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Abstract: W. L. Edge proved that the internal points of a conic in PG(2,5), together with the collinear
triples on the non-secant lines, form the Desargues configuration. M. Saniga showed an intimate
connection between Desargues configurations and the generalized quadrangles of order 2, GQ(2,2),
whose representation was dubbed “the doily” by Stan Payne in 1973. In this note, we prove that
the external points of a conic in PG(2,5), together with the collinear and non-collinear triples on the
non-tangent lines, form the generalized quadrangle of order 2.
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1. Introduction and Motivation

W. L. Edge [1] proved that the internal points of a conic in PG(2,5) together with the
non-secant lines form a Desargues configuration. M. Saniga [2] showed an intimate connec-
tion between Desargues configurations and the generalized quadrangle of order 2, GQ(2,2).
The two results motivate the writing of this note. By using the Singer representation of
PG(2,5), we provide a short proof of W. L. Edge’s result and, believing it is novel, we prove
that the external points of a conic of PG(2,5) define the generalized quadrangle of order 2,
GQ(2,2). The reason for deciding to conduct a detailed investigation of this special case is
the charm of small projective planes, cf. [3–8].

2. The Singer Representation of PG(2,5)

Let ω be a primitive element of F53 over F5 and let f (x) = a0 + a1x + a2x2 + x3 be its
minimal polynomial over F5. The companion matrix T : = C( f ) of f is given by

T : = C( f ) =

 0 1 0
0 0 1
−a0 −a1 −a2


and it induces a Singer cycle γ of PG(2,5), cf. [9]. Let us consider the minimal polynomial
f (x) = 1 + x + x3 over F5. The companion matrix T : = C( f ) of f

T : = C( f ) =

0 1 0
0 0 1
4 4 0


gives the 31 points of this plane as follows, cf. [10]. Let the point ω0 be represented by the
vector (x0, x1, x2) =

(
1 0 0

)
. Then, we get ωi = ωi−1T i = 1, 2, . . . , 30. The 31 points of

PG(2,5) are given in the Table 1.
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Table 1. The points of PG(2,5).

ω0 = (1,0,0)

ω1 = (0,1,0) ω2 = (0,0,1) ω3 = (1,1,0) ω4 = (0,1,1) ω5 = (1,1,4) ω6 = (1,2,1)

ω7 = (1,0,3) ω8 = (1,4,0) ω9 = (0,1,4) ω10 = (1,1,1) ω11 = (1,0,4) ω12 = (1,2,0)

ω13 = (0,1,2) ω14 = (1,1,2) ω15 = (1,3,2) ω16 = (1,3,1) ω17 = (1,0,2) ω18 = (1,3,0)

ω19 = (0,1,3) ω20 = (1,1,3) ω21 = (1,4,3) ω22 = (1,4,2) ω23 = (1,3,3) ω24 = (1,4,4)

ω25 = (1,2,4) ω26 = (1,2,2) ω27 = (1,3,4) ω28 = (1,2,3) ω29 = (1,4,1) ω30 = (1,0,1)

Let us denote the points represented by ωi simply by i. Therefore, the Singer group
is isomorphic to the additive group Z31, the integers modulo 31. Now select any line:
for example, we choose the line x1 = x2, which contains the points: `0 = {0,4,10,23,24,26}.
The remaining lines of the plane are found by adding 1 to each point of the preceding
line beginning with `0 and using addition modulo 31. For convenience, we represent the
projective plane of order 5 displaying its lines in arrays via the six parallelism classes
of the affine plane of order 5 together with their point at infinity which appear on the
right or at the bottom of the array representing the parallel class. We do this by using the
Singer difference set defining PG(2,5) as the line at infinity, designated by `∞. Thus, let
`∞ = {0,4,10,23,24,26}. The remaining lines of the plane are found by adding 1 to each point
of the preceding line beginning with `∞ as `0 and using addition modulo 31. The pencil of
lines on point 4 is then intersected by the pencil of lines on point 0 to form the first array.
Thus, each row (column) plus its point at infinity represents a line of the plane. Now, let us
take into account the Singer representation.

1 2 9 13 19 1 6 16 29 30 1 5 11 25 27
3 11 15 21 6 7 8 15 19 25 14 18 9 6 7
8 30 28 14 27 4 20 5 2 14 3 10 15 30 20 12 13 24
12 7 5 16 22 21 17 27 12 9 17 19 16 28 3
18 17 29 25 20 28 13 18 11 22 22 21 8 2 29

0 23 26

Moreover, by the Singer representation, since all conics in PG(2,5) are projectively equiv-
alent, see [10], let us consider the conic C =−`∞ = {−0,−4,−10,−23,−24,−26} = {0,5,7,8,21,27}.
By taking into account the points not on C and not on the tangent lines, we get the 10-set I
of the internal points of the conic I = {1,12,13,17,19,22,25,28,29,30}. Now, taking into account
the triples on the external lines,

1 2 9 13 19 1 6 16 29 30 1 5 11 25 27
3 11 15 21 6 7 8 15 19 25 14 18 9 6 7
8 30 28 14 27 4 20 5 2 14 3 10 15 30 20 12 13 24
12 7 5 16 22 21 17 27 12 9 17 19 16 28 3
18 17 29 25 20 28 13 18 11 22 22 21 8 2 29

0 23 26

1 2 9 13 19 1 6 16 29 30 1 5 11 25 27
3 11 15 21 6 7 8 15 19 25 14 18 9 6 7
8 30 28 14 27 4 20 5 2 14 3 10 15 30 20 12 13 24
12 7 5 16 22 21 17 27 12 9 17 19 16 28 3
18 17 29 25 20 28 13 18 11 22 22 21 8 2 29

0 23 26

we get {{1,13,19},{1,17,22},{1,29,30},{12,13,30},{12,19,29},{12,25,28},{13,22,28}, {17,19,28},
{17,25,29},{22,25,30}}. Let us now consider the point-line incidence geometry (I,T) where the
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point-set I is the 10-set of the internal points of the conic I = {1,12,13,17,19,22,25,28,29,30},
and the line-set T is the union of the triples of collinear points on the external lines:

T = {{1,13,19},{1,17,22},{1,29,30},{12,13,30},{12,19,29},{12,25,28},{13,22,28},{17,19,28},{17,25,29},{22,25,30}}

A brief inspection of the Figure 1 confirms that the geometry (I,T) is the Desargues
configuration, as W. L. Edge proved in [1]. Now, by taking into account the points
not on C, but on the tangent lines, we get the 15-set of external points of the conic
E = {2,3,4,6,9,10,11,14,15,16,18,20,23,24,26}, cf. [10]. Now, taking into account the triples
on the external lines and the triples of non-collinear points of the triangles of the 2-lines,

1 2 9 13 19 1 6 16 29 30 1 5 11 25 27
3 11 15 21 6 7 8 15 19 25 14 18 9 6 7
8 30 28 14 27 4 20 5 2 14 3 10 15 30 20 12 13 24
12 7 5 16 22 21 17 27 12 9 17 19 16 28 3
18 17 29 25 20 28 13 18 11 22 22 21 8 2 29

0 23 26
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Figure 1. The Desargues configuration.

1 2 9 13 19 1 6 16 29 30 1 5 11 25 27
3 11 15 21 6 7 8 15 19 25 14 18 9 6 7
8 30 28 14 27 4 20 5 2 14 3 10 15 30 20 12 13 24
12 7 5 16 22 21 17 27 12 9 17 19 16 28 3
18 17 29 25 20 28 13 18 11 22 22 21 8 2 29

0 23 26

We get the sets T1 = {{2,4,9},{2,6,26},{3,9,23},{3,16,24},{4,18,20},{6,10,16},{10,11,18}, {11,14,23},
{14,15,26},{15,20,24}} and T2 = {{2,11,24},{3,18,26},{4,14,16},{6,20,23},{9,10,15}}.

1 2 9 13 19 1 6 16 29 30 1 5 11 25 27
3 11 15 21 6 7 8 15 19 25 14 18 9 6 7
8 30 28 14 27 4 20 5 2 14 3 10 15 30 20 12 13 24
12 7 5 16 22 21 17 27 12 9 17 19 16 28 3
18 17 29 25 20 28 13 18 11 22 22 21 8 2 29

0 23 26

Let us now construct the point-line incidence geometry (E,L) where the point-set E is
the 15-set of the external points of the conic, and the line-set L = T1 ∪ T2.

A brief inspection of the Figure 2 confirms that this geometry is isomorphic to GQ(2,2).
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3. Conclusions

This note confirms the intimate connection between Desargues configurations and the
generalized quadrangles of order two. The representation of the doily found by the author
and that proposed by Saniga [2] using the concept of the Veldkamp space of the Desargues
configuration share more than meets the eye. Using the fact that the doily is a self-dual
geometry, we can swap the roles of points and lines to get (isomorphically) the same
geometry. In this case the two different sets T1 and T2 correspond to two different types of
geometric hyperplanes of the Desargues configuration in Saniga’s model [2], namely, to
the ten polar point-line pairs and the five Pasch configurations, respectively; moreover, the
points of the doily represented by Pasch configurations form an ovoid, which corresponds
to the fact that the five lines of the set T2 form a spread in the author’s model.
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