest Ot; Walk 2: combining the two
containers with the highest Ot; Walk 3: combining the container with the lowest Ot and
the container with the highest Ot. The repairing mechanism can also be applied when
these explorations yield a tray that violates the maximum weight of a tray. Among the
visited solutions, the best one in terms of the objective function’s value can be added to the
current population. This selected solution cab also be considered as the starting point for
the next walk. To further explore the solution space and escape from the local optima, the
CLS is enabled for random walks in a feasible solution space with the probability α. These
steps are successively performed until the number of containers is reduced by γ percent.
Algorithm A2 of Appendix A presents the CLS pseudo-code.

For example, it can be assumed that a solution [4,4,10,3,2,1,6,2,4,1,7,4,3] is selected for
application to the CLS. This solution represents seven container types, which are indexed
as 4, 10, 3, 2, 1, 6 and 7. Given the probabilities of instrument usage in Table 3, C1 = 3,
C2 = 2, and F k∈{1,..., 6} = 10, the following table shows the instruments in each container
and the contribution of each container to the objective function (Table 4).

Table 4. An example of calculating contribution of each container to the objective function.

Container Type Included Instruments in the Container * Container Type Container’s Contribution (Ot)

1 31, 42 Tray 155.4

2 23, 33 Tray 7.8

3 22, 52 Tray 99.4

4 11, 12, 41, 51 Tray 667.1

6 32 Peel pack 13.8

7 43 Peel pack 3.6

10 21 Peel pack 55.2

* ij indicates the jth copy of instrument i

Now it can be assumed that walk 1 is intended to be explored. Since containers 7 and
2 contribute the lowest costs to the objective function, they are combined to reduce the
number of containers. In this case, all instruments in container 7 can be moved to container
2, which results in a new solution S1 as [4,4,10,3,2,1,6,2,4,1,2,4,3]. This new solution no
longer includes container 7.

5.5. Decomposing Local Search (DLS)

In contrast with CLS, the decomposing local search (DLS) explores the solution space
by creating new containers. Similar to the steps described for performing CLS, the DLS also
consists of two steps. In the first step, the contribution of containers to the objective function
can be calculated according to expressions (12) and expressions (13). The containers with
the lowest and the highest contributions are the candidates to be decomposed. If the
candidate container is a peel pack, then it can be excluded from the decomposition process.
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In the next step, given a container t, the contribution of each instrument to the objective
function is calculated according to the expression (14).

O′i = C1

K

∑
k=1

FkPijk, ∀ i ∈ {1, . . . , I} (14)

Finally, the instruments with the lowest and the highest O′i are removed from their
current tray, and each is placed in a new container by itself (i.e., a peel pack). For the
DLS algorithm, the same random walk strategy as described for the CLS algorithm can be
implemented. The pseudo-code for the DLS algorithm is presented in Algorithm A3 of
Appendix A. Since both CLS and DLS algorithms take the contributions of the trays and
instruments into account and have random components, they are expected to exploit prior
knowledge while exploring the solution space.

6. Experimental Design
6.1. Benchmark Problems

The performance of the proposed algorithms can be evaluated using three datasets
introduced by Ahmadi et al. [2], as well as a new VLD dataset introduced in this paper for
validation purposes. Each dataset contains five instances with the same number of surgeons
and procedures. The usage probabilities of the instruments are randomly generated from a
uniform distribution [0, 1]. The specifications of the datasets are presented in Table 5.

Table 5. Specifications of the datasets.

Dataset
Name

Number
of Instances

Number
of Surgeons

Number
of Procedures

Number of
Unique

Instruments

Total Number
of Instruments

VLD 5 2 3 5 13

1S-7P 5 1 7 76 136

2S-7P 5 2 7 76 136

5S-7P 5 5 7 76 250

The small size instances in the VLD dataset are five variations of the example depicted
in Table 1, which were constructed upon two surgeons, three procedures, five unique
instruments, and thirteen copies of instruments. The weight of each instrument for this
VLD dataset was assumed to be one pound with a tray capacity of 5 pounds. Additionally,
the frequency of each procedure can be assumed to be one time per year. The unit cost of
reprocessing an instrument in a tray (i.e., C1) and the unit cost of reprocessing an instrument
in a peel pack (i.e., C2) were retrieved from Mhlaba et al. [7] at $0.40 and $0.80, respectively.
The costs associated with the administration and handling of a tray type (i.e., C3) and a new
peel pack (i.e., C4) were estimated as follows. Handling a tray was assumed to take 200 s,
which included the time needed for picking the tray to build the case cart by logistical staff,
the handling of the tray in the OR by clinical staff, and the handling of the tray by SPD staff
for re-sterilization. Likewise, the time needed to perform these activities was assumed to
be 120 s for peel packs. Considering $18 and $45 per hour as the labor costs for logistical
and clinical staff [5], respectively, the average labor cost for handling a container would be
$31.50 per hour. With this consideration, C3 and C4 were estimated to be $1.75 and $1.05,
respectively. The PTOP mathematical model was implemented in GAMS 28.2.0 and ran
using the BONMIN branch-and-bound (B-BB) algorithm. All other algorithms were coded
and executed in MATLAB R2020a on a personal Intel® Core™ i7 10th GEN CPU @1.10
GHz with 16 GB RAM. The number of generations to terminate the GA for the VLD dataset
was fixed at 50 generations, and for all other datasets was fixed at 500. The reason for this
difference in the number of generations was that the VLD dataset was relatively simple and
required fewer computational resources for convergence. However, the other datasets were
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more complex and required more time to reach convergence. Therefore, a higher number
of generations was necessary to ensure that the GA could adequately explore the solution
space. Additionally, a time limit of one hour was considered to be a stopping criterion for
the BONMIN solver.

6.2. Parameter Settings

In order to tune the parameters of the developed GA, CLS, and DLS algorithms, the
Taguchi method was used. Three parameters of nPop, µc, and µm were pertinent to the
GA, and two parameters of α and γ belonged to both CLS and DLS algorithms. In the
GA, nPop is the population size, µc is the crossover rate, and µm is the mutation rate. For
each parameter, four possible levels were considered, as reported in Table 6. Thus, an
orthogonal array of L16

(
45) was designed to perform 16 experiments for the calibration of

each parameter. Each experiment is run ten times over the VLD dataset independently.

Table 6. The values of the parameters corresponding to each level.

Level nPop µc µm α γ

1 30 0.40 0.50 0.20 0.20

2 50 0.50 0.60 0.40 0.40

3 70 0.60 0.70 0.60 0.60

4 90 0.70 0.80 0.80 0.80

The Taguchi method optimizes the value of each parameter by expressing the vari-
ability of the response factor as a signal-to-noise (S/N) ratio [39]. Since the goal of tuning
the parameters is concerned with obtaining both the optimized computational time and
solution quality, the response factor is defined as the sum of the normalized execution
time (i.e., Ntime) and normalized solution cost (i.e., Ncost). The Taguchi design for the
considered parameters is presented in Table A2 of Appendix A. The Taguchi analysis is
performed on MINITAB 18. According to the main effects plot for S/N ratios depicted in
Figure A1 of Appendix A, the selected values of the parameters are nPop = 70, µc = 0.6,
µm = 0.8, α = 0.6, and γ = 0.8.

6.3. Computational Results

To evaluate the performance of the proposed methodology for solving the PTOP, the
results of the developed algorithms were compared with that of the B-BB algorithm. Four
approaches for solving the PTOP were considered. In the first approach, the classical
crossover and mutation operators of the GA described in Section 5 were utilized. The
second approach, called H-GA, incorporated the p-median heuristic in the initialization
process by generating half of the population using the p-median heuristic. For this purpose,
the p-median heuristic was successively applied to all feasible numbers of containers, and
then the best nPop

2 solutions were selected to be entered into the initial population. In the
third approach, denoted as GA-CD, the GA enabled us to use two local search algorithms
of CLS and DLS. Finally, in the fourth approach, denoted as H-GA-CD, the CLS and the
DLS algorithms were used along with the p-median heuristic.

Solving the PTOP mathematical model, which belongs to the nonlinear mixed integer
programming classes, using the B-BB algorithm reached an “out of memory” status without
finding a feasible solution to the instances of 1S-7P, 2S-7P, and 5S-7P datasets. Thus,
the performance of the developed H-GA-CD algorithm against the B-BB algorithm was
reported only over the VLD dataset. Given that these algorithms were stochastic in nature,
ten independent runs were performed, and the results are reported in Table 7. This table
reports the average, standard deviation, computational time in seconds, and the best cost
of solutions obtained over ten replications for each instance.
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Table 7. Validation of the proposed solution algorithms.

Dataset Instance #
B-BB H-GA-CD

Average S.D. Best Time Average S.D. Best Time

VLD

1 46.7 4.3 44.7 2064.8 40.0 0.2 39.9 24.3

2 58.4 6.8 46.6 915.10 37.4 0.1 37.3 23.0

3 43.9 2.4 42.8 2095.9 31.1 0.4 30.9 26.7

4 40.4 8.9 34.0 1773.6 35.0 0.5 34.7 24.8

5 43.4 5.2 37.4 1240.0 32.9 0.0 32.9 28.4

Considering the average and standard deviation, the H-GA-CD outperforms the B-
BB algorithms in all instances. The H-GA-CD algorithm is shown to be highly robust
as it yielded very small solution variation over multiple runs. The H-GA-CD algorithm
could generate better solutions in considerably less computational time compared to the
B-BB algorithm. The average computational time over five instances of this validation
dataset was 1618 s and 25 s for B-BB and H-GA-CD algorithms, respectively. Given the
computational resources that the commercial B-BB algorithm needs for such small-size
instances and its failure to find even a feasible solution to larger instances, incorporating the
designed metaheuristic algorithm was justified. Next, four solution approaches, including
GA, H-GA, GA-CD and H-GA-CD, were employed to solve larger instances of the PTOP.
The overall results of the five instances in each dataset are presented in Table 8. The
computational time is reported in seconds.

Table 8. Computational results of the solution approaches.

Dataset Instance #
GA H-GA GA-CD H-GA-CD

Ave. S.D. Best Time Ave. S.D. Best Time Ave. S.D. Best Time Ave. S.D. Best Time

1S-7P

1 10,057 466 9560 1897 8739 33 8716 2093 8744 195 8520 1772 8757 189 8538 2147
2 9889 364 9341 1685 8973 223 8765 2236 8781 139 8573 1763 8720 78 8582 1621
3 9717 357 9131 1712 8813 245 8509 2058 8776 172 8489 1721 8835 232 8629 1682
4 8341 330 7855 1723 7514 284 7229 2051 7446 152 7260 1994 7316 151 7168 2134
5 8370 255 7966 1711 7849 486 7500 2443 7425 122 7221 2206 7448 102 7310 1981
1 19,951 449 19,505 5072 18,984 125 18,841 5256 18,046 252 17,769 7871 18,864 114 18,786 7649
2 20,190 345 19,861 5095 19,420 256 19,105 4945 17,309 366 16,875 8966 19,285 272 19,048 8218
3 19,921 381 19,380 4918 18,357 221 18,093 4865 17,502 309 17,225 7940 18,439 143 18,223 7956
4 20,475 391 19,869 5057 19,878 600 19,348 4816 17,893 336 17,506 8031 19,502 147 19,332 7824

2S-7P

5 20,198 376 19,620 4927 18,617 145 18,485 4592 17,619 245 17,443 7753 19,351 142 19,188 7302

5S-7P

1 84,102 1068 82,810 79,024 90,673 4165 86,756 81,111 82,950 4161 78,972 165,620 83,409 4269 77,557 166,985
2 85,551 1243 84,536 78,901 90,216 1796 88,398 84,093 82,792 2326 80,335 172,940 82,432 2153 79,260 165,187
3 85,042 1895 82,728 78,869 89,550 1744 87,570 82,359 82,269 3698 78,203 169,844 80,998 2800 76,270 167,017
4 85,270 1848 83,249 77,985 91,259 4093 86,618 80,321 82,731 2868 78,724 171,444 79,654 1596 78,274 165,616
5 85,411 1052 84,432 77,893 88,867 3434 85,064 81,974 83,674 2607 79,609 168,058 83,248 2527 80,420 163,162

The results in Table 8 show that incorporating the proposed CLS and DLS algorithms
into the GA (i.e., GA-CD approach) resulted in solutions with, on average, 11.2%, 12.3%, and
2.6% lower costs than the traditional GA in the 1S-7P, 2S-7P, and 5S-7P datasets, respectively.
The H-GA-CD approach also showed a similar trend as it yielded 11.4%, 5.3%, and 3.7%
better solution quality than the GA approach in the studied datasets. The H-GA approach,
however, only showed better performances in the 1S-7P and 2S-7P datasets, with a 9.7% and
5.4% improvement, respectively, compared to the GA approach. In the 5S-7P dataset, which
is a large-size dataset and the traditional GA algorithm performs 5.9% better than H-GA.
This is likely due to its becoming trapped at the local optima generated by the p-median
heuristic, from which classic genetic operators could not assist with escaping from these
local optima. It is worth noting that while the computational time required for larger
instances is lengthy, once the trays are configured, they would not need frequent updates.
Therefore, this is a long-term planning problem where solution quality is prioritized over
computational time.

While the CLS and DLS algorithms require longer computational times, the higher-
quality solutions they provide justify the increased time. In order to compare the results
of these algorithms from a statistical viewpoint, non-parametric Wilcoxon rank-sum tests
were examined with a significance level of 0.05. The non-parametric Wilcoxon rank-sum
test was selected because it is unlikely that the distribution of the results generated by the
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algorithms follows the normal distribution. The p-value of the statistical test, along with
the superior algorithm in terms of the solution quality, is reported in Table 9.

In order to have an insight into how these four approaches performed in each gen-
eration, the average of convergence plots over ten replications; for instance, #1 in the
2S-7P dataset, is illustrated in Figure A2 of Appendix A. This figure proves that using the
CLS and the DLS algorithms, along with GA, can significantly improve the quality of the
solutions. Figure A2 also demonstrates that incorporating the p-median heuristic into the
initial population and utilizing the CLS and the DLS methods can make the GA consistently
perform better than the other three approaches. The detailed results of the best solution
obtained from the H-GA-CD method for the PTCP are presented in Table A3 of Appendix A.
It shows how many of each instrument are placed in 14 configured containers, of which
13 containers are instrument trays, and one container is a peel pack. As mentioned earlier,
given a solution to the PTCP, the PTAP can easily be solved. The results of the PTAP, along
with the likelihood of each container to be used for a surgeon and procedure, are presented
in Table 10.

Table 9. Pairwise statistical results of the Wilcoxon rank-sum test for the average cost.

Dataset GA H-GA GA-CD H-GA-CD

GA - - - -

H-GA 0.585
(no significant difference) - - -

GA-CD 0.013
(GA-CD performs better)

0.021
(GA-CD performs better) - -

H-GA-CD 0.018
(H-GA-CD performs better)

0.252
(no significant difference)

0.358
(no significant difference) -

Table 10. A solution to the PTAP and the probability of containers to be used during the procedure.

Surgeon Procedure
Containers

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Surgeon 1

Mediport insertion 100% 100% 53% 19% 99% 9% 77% 25% 51% 82%
Excision of small lesion 100% 100% 76%

Lap appendectomy 100% 100% 100% 32% 95% 92% 99% 2% 72%
Lap cholecystectomy 100% 100% 67% 99% 50%

Lap ventral hernia repair 100% 100% 99% 49% 67% 60% 97% 75% 12% 39% 11%
Open hernia repair 100% 100% 100% 99% 100% 100%

Bowel resection 100% 100% 100% 86% 100% 96% 100% 48% 35% 56% 20% 55% 4%
Mediport insertion 100% 100% 41% 26% 69% 6% 98% 39%

Excision of small lesion 100% 100%
Lap appendectomy 97% 100% 100% 16% 11% 84%

Lap cholecystectomy 100% 100% 2%
Lap ventral hernia repair 100% 100% 59% 33% 33% 95% 75% 55%

Open hernia repair 100% 100% 99% 100% 68% 99%

Surgeon 2

Bowel resection 100% 100% 100% 37% 98% 100% 98% 21% 74% 98% 9%
Number of instruments 27 23 13 11 11 9 9 8 7 6 5 3 3 1

Weight (lb.) 14.17 11.56 8.06 5.67 6.6 3.16 5.43 3.62 3.7 2.52 1.4 1.6 0.89 0.56
Resterilization cost per procedure

if the container is opened $10.80 $9.20 $5.20 $4.40 $4.40 $3.60 $3.60 $3.20 $2.80 $2.40 $2.00 $1.20 $1.20 $0.80

As can be seen in Table 10, container 2, which is a tray, includes 23 instruments that
are required for all procedures that are performed by both surgeon 1 and surgeon 2. It is
expected that instruments within this tray are used during all procedures. Therefore, this
tray can be opened before the procedures. There are some trays, however, that are unlikely
to be used during certain procedures. For example, given the lap cholecystectomy procedure,
surgeon 1 would use instruments within tray 5 only 50% of the time. Every time this tray is
opened, it would cost $4.40 for re-sterilization. Since this procedure is performed 70 times
a year, not opening the tray before the procedure could extrapolate to a yearly cost savings
of $154.
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7. Managerial Insights

The number of containers is one of the crucial factors for surgeons, clinical, and
operational staff [22]. The results reported in Table 10 show that some trays (e.g., container
12 and container 13) include only a few instruments. From a practical point of view, it
might not be efficient to configure such trays due to limited physical space. In this case, the

number of containers to be created can be restricted by adding a new constraint
T
∑

t=1
xt ≤ R,

where R is the maximum allowed number of containers. In Table 11, we conducted a
sensitivity analysis on R to find how changes in the number of containers affected the
expected cost of reprocessing instruments and handling containers.

Table 11. Results of the sensitivity analysis on the number of containers for instance #1 in the
2S-7P dataset.

Value of R 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of trays 3 4 5 6 7 8 8 9 9 11 12 13 13

Number of peel packs 0 0 0 0 0 0 1 1 2 1 1 1 1

f1 $20,383 $18,393 $17,009 $15,997 $15,326 $14,836 $14,594 $14,027 $13,842 $13,712 $13,292 $13,120 $13,120

f2 $0 $0 $0 $0 $0 $0 $1 $16 $60 $1 $3 $1 $1

f3 $2132 $2256 $2849 $3509 $3948 $3976 $3982 $4006 $4067 $4179 $4552 $4641 $4641

f4 $0 $0 $0 $0 $0 $0 $18 $118 $79 $17 $7 $7 $7

Total Cost $22,514 $20,649 $19,858 $19,506 $19,274 $18,812 $18,595 $18,167 $18,048 $17,909 $17,853 $17,769 $17,769

Cost Savings/ $1866 $790 $353 $232 $462 $218 $428 $118 $139 $56 $84 $0

Table 11 shows how a minimum of three containers was required and a configuration
of 14 containers, 13 of which were trays and one of which was a peel pack, resulted in the
lowest total cost. The details of this configuration are presented in Tables 11 and A3 in Ap-
pendix A. By configuring fewer tray types the surgeons were exposed to more unrequested
instruments, which resulted in higher re-sterilization costs. In contrast, configuring fewer
tray types means less effort involved in handling them, resulting in a lower administrative
and handling cost. Such a trade-off is depicted in Figure 10. In Table 11, the last row reports
on the cost savings resulting from increasing the containers by one unit. Configuring four
containers instead of three and five containers instead of four reduced the total costs by
$1866 and $790, respectively.
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Further cost savings can be made by providing surgeons with information about the
re-sterilization costs of instruments and the potential annual savings. This will could them
to better decide whether to open a tray with a low likelihood of usage before the procedure
or to only open it during the procedure. Within our model, surgeons and inventory
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managers can estimate the potential cost savings associated with not opening trays before
procedures. Figure 11 correlates the probability of containers being used and the potential
cost savings if these containers are not opened prior to the procedures. The figure shows
that if instruments are optimally grouped into four containers and surgeons choose not
to open trays and peel packs that have less than a 50% likelihood of being used before
their procedures, this results in a 3% annual cost savings in the reprocessing of instruments.
Such cost savings can be increased to 10% and 16% if the instruments are configured into
5 and 10 containers, respectively. An analysis of this kind can identify surgeons, procedures,
and containers that could be targeted to be a part of a pilot implementation of this study.
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To examine the impact of uncertainty in a patient’s surgical instrument needs on
the cost estimation of a prescribed tray configuration during a procedure, a Monte Carlo
simulation was conducted. In this simulation, instance #1 from the 2S-7P dataset was
selected with four containers configured, and the instrument used for each procedure was
modeled using experimental probability distributions. This simulation also accounted for
the fact that if the first copy of an instrument was not used, the other copies of the same
instrument would not be used either. Therefore, if Pijk = 0, then Pij′ k = 0 for j′ > j. The
results of the simulation are presented in Figure 12, which shows the distribution of the
total realized cost over 5000 simulation runs. The data indicates that there is a 23% chance
that the actual costs exceed the estimated cost of $20,649 generated by the PTOP model, as
reported in Table 11.
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8. Conclusions and Discussion

This study dealt with the problem of configuring surgical trays based on the prob-
abilities of instrument usage. This problem is called the probabilistic tray optimization
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problem (PTOP). The PTOP is formulated as an integer non-linear programming model.
Since this problem is in the class of NP-hard problems, it is decomposed into two sub-
problems of the probabilistic tray configuration problem (PTCP) and the probabilistic tray
assignment problem (PTAP). Given a solution to the PTCP, the PTAP becomes a trivial
problem of an integer linear programming model, which can be easily solved. A heuristic
and a metaheuristic were developed to solve the PTCP. The heuristic algorithm provides
an approximate solution to the PTCP in a short computational time by formulating the
PTCP as a well-known p-median model. However, this method may result in a low-quality
solution. Therefore, a genetic algorithm (GA) was also designed to improve the quality of
solutions obtained by the p-median heuristic. Moreover, in order to enable the GA to better
explore the solution space, two local search algorithms—combining local search (CLS) and
decomposing local search (DLS)—were invented and embedded in the GA. The CLS and
DLS algorithms attempted to decrease and increase the number of containers, respectively,
in a given solution. The applicability of the model is demonstrated through the historical
data available in the literature.

Close collaboration with surgeons to improve their conventional tray configurations
is key for a successful implementation. The PTOP model can facilitate this collaboration,
as the potential cost savings derived from the reconfiguration of trays and not opening
trays with a low probability of usage become readily apparent through executing the PTOP
model. Given the required data, the PTOP model can be applied in any hospital to reveal
how much they can benefit from the optimization of the instrument trays.

Our approach provides the minimum number of trays and instruments that need to be
stocked for performing procedures that are not scheduled for the same day. However, since,
in practice, the re-sterilization process usually takes one day to be completed, the trays
undergoing re-sterilization would not be available for use until the next day [17,19,22,25,40].
Therefore, multiple copies of a tray are needed when multiple procedures requiring the
same tray type are scheduled to be performed in a day. Such an approach provides
a maximum number of trays and instruments that need to be stocked for performing
procedures. However, the optimal number of instruments and trays highly depends on the
OR schedule. For example, if two procedures are scheduled on the same day only a few
times a year, keeping two copies of a tray would not be optimal. Instead, by modifying the
schedule of those procedures not to take place concurrently, the stocked instruments could
be reduced.

It should be noted that our model does not eliminate any instruments that may be
used rarely, as we understand their importance in specific procedures. Our model only
rearranges all instruments that surgeons request into different tray types by separating
frequently used instruments from rarely used ones. This model ensures that the surgeon’s
preferred instruments are readily available in the operating room. By optimally configuring
the instrument trays, the time it takes for surgeons to find the instruments they need during
surgery can also be reduced. In this research, the cost savings resulting from our model
are associated only with avoiding unnecessary labor-intensive re-sterilization processes
rather than potential savings on capital and holding costs. To estimate capital savings, a
standardization project, such as the work of Koyle et al. [8], which resulted in a reduction
in surgical instruments, needs to be conducted. It is important to note that removing a
rarely used instrument tray from stock may compromise patient safety, as the tray may be
needed in rare occurrences. Therefore, in such a standardization project, safety stock for
these trays should be considered to prevent the risk of tray non-availability.

Since many hospitals currently do not record the use of instruments, one of the con-
siderations toward implementing the findings of this model is that direct observations are
required to collect accurate instrument usage data. These observations could be performed
after a procedure in the sterile processing department or in the operating rooms. Some
surgical tool companies offer RFID-tagged instruments, which facilitate data collection.
Since collecting accurate usage data, particularly for instruments without RFID tags, can be
difficult, an alternative would be to have surgeons label instruments as “always needed”,
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“sometimes needed”, or “rarely needed” and then estimate how likely each label is to be
used. Additionally, a time and motion study could help with a more accurate estimation of
the labor costs associated with the sterilization process and handling of trays. One may
benefit from the works of John-Baptiste et al. [41], and Mhlaba et al. [7] in estimating these
labor costs, but analysts should be conscious that the sterilization process in hospitals
may be different from each other. Another limitation of this study is that it assumes the
probabilities of instrument usage to remain constant over time. However, in reality, these
probabilities may change due to variations in surgical techniques or patient demographics.
As a result, it may be necessary to periodically update the PTOP model to account for
such changes.

Future studies could explore how instrument usages are interdependent and develop
a model that captures these relationships. Another interesting future research direction
is to incorporate patient demographic variables such as gender, race, age and patient
clinical variables such as Body Mass Index (BMI), past surgical history, and past medical
history to predict the necessity of an instrument for a given case. Furthermore, studying
other heuristics and metaheuristics and evaluating their performance against our solution
algorithms would provide another interesting future study.
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Appendix A

Algorithm A1: p-median based heuristic.

Inputs: A set of vertexes V. A set of edge E.
The distance matrix corresponding to the dij mn

1: Set P =
I

∑
i=1

max
k
{Aik}

2: While there exist feasible solutions Do
3: Solve the p-median model
4: Solve the PTAP
5: P← P− 1
6: End While
Output: The solution corresponding to the P that resulted in the minimum objective function value in the PTAP

Algorithm A2: Combining Local Search (CLS).

1: Extract the initial number of containers, IniNumCon, for a given solution S
2: NumCon← IniNumCon
3: While NumCon > IniNumCon (1− γ)
4: For t = 1 To NumCon Do
5: Calculate Ot using Equations (12) and (13)
6: End For
7: For w = 1 To 3 Do
8: If Rand() ≤ α Then
9: Perform random walk on S and obtain local optimum Sw
10: Else If w = 1
11: Walk 1: combine the two containers with the lowest Ot and obtain local optimum S1
12: Else If w = 2
13: Walk 2: combine the two containers with the highest Ot and obtain local optimum S2
14: Else If w = 3
15: Walk 3: combine the containers with the lowest and the highest Ot and obtain local

optimum S3
16: End If
17: If the weight o f the combined containers > L Then
18: Perform the repairing mechanism
19: End If
20: End For
21: Add the best solution among S1, S2, and S3 to the current population
22: NumCon← NumCon− 1
23: End While

https://doi.org/10.17632/6vr7fp4npy.1
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Algorithm A3: Decomposing Local Search (DLS).

1: Extract the initial number of containers IniNumCon for a given solution S
2: NumCon = IniNumCon
3: While NumCon < IniNumCon (1 + γ)
4: For t = 1 To NumCon except peel packs Do
5: Calculate Ot using Equation (12)
6: End For
7: Select the container t with the lowest Ot
8: For all instruments in tray t
9: Calculate O′i using Equation (14)
10: End For
11: For w = 1 To 2 Do
12: If Rand() ≤ α Then
13: Random walk: Generate a new solution Sw by randomly selecting an instrument and putting it in a
peel pack
14: Else If w = 1
15: Walk 1: Generate a new solution S1 by putting the instrument with the lowest O′i
in a new container as a peel pack
16: Else If w = 2
17: Walk 2: Generate a new solution S2 by putting the instrument with the highest O′i
in a new container as a peel pack
18: End If
19: End For
20: Select the container t with the highest Ot
21: For all instruments in tray t
22: Calculate O′i using Equation (14)
23: End For
24: For w = 3 To 4 Do
25: If Rand() ≤ α Then
26: Random walk: Generate a new solution Sw by randomly selecting an instrument and putting it in a
peel pack
27: Else If w = 1
28: Walk 1: Generate a new solution S3 by putting the instrument with the lowest O′i
in a new container as a peel pack
29: Else If w = 2
30: Walk 2: Generate a new solution S4 by putting the instrument with the highest O′i
in a new container as a peel pack
31: End If
32: End For
33: Add the best solution among S1, S2, S3, and S4 to the current population
34: NumCon← NumCon + 1
35: End While

Table A1. The values of dijmn corresponding to the PTOP example presented in Table 1.

Instrument

1 2 3 4 5 6 7 8 9 10 11 12 13
1 3.00 6.29 9.55 7.67 6.00 7.66 6.67 6.24 7.93 6.50 6.36 10.69 6.30
2 6.29 0.50 6.27 3.39 1.02 5.29 2.23 1.24 4.53 1.50 1.36 8.58 1.82
3 9.55 6.27 2.76 5.99 5.53 8.22 6.36 5.63 7.43 5.55 5.54 8.89 6.09
4 7.67 3.39 5.99 1.28 2.57 6.59 3.75 2.80 5.00 2.71 2.67 8.37 3.31
5 6.00 1.02 5.53 2.57 0.01 4.69 1.40 0.26 3.99 0.52 0.38 8.01 0.94
6 7.66 5.29 8.22 6.59 4.69 2.34 5.40 4.80 7.51 5.18 5.04 9.61 5.19
7 6.67 2.23 6.36 3.75 1.40 5.40 0.69 1.56 4.81 1.88 1.74 8.69 2.25
8 6.24 1.24 5.63 2.80 0.26 4.80 1.56 0.12 4.22 0.74 0.60 8.05 1.16
9 7.93 4.53 7.43 5.00 3.99 7.51 4.81 4.22 1.99 4.10 4.07 9.86 4.77
10 6.50 1.50 5.55 2.71 0.52 5.18 1.88 0.74 4.10 0.25 0.77 8.03 1.42
11 6.36 1.36 5.54 2.67 0.38 5.04 1.74 0.60 4.07 0.77 0.18 8.02 1.28
12 10.69 8.58 8.89 8.37 8.01 9.61 8.69 8.05 9.86 8.03 8.02 4.00 8.25

In
st

ru
m

en
t

13 6.30 1.82 6.09 3.31 0.94 5.19 2.25 1.16 4.77 1.42 1.28 8.25 0.46
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Table A2. Taguchi analysis for tuning parameters of the GA, CLS, and DLS algorithms.

Experiment
Parameter’s Level

Cost ($) Time (s) Ncost Ntime Response
nPop µc µm α γ

1 1 1 1 1 1 40.24 12.86 1.00 0.00 1.00
2 1 2 2 2 2 40.19 21.60 0.80 0.32 1.12
3 1 3 3 3 3 40.04 16.03 0.25 0.12 0.36
4 1 4 4 4 4 40.01 18.19 0.15 0.19 0.35
5 2 1 2 3 4 40.12 20.21 0.54 0.27 0.80
6 2 2 1 4 3 40.04 25.84 0.25 0.47 0.73
7 2 3 4 1 2 40.09 17.04 0.44 0.15 0.60
8 2 4 3 2 1 40.09 16.24 0.44 0.12 0.56
9 3 1 3 4 2 40.06 24.11 0.35 0.41 0.76
10 3 2 4 3 1 40.00 28.37 0.09 0.57 0.65
11 3 3 1 2 4 39.99 21.55 0.05 0.32 0.37
12 3 4 2 1 3 39.97 25.00 0.00 0.44 0.44
13 4 1 4 2 3 39.99 40.25 0.05 1.00 1.05
14 4 2 3 1 4 40.13 27.20 0.58 0.52 1.10
15 4 3 2 4 1 40.06 26.97 0.35 0.52 0.86
16 4 4 1 3 2 40.05 27.70 0.29 0.54 0.84
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Table A3. A solution to the PTCP.

Instruments
Containers

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1

10 1
11 1
12 1
13 1
14 1
15 1 1
16 1 1
17 1 1
18 1 1
19 1 1
20 1 1
21 1
22 1 1
23 1 1
24 1 1
25 1 1
26 1 1
27 1 1
28 1 1
29 1 1
30 1 1
31 1 1
32 1 1
33 1 1
34 1 1
35 1 1
36 2
37 1 1
38 1 1
39 2
40 1 1
41 1 1
42 1 1
43 1 1
44 1 1
45 1 1
46 1 1
47 1 1
48 1 1
49 1 1
50 1 1
51 1 1
52 1 1
53 1 1
54 2
55 1 1
56 2
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Table A3. Cont.

Instruments
Containers

1 2 3 4 5 6 7 8 9 10 11 12 13 14

57 1 1
58 1 1
59 2
60 1 1
61 1 1
62 1 1
63 1 1
64 1 1
65 2
66 1
67 1 1
68 1 1
69 1 1
70 1 1
71 1 1
72 1 1
73 1 1
74 1 1
75 1 1
76 1 1
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29. Mladenović, N.; Brimberg, J.; Hansen, P.; Moreno-Pérez, J.A. The p-median problem: A survey of metaheuristic approaches. Eur.
J. Oper. Res. 2007, 179, 927–939. [CrossRef]

30. Kusiak, A. The generalized group technology concept. Int. J. Prod. Res. 1987, 25, 561–569. [CrossRef]
31. Wang, J.; Roze, C. Formation of Machine Cells and Part Families in Cellular Manufacturing: A Linear Integer Programming

Approach. In Proceedings of the 1994 IEEE International Conference on Industrial Technology—ICIT ’94, Guangzhou, China, 5–9
December 1994; pp. 350–354.

32. Hassanzadeh, R.; Mahdavi, I.; Mahdavi-Amiri, N.; Tajdin, A. A genetic algorithm for solving fuzzy shortest path problems with
mixed fuzzy arc lengths. Math. Comput. Model. 2013, 57, 84–99. [CrossRef]

33. Ahmadi, E.; Süer, G.A.; Al-Ogaili, F. Solving Stochastic Shortest Distance Path Problem by Using Genetic Algorithms. Procedia
Comput. Sci. 2018, 140, 79–86. [CrossRef]

34. Ahmadi, E.; Masel, D.T.; Hostetler, S.; Maihami, R.; Ghalehkhondabi, I. A centralized stochastic inventory control model for
perishable products considering age-dependent purchase price and lead time. TOP 2020, 28, 231–269. [CrossRef]

35. Vahdani, B.; Soltani, M.; Yazdani, M.; Mousavi, S.M. A three level joint location-inventory problem with correlated demand,
shortages and periodic review system: Robust meta-heuristics. Comput. Ind. Eng. 2017, 109, 113–129. [CrossRef]

36. Ahmadi, E.; Mosadegh, H.; Maihami, R.; Ghalehkhondabi, I.; Sun, M.; Süer, G.A. Intelligent inventory management approaches
for perishable pharmaceutical products in a healthcare supply chain. Comput. Oper. Res. 2022, 147, 105968. [CrossRef]

37. Talbi, E.-G. Metaheuristics: From Design to Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2009.
38. Asefi, H.; Jolai, F.; Rabiee, M.; Araghi, M.E.T. A hybrid NSGA-II and VNS for solving a bi-objective no-wait flexible flowshop

scheduling problem. Int. J. Adv. Manuf. Technol. 2014, 75, 1017–1033. [CrossRef]
39. Aghaaminiha, M.; Ghanadian, S.A.; Ahmadi, E.; Farnoud, A.M. A machine learning approach to estimation of phase diagrams

for three- component lipid mixtures. Biochim. Biophys. Acta BBA-Biomembr. 2020, 1862, 183350. [CrossRef] [PubMed]
40. Diamant, A.; Milner, J.; Quereshy, F.; Xu, B. Inventory management of reusable surgical supplies. Health Care Manag. Sci. 2017,

21, 439–459. [CrossRef] [PubMed]
41. John-Baptiste, A.; Sowerby, L.; Chin, C.; Martin, J.; Rotenberg, B. Comparing surgical trays with redundant instruments with

trays with reduced instruments: A cost analysis. CMAJ Open 2016, 4, E404–E408. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/20476965.2018.1496875
https://doi.org/10.1007/s10729-007-9037-4
https://doi.org/10.1016/j.ijpe.2006.12.066
https://doi.org/10.1080/19488300.2015.1094759
https://doi.org/10.1186/s12913-021-06142-8
https://doi.org/10.1287/opre.2022.2426
https://doi.org/10.1016/j.cor.2009.10.007
https://doi.org/10.1016/j.ejor.2005.05.034
https://doi.org/10.1080/00207548708919861
https://doi.org/10.1016/j.mcm.2011.03.040
https://doi.org/10.1016/j.procs.2018.10.295
https://doi.org/10.1007/s11750-019-00533-1
https://doi.org/10.1016/j.cie.2017.04.041
https://doi.org/10.1016/j.cor.2022.105968
https://doi.org/10.1007/s00170-014-6177-9
https://doi.org/10.1016/j.bbamem.2020.183350
https://www.ncbi.nlm.nih.gov/pubmed/32407774
https://doi.org/10.1007/s10729-017-9397-3
https://www.ncbi.nlm.nih.gov/pubmed/28275943
https://doi.org/10.9778/cmajo.20150092
https://www.ncbi.nlm.nih.gov/pubmed/27975045

	Introduction 
	Problem Description 
	Mathematical Formulation 
	Heuristic for Solving PTCP 
	Metaheuristic for Solving PTCP 
	Solution Encoding 
	Fitness Function 
	Genetic Operators 
	Selection Operator 
	Crossover Operators 
	Mutation Operators 

	Combining Local Search (CLS) 
	Decomposing Local Search (DLS) 

	Experimental Design 
	Benchmark Problems 
	Parameter Settings 
	Computational Results 

	Managerial Insights 
	Conclusions and Discussion 
	Appendix A
	References

