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Abstract: Let H be an infinite-dimensional separable complex Hilbert space and B(H) the algebra of
all bounded linear operators on H. In this paper, we characterized the linear maps φ : B(H)→ B(H),
which are surjective up to compact operators preserving the set of left semi-Weyl operators in both
directions. As an application, we proved that φ preserves the essential approximate point spectrum
if and only if the ideal of all compact operators is invariant under φ and the induced map ϕ on the
Calkin algebra is an automorphism. Moreover, we have ind(φ(T)) = ind(T) if both φ(T) and T
are Fredholm.
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1. Introduction

Let H be an infinite-dimensional separable complex Hilbert space, B(H) the algebra
of all bounded linear operators on H, and K(H) ⊆ B(H) the closed ideal of all compact
operators. For an operator T ∈ B(H), we write T∗ for the conjugate operator of T, N(T) for
its kernel, and R(T) for its range. The dimension, codimension, and index of T are denoted
by dimT, codimT, and indT, respectively.

An operator T ∈ B(H) is called upper semi-Fredholm if R(T) is closed and N(T)
is finite- dimensional. If R(T) is closed and finite-codimensional, T ∈ B(H) is called a
lower semi-Fredholm operator. We call T ∈ B(H) Fredholm if R(T) is closed and finite-
codimensional and N(T) is finite-dimensional. For a semi-Fredholm operator (upper
semi-Fredholm operator or lower semi-Fredholm operator), let n(T) = dimN(T) and
d(T) = dimH/R(T) = codimR(T). The index of a semi-Fredholm operator T ∈ B(H) is
given by ind(T) = n(T)− d(T). The operator T is Weyl if it is Fredholm of index zero.
T ∈ B(H) is called left (right) semi-Weyl if T is upper (lower) semi-Fredholm with ind(T) ≤
0 (ind(T) ≥ 0). Let SF−+ (H) denote the set of all left semi-Weyl operators. For an operator
T ∈ B(H), the spectrum σ(T), the essential spectrum σe(T), the Weyl spectrum σw(T),
and the essential approximate point spectrum σea(T) of T are defined by σ(T) = {λ ∈ C :
T − λI is not invertible}, σe(T) = {λ ∈ C : T − λI is not Fredholm}, σw(T) = {λ ∈ C :
T − λI is not Weyl}, and σea(T) = {λ ∈ C : T − λI is not left semi−Weyl}, respectively.

Let Φ(H) ⊆ B(H) be the set of all Fredholm operators. We denote the Calkin algebra
B(H)/K(H) by C(H). Let π : B(H) → C(H) be the quotient map. It is well known that
T ∈ Φ(H) if and only if π(T) is invertible in C(H).

A bijective linear map φ : B(H) → B(H) is called a Jordan isomorphism if
φ(A2) = (φ(A))2 for every A ∈ B(H) or, equivalently, φ(AB + BA) = φ(A)φ(B) +
φ(B)φ(A) for all A and B in B(H). It is obvious that every isomorphism and every anti-
isomorphism is a Jordan isomorphism. For further properties of Jordan homomorphisms,
we refer the reader to [1,2].

In the last two decades, there has been considerable interest in the so-called linear
preserver problems (see the survey articles [3–5]). The goal of studying linear preservers is
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to give structural characterizations of linear maps on algebras having some special proper-
ties such as leaving invariant a certain subset of the algebra or leaving invariant a certain
function on the algebra. One of the most-famous problems in this direction is Kaplansky’s
problem ([6]): Let φ be a surjective linear map between two semi-simple Banach algebras A
and B. Suppose that σ(φ(x)) = σ(x) for all x ∈ A. Is it true that φ is a Jordan isomorphism?
This problem was first solved in the finite-dimensional case. Dieudonné ([7]) and Marcus
and Purves ([8]) proved that every unital invertibility preserving linear map on a complex
matrix algebra is either an inner automorphism or a linear anti-automorphism. This result
was later extended to the algebra of all bounded linear operators on a Banach space by
Sourour ([9]) and to von Neumann algebra by Aupetit ([10]). Many linear preserver prob-
lems have been of interest for infinite-dimensional cases. For the most-significant partial
results relevant to our discussions, we refer the reader to [9–11]. New contributions to
the study of the linear preserver problem have been recently made by Mbekhta in [12],
Alizadeh and Shakeri in [13], Bueno, Furtado, and Sivakumar in [14], Buenoa, Furtadob,
Klausmeierc, and Veltrid in [15], and Bendaoud, Bourhim and Sarih in [16].

In this article, we studied linear maps preserving left (right) semi-Weyl operators in
both directions. We characterized the linear maps φ : B(H)→ B(H), which are surjective
up to compact operators preserving the set of semi-Weyl operators in both directions. As
an application, we proved that φ preserves the essential approximate point spectrum if
and only if the ideal of all compact operators is invariant under φ, the induced map ϕ
on the Calkin algebra is an automorphism, and ind(φ(T)) = ind(T) if both φ(T) and T
are Fredholm.

2. Linear Maps Preserving the Set of Left (Right) Semi-Weyl Fredholm Operators

We say that a linear map φ preserves property X in both directions, which means that
if T is in the domain, then T has property X if and only if φ(T) has property X. Therefore,
a linear map φ : B(H) → B(H) preserves the set of left semi-Weyl operators in both
directions if T ∈ SF−+ (H)⇔ φ(T) ∈ SF−+ (H).

A linear map φ : B(H)→ B(H) is said to be surjective up to compact operators if, for
every T ∈ B(H), there exists T′ ∈ B(H) such that T − φ(T′) ∈ K(H). It is clear that if φ is
surjective, then it is surjective up to compact operators.

In order to prove the theorem and the corollaries, we need some known results.

Lemma 1 (Theorem 4.2 in [5]). Let H be an infinite-dimensional separable Hilbert space and
φ : B(H) → B(H) be a linear map surjective up to compact operators. Then, the following
are equivalent:

(1) φ preserves upper semi-Fredholm operators in both directions;
(2) φ preserves lower semi-Fredholm operators in both directions;
(3) φ(K(H)) ⊆ K(H), and the induced map ϕ : C(H) → C(H), ϕ ◦ π = π ◦ φ is an

automorphism multiplied by an invertible element a ∈ C(H).

Lemma 2 (Theorem 2.1 in [12]). Let H be an infinite-dimensional separable Hilbert space and
φ : B(H) → B(H) be a linear map surjective up to compact operators. Then, the following
are equivalent:

(1) φ preserves the set of Fredholm operators in both directions;
(2) φ(K(H)) ⊆ K(H), and the induced map ϕ : C(H) → C(H), ϕ ◦ π = π ◦ φ, is the

composition of either an automorphism or an anti-automorphism and left multiplication by an
invertible element in C(H).

Lemma 3 (Theorem 4.8 in [3]). Let A be a factor, and let B be a primitive Banach algebra. For a
surjective up to inessential elements linear map φ : A→ B, the following are equivalent:

(1) φ preserves Fredholm elements in both directions and φ(I) is the Weyl element of B;
(2) φ preserves Weyl elements in both directions;
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(3) Let I(A) and I(B) be the ideal of the inessential elements of A and B. Then, φ(I(A)) ⊆
I(B), and the induced map ϕ : C(A) → C(B) is either an isomorphism or an anti-
isomorphism multiplied by an invertible element a ∈ B.

Lemma 4 (Theorem 3.1 in [4]). Let A be a unital C*-algebra of real rank zero and B a uni-
tal semi-simple complex Banach algebra. Let ∆(·) denote any one of the spectral functions
σ(·), σl(·), σr(·), σl(·) ∩ σr(·), ∂σ(·), and ησ(·). Suppose φ : A → B is a surjective linear
map. If ∆(φ(T)) ⊆ ∆(T) for every T ∈ A, then φ is a Jordan homomorphism. Furthermore, if B is
prime, then φ is either a homomorphism or an anti-homomorphism.

Theorem 1. Let H be an infinite-dimensional Hilbert space, and let φ : B(H) → B(H) be a
linear map preserving left (or right) semi-Weyl operators in both directions. Assume that φ is
surjective up to compact operators and φ(I) is Weyl, then φ(K(H)) ⊆ K(H), and the induced
map ϕ : C(H)→ C(H), ϕ ◦ π = π ◦ φ is an automorphism multiplied by an invertible element
[B] ∈ C(H).

Proof. Suppose that φ : B(H)→ B(H) is a linear map preserving left semi-Weyl operators
in both directions. Let φ(I) = G + K0, where G ∈ B(H) is invertible and K0 ∈ K(H). There
exists B0 ∈ B(H) such that GB0 = B0G = I.

The linear map φ1 : B(H)→ B(H) is defined by:

φ1(T) = B0φ(T), ∀T ∈ B(H).

Then, φ1 preserves the left semi-Weyl operators in both directions and φ1(I) = I + K1,
where K1 ∈ K(H). Let us give some properties for the linear map φ1: (i) φ1 is surjective
up to compact operators.

In fact, for any T ∈ B(H), there exists T′ ∈ B(H) and K2 ∈ K(H) such that GT =
φ(T′) + K2. Then, T = B0GT = B0φ(T′) + K3 = φ1(T′) + K3, where K3 = B0K2 ∈ K(H).

(ii) For any T ∈ B(H), σea(T) = σea(φ1(T)).
Since T − λI ∈ SF−+ (H)⇔ φ1(T − λI) = φ1(T) − λφ1(I) = φ1(T) − λI − λK1 ∈

SF−+ (H)⇔φ1(T)− λI ∈ SF−+ (H), it follows that σea(T) = σea(φ1(T)) for any T ∈ B(H).
(iii) φ1 preserves compact operators in both directions.
First, we claim that

K(H) = {K ∈ B(H) : K + SF−+ (H) ∈ SF−+ (H)}

= {K ∈ B(H) : σea(T + K) = σea(T) for all T ∈ SF−+ (H)}.

From the stability properties of the index function, it is clear that K(H) ⊆ {K ∈ B(H) :
K + SF−+ (H) ∈ SF−+ (H)}= {K ∈ B(H) : σea(T + K) = σea(T) for all T ∈ SF−+ (H)}.

Let ∂E and ηE denote the boundary and the polynomial convex hull of a compact
subset E of C, respectively. For any T ∈ B(H), since

∂σw(T) ⊆ ∂σe(T) ⊆ σe(T) ⊆ σw(T) and ∂σw(T) ⊆ ∂σea(T) ⊆ σea(T) ⊆ σw(T),

it follows that ησea(T) = ησw(T) = ησe(T).
Now, let K ∈ B(H) such that σea(T + K) = σea(T) for all T ∈ B(H). Then, ησe(T +

K) = ησe(T) for all T ∈ B(H). Taking into account the semisimplicity of C(H) and the
spectral characterization of the radical, it is not difficult to prove that K(H) = {K ∈ B(H) :
K + SF−+ (H) ∈ SF−+ (H)}= {K ∈ B(H) : σea(T + K) = σea(T)for all T ∈ SF−+ (H)}.

Let K ∈ K(H), for any T ∈ SF−+ (H); since φ1 preserves left semi-Weyl operators in
both directions, there exists T′ ∈ SF−+ (H) and K′ ∈ K(H) for which T = φ1(T′) + K′.
Hence, T + φ1(K) = φ1(T′) + K′ + φ1(K) = φ1(T′ + K) + K′ ∈ SF−+ (H). Then, φ1(K) ∈
K(H). For the converse, let φ1(K) ∈ K(H), for any T ∈ SF−+ (H), φ1(T + K) = φ1(T) +
φ1(K) ∈ SF−+ (H), then T + K ∈ SF−+ (H). It follows that K ∈ K(H). Now, we prove that φ1
preserves compact operators in both directions.
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(iv) N(φ1) ⊆ K(H), and consequently, N(φ) ⊆ K(H).
If K ∈ N(φ1) and T ∈ SF−+ (H), then φ1(T + K) = φ1(T) ∈ SF−+ (H). Thus, for all

T ∈ SF−+ (H), T + K ∈ SF−+ (H). From the proof of (iii), we know that K ∈ K(H).
(v) Let ϕ1 : C(H)→ C(H) be an induced linear map such that φ1 ◦ π = π ◦ φ1, then

ϕ1 is an isomorphism or an anti-isomorphism.
From the fact that K(H) is invariant under φ1, then φ1 induces a linear map ϕ1 :

C(H)→ C(H) such that ϕ1 ◦ π = π ◦ φ1. Clearly, ϕ1 is surjective, since φ1 is surjective up
to compact operators. We prove now that ϕ1 is injective. Since N(ϕ1) = π(N(φ1)) and
N(φ1) ⊆ K(H), we can obtain that ϕ1 is injective.

From (ii), we know that, for any T ∈ B(H), ησea(T) = ησea(φ1(T)). Then, from (iii),
ησe(T) = ησe(φ1(T)). This shows that φ1 is an ησe-preserving map. Thus, the induced
mapping ϕ1 is an ησ-preserving map. By Lemma 4, ϕ1 is either an isomorphism or an
anti-isomorphism.

(vi) ϕ1 is an isomorphism.
First, we will prove that φ1 preserves upper semi-Fredholm operators in both direc-

tions. By Lemma 2, we know that φ1 preserves Fredholm operators in both directions. Let
T ∈ B(H) be an upper semi-Fredholm; there are two cases to consider: d(T) = ∞ and
d(T) < ∞. If d(T) = ∞, using the fact that φ1 : B(H) → B(H) is a linear map preserving
left semi-Weyl operators in both directions, we know that φ1(T) is upper semi-Fredholm. If
d(T) < ∞, then T is Fredholm; thus, φ1(T) is Fredholm since φ1 preserves Fredholm opera-
tors in both directions. Using the same way, we can prove that T is upper semi-Fredholm if
φ1(T) is upper semi-Fredholm. By Lemma 1, ϕ1 is an isomorphism.

From the definition of φ1, we know that φ preserves compact operators in both direc-
tions, and hence, K(H) is invariant under φ. Let φ induce a linear map ϕ : C(H)→ C(H)
such that ϕ ◦ π = π ◦ φ. Then, ϕ = [B]−1 ϕ1.

Similar to the above proof, the result is true if φ is a linear map preserving right
semi-Weyl operators in both directions. The proof is completed.

Under the same hypothesis and notation as in Theorem 1, we obtain that φ1 preserves
the essential spectrum ([12], Theorem 3.2). Then, ind(φ(T)) = ind(T) or ind(φ(T)) =
−ind(T) for any T ∈ Φ(H). Since φ1 preserves left semi-Weyl operators in both directions,
it follows that ind(φ(T)) · ind(T) ≥ 0 for any T ∈ Φ(H). Thus, ind(φ(T)) = ind(T) for
any T ∈ Φ(H). Furthermore, we can prove that ind(φ(T)) = ind(T) for any upper (lower)
semi-Fredholm operator T ∈ B(H). By Lemma 1, Lemma 2, and Lemma 3, we can obtain:

Corollary 1. Let φ : B(H)→ B(H) be a linear map preserving left (right) semi-Weyl operators
in both directions. Assume that φ is surjective up to compact operators and φ(I) is Weyl, then:

(1) φ preserves Fredholm operators in both directions;
(2) φ preserves Weyl operators in both directions;
(3) φ preserves upper semi-Fredholm operators in both directions;
(4) φ preserves lower semi-Fredholm operators in both directions;
(5) φ preserves semi-Fredholm operators in both directions;
(6) For any T ∈ Φ(H), ind(φ(T)) = ind(T);
(7) For any upper (lower) semi-Fredholm operator T, ind(φ(T)) = ind(T).

Remark 1. If φ : B(H) → B(H) is a linear map preserving Fredholm operators (or upper
semi-Fredholm operators, or lower semi-Fredholm operators, or semi-Fredholm operators) in both
directions, we cannot induce that φ is a linear map preserving left semi-Weyl operators in both
directions. For example, let A, B ∈ B(`2) be defined by:

A(x1, x2, x3, · · · ) = (x2, x3, x4, · · · ), B(x1, x2, x3, · · · ) = (0, 0, 0, x1, x2, · · · ),

then there exists A1, B1 ∈ B(`2) such that AA1 = B1B = I. Define φ : B(`2) → B(`2) as
φ(T) = ATB, T ∈ B(`2). We can see that φ is surjective and preserves Fredholm operators
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(upper semi-Fredholm operators, lower semi-Fredholm operators, semi-Fredholm operators) in both
directions, but φ is not a linear map preserving left semi-Weyl operators in both directions.

From Remark 1, we have the question: If φ : B(H) → B(H) is a linear map preserving
Fredholm operators (or upper semi-Fredholm operators, or lower semi-Fredholm operators, or semi-
Fredholm operators) in both directions, when does φ preserve left semi-Weyl operators in both
directions. To answer this question, let us begin by a Lemma (Lemma 2.4 in [5]).

Lemma 5. Let A ∈ B(H) be a lower (respectively upper) semi-Fredholm. If A is not Fredholm,
then there exists a lower (respectively upper) semi-Fredholm operator B such that every non-trivial
linear combination λA + µB, λ 6= 0 or µ 6= 0, is lower (respectively upper) semi-Fredholm, but
not Fredholm.

Corollary 2. Let φ : B(H)→ B(H) be a linear map preserving left (right) semi-Weyl operators
in both directions. Assume that φ is surjective up to compact operators, then φ(I) is a Fredholm
operator.

Proof. Denote φ(I) = T. We will prove that T is Fredholm. On the contrary, we assumed
that this is not the case. Since I is a left semi-Weyl operator, T must be a left semi-Weyl
operator. Then, by Lemma 5, there exists S ∈ B(H) such that λT − S is upper semi-
Fredholm, but not Fredholm, which means that λT − S is left semi-Weyl. We can further
find R ∈ B(H) such that φ(R) = S + K for some K ∈ K(H). Any compact perturbation of
a left semi-Weyl operator is a left semi-Weyl operator; thus, λT− φ(R) = φ(λI − R) is left
semi-Weyl for every λ ∈ C. As φ : B(H)→ B(H) is a linear map preserving left semi-Weyl
operators in both directions, we obtain that σea(R) = ∅, a contradiction.

Corollary 3. Let linear map φ : B(H) → B(H) be surjective up to compact operators, then the
following statements are equivalent:

(1) φ preserves left semi-Weyl operators in both directions, and φ(I) is Weyl;
(2) φ preserves left semi-Weyl operators in both directions, and ind(φ(T)) = ind(T) if both

φ(T) and T are Fredholm;
(3) φ preserves right semi-Weyl operators in both directions, and ind(φ(T)) = ind(T) if both

φ(T) and T are Fredholm;
(4) φ preserves Fredholm operators in both directions, and ind(φ(T)) = ind(T) if both φ(T) and

T are semi-Fredholm;
(5) φ preserves upper semi-Fredholm operators in both directions, and ind(φ(T)) = ind(T) if

both φ(T) and T are upper semi-Fredholm;
(6) φ(K(H)) ⊆ K(H); the induced map ϕ : C(H) → C(H), ϕ ◦ π = π ◦ φ is an automor-

phism multiplied by an invertible element [B] ∈ C(H), and ind(φ(T)) = ind(T) if both
φ(T) and T are Fredholm.

Proof. By the proof of Theorem 1 and Corollary 1, we only need to prove that (6)⇒ (1). By
Lemma 1, we know that φ preserves upper semi-Fredholm operators and Fredholm opera-
tors in both directions. Let T ∈ SF−+ (H), then φ(T) is upper semi-Fredholm. If d(T) = ∞,
then d(φ(T)) = ∞ because φ preserves Fredholm operators in both directions, thus φ(T) ∈
SF−+ (H). If d(T) < ∞, then φ(T) is Fredholm, and hence, ind(φ(T)) = ind(T) ≤ 0, again
φ(T) ∈ SF−+ (H). Using the same way, we can prove that T ∈ SF−+ (H) if φ(T) ∈ SF−+ (H).
This proves that φ preserves left semi-Weyl operators in both directions. Thus, φ(I) is
Fredholm. Since both φ(I) and I are Fredholm, it follows that ind(φ(I)) = ind(I) = 0.
Then, φ(I) is Weyl.

Let φ : B(H) → B(H) be surjective up to compact operators. If φ preserves left
semi-Weyl operators in both directions and φ(I) is Weyl, we cannot induce that φ is σea-
preserving. For example, let A1, B1 ∈ B(`2) be defined by:

A1(x1, x2, x3, · · · ) = (x2, x3, x4, · · · ), B1(x1, x2, x3, · · · ) = (0, x1, x2, · · · ),
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and define A =

(
A1 0
0 I

)
and B =

(
I 0
0 B1

)
. Let χ : B(`2 ⊕ `2) → K(`2 ⊕ `2)

be a linear map, and consider the linear map φ : B(`2 ⊕ `2) → B(`2 ⊕ `2) defined by
φ(T) = ATB + χ(T). Then, φ is surjective up to compact operators and preserves the set of
left semi-Weyl operators in both directions; also, φ(I) is Weyl. According to the calculation,
we obtain that σea(I) = {1}, while σea(φ(T)) = {λ ∈ C : |λ| = 1}. This says that φ is
not σea-preserving. There is a question: When does a map satisfying the hypothesis of
Theorem 1 preserve the essential approximate point spectrum?

Corollary 4. Let H be an infinite-dimensional Hilbert space, and let φ : B(H) → B(H) be a
linear map. Assume that φ is surjective up to compact operators, then the following statements
are equivalent:

(1) φ preserves left semi-Weyl operators in both directions and I − φ(I) ∈ K(H);
(2) φ preserves right semi-Weyl operators in both directions and I − φ(I) ∈ K(H);
(3) φ is σea-preserving, i.e., σea(φ(T)) = σea(T) for all T ∈ B(H);
(4) φ(K(H)) ⊆ K(H); the induced map ϕ : C(H) → C(H), ϕ ◦ π = π ◦ φ is an automor-

phism, and ind(φ(T)) = ind(T) if both φ(T) and T are Fredholm.

Proof. In view of the preceding theorem and corollaries, we only need to prove the equiva-
lence of (1) and (3). Suppose that φ preserves the left semi-Weyl operators in both direc-
tions and I − φ(I) ∈ K(H). Let φ(I) = I + K0, K0 ∈ K(H). Since T − λI ∈ SF−+ (H)⇔
φ(T − λI) = φ(T) − λφ(I) = φ(T) − λI − λK0 ∈ SF−+ (H) ⇔φ(T) − λI ∈ SF−+ (H), it
follows that σea(T) = σea(φ(T)) for any T ∈ B(H). For the converse, suppose that
σea(φ(T)) = σea(T) for all T ∈ B(H), then φ preserves the left semi-Weyl operators in
both directions. We need to prove that I − φ(I) ∈ K(H). Put K = φ(I)− I. Let T ∈ B(H),
T′ ∈ B(H), and K′ ∈ K(H) for which T = φ(T′) + K′ (φ is surjective up to compact
operators). Then, σea(T) = σea(φ(T′) + K′) = σea(φ(T′)) = σea(T′) and

σea(T + K) = σea(T + φ(I)− I) = σea(T + φ(I))− 1

= σea(φ(T′) + φ(I) + K′)− 1 = σea(φ(T′ + I))− 1

= σea(T′ + I)− 1 = σea(T′) = σea(T),

This gives σea(T + K) = σea(T) for all T ∈ B(H). It follows from the proof of Theorem 1
that K ∈ B(H) is compact.

Let SW(H) = {T ∈ B(H) : T be left semi-Weyl or right semi-Weyl}. Define the semi-
Weyl spectrum σSW(T) of an operator T ∈ B(H) as σSW(T) = {λ ∈ C : T − λI /∈ SW(H)}.
Similar to the proof of Theorem 1, we have that K(H) = {K ∈ B(H) : K + SW(H) ∈
SW(H)}= {K ∈ B(H) : σSW(T + K) = σSW(T) for all T ∈ SW(H)}. We can prove
the following:

Corollary 5. Let H be an infinite-dimensional Hilbert space, and let φ : B(H) → B(H) be a
linear map. Assume that φ is surjective up to compact operators, then the following statements
are equivalent:

(1) φ preserves semi-Weyl operators in both directions, and I − φ(I) ∈ K(H);
(2) φ is σSW-preserving, i.e., σSW(φ(T)) = σSW(T) for all T ∈ B(H);
(3) φ preserves semi-Fredholm operators in both directions, and I − φ(I) ∈ K(H);
(4) φ(K(H)) ⊆ K(H); the induced map ϕ : C(H) → C(H), ϕ ◦ π = π ◦ φ is an automor-

phism or an anti-isomorphism.

We conclude this paper by a natural conjecture that we have been unable to answer:

Conjecture 1. Let H be an infinite-dimensional Hilbert space, and let φ : B(H) → B(H) be a
linear map. Assume that φ is surjective up to compact operators, then the following statements
are equivalent:
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(1) φ preserves the essential approximate point spectrum;
(2) There exists ψ : B(H) → B(H) an automorphism and there exists χ : B(H) → K(H) a

linear map such that φ(T) = ψ(T) + χ(T) for every T ∈ B(H);
(3) φ(T) = ATA−1 + χ(T) for every T ∈ B(H), where A is an invertible operator in B(H) and

χ : B(H)→ K(H) is a linear map.
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