Article

Linear Maps Preserving the Set of Semi-Weyl Operators

Wei-Yan Yu ${ }^{1, *}$ and Xiao-Hong Cao ${ }^{2}$
1 College of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
2 College of Mathematics and Statistics, Shaanxi Normal University, Xi'an 710062, China; xiaohongcao@snnu.edu.cn
* Correspondence: wyyume65@163.com

Abstract

Let H be an infinite-dimensional separable complex Hilbert space and $B(H)$ the algebra of all bounded linear operators on H. In this paper, we characterized the linear maps $\phi: B(H) \rightarrow B(H)$, which are surjective up to compact operators preserving the set of left semi-Weyl operators in both directions. As an application, we proved that ϕ preserves the essential approximate point spectrum if and only if the ideal of all compact operators is invariant under ϕ and the induced map φ on the Calkin algebra is an automorphism. Moreover, we have $\operatorname{ind}(\phi(T))=\operatorname{ind}(T)$ if both $\phi(T)$ and T are Fredholm.

Keywords: left semi-Weyl operator; Calkin algebra; linear preservers

MSC: 47B48; 47A10; 46H05

Citation: Yu, W.-Y.; Cao, X.-H. Linear Maps Preserving the Set of
Semi-Weyl Operators. Mathematics 2023, 11, 2208. https://doi.org/ 10.3390/math11092208

Academic Editors: Xiangmin Jiao and Luca Gemignani

Received: 7 February 2023
Revised: 23 April 2023
Accepted: 28 April 2023
Published: 8 May 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

Let H be an infinite-dimensional separable complex Hilbert space, $B(H)$ the algebra of all bounded linear operators on H, and $\mathcal{K}(H) \subseteq B(H)$ the closed ideal of all compact operators. For an operator $T \in B(H)$, we write T^{*} for the conjugate operator of $T, N(T)$ for its kernel, and $R(T)$ for its range. The dimension, codimension, and index of T are denoted by $\operatorname{dim} T$, codim T, and ind T, respectively.

An operator $T \in B(H)$ is called upper semi-Fredholm if $R(T)$ is closed and $N(T)$ is finite- dimensional. If $R(T)$ is closed and finite-codimensional, $T \in B(H)$ is called a lower semi-Fredholm operator. We call $T \in B(H)$ Fredholm if $R(T)$ is closed and finitecodimensional and $N(T)$ is finite-dimensional. For a semi-Fredholm operator (upper semi-Fredholm operator or lower semi-Fredholm operator), let $n(T)=\operatorname{dim} N(T)$ and $d(T)=\operatorname{dim} H / R(T)=\operatorname{codim} R(T)$. The index of a semi-Fredholm operator $T \in B(H)$ is given by $\operatorname{ind}(T)=n(T)-d(T)$. The operator T is Weyl if it is Fredholm of index zero. $T \in B(H)$ is called left (right) semi-Weyl if T is upper (lower) semi-Fredholm with $\operatorname{ind}(T) \leq$ 0 (ind $(T) \geq 0)$. Let $S F_{+}^{-}(H)$ denote the set of all left semi-Weyl operators. For an operator $T \in B(H)$, the spectrum $\sigma(T)$, the essential spectrum $\sigma_{e}(T)$, the Weyl spectrum $\sigma_{w}(T)$, and the essential approximate point spectrum $\sigma_{e a}(T)$ of T are defined by $\sigma(T)=\{\lambda \in \mathbb{C}$: $T-\lambda I$ is not invertible $\}, \sigma_{e}(T)=\{\lambda \in \mathbb{C}: T-\lambda I$ is not Fredholm $\}, \sigma_{w}(T)=\{\lambda \in \mathbb{C}:$ $T-\lambda I$ is not Weyl $\}$, and $\sigma_{e a}(T)=\{\lambda \in \mathbb{C}: T-\lambda I$ is not left semi - Weyl $\}$, respectively.

Let $\Phi(H) \subseteq B(H)$ be the set of all Fredholm operators. We denote the Calkin algebra $B(H) / \mathcal{K}(H)$ by $\mathcal{C}(H)$. Let $\pi: B(H) \rightarrow \mathcal{C}(H)$ be the quotient map. It is well known that $T \in \Phi(H)$ if and only if $\pi(T)$ is invertible in $\mathcal{C}(H)$.

A bijective linear map $\phi: B(H) \rightarrow B(H)$ is called a Jordan isomorphism if $\phi\left(A^{2}\right)=(\phi(A))^{2}$ for every $A \in B(H)$ or, equivalently, $\phi(A B+B A)=\phi(A) \phi(B)+$ $\phi(B) \phi(A)$ for all A and B in $B(H)$. It is obvious that every isomorphism and every antiisomorphism is a Jordan isomorphism. For further properties of Jordan homomorphisms, we refer the reader to [1,2].

In the last two decades, there has been considerable interest in the so-called linear preserver problems (see the survey articles [3-5]). The goal of studying linear preservers is
to give structural characterizations of linear maps on algebras having some special properties such as leaving invariant a certain subset of the algebra or leaving invariant a certain function on the algebra. One of the most-famous problems in this direction is Kaplansky's problem ([6]): Let ϕ be a surjective linear map between two semi-simple Banach algebras \mathcal{A} and \mathcal{B}. Suppose that $\sigma(\phi(x))=\sigma(x)$ for all $x \in \mathcal{A}$. Is it true that ϕ is a Jordan isomorphism? This problem was first solved in the finite-dimensional case. Dieudonné ([7]) and Marcus and Purves ([8]) proved that every unital invertibility preserving linear map on a complex matrix algebra is either an inner automorphism or a linear anti-automorphism. This result was later extended to the algebra of all bounded linear operators on a Banach space by Sourour ([9]) and to von Neumann algebra by Aupetit ([10]). Many linear preserver problems have been of interest for infinite-dimensional cases. For the most-significant partial results relevant to our discussions, we refer the reader to [9-11]. New contributions to the study of the linear preserver problem have been recently made by Mbekhta in [12], Alizadeh and Shakeri in [13], Bueno, Furtado, and Sivakumar in [14], Buenoa, Furtadob, Klausmeierc, and Veltrid in [15], and Bendaoud, Bourhim and Sarih in [16].

In this article, we studied linear maps preserving left (right) semi-Weyl operators in both directions. We characterized the linear maps $\phi: B(H) \rightarrow B(H)$, which are surjective up to compact operators preserving the set of semi-Weyl operators in both directions. As an application, we proved that ϕ preserves the essential approximate point spectrum if and only if the ideal of all compact operators is invariant under ϕ, the induced map φ on the Calkin algebra is an automorphism, and $\operatorname{ind}(\phi(T))=\operatorname{ind}(T)$ if both $\phi(T)$ and T are Fredholm.

2. Linear Maps Preserving the Set of Left (Right) Semi-Weyl Fredholm Operators

We say that a linear map ϕ preserves property X in both directions, which means that if T is in the domain, then T has property X if and only if $\phi(T)$ has property X. Therefore, a linear map $\phi: B(H) \rightarrow B(H)$ preserves the set of left semi-Weyl operators in both directions if $T \in S F_{+}^{-}(H) \Leftrightarrow \phi(T) \in S F_{+}^{-}(H)$.

A linear map $\phi: B(H) \rightarrow B(H)$ is said to be surjective up to compact operators if, for every $T \in B(H)$, there exists $T^{\prime} \in B(H)$ such that $T-\phi\left(T^{\prime}\right) \in \mathcal{K}(H)$. It is clear that if ϕ is surjective, then it is surjective up to compact operators.

In order to prove the theorem and the corollaries, we need some known results.
Lemma 1 (Theorem 4.2 in [5]). Let H be an infinite-dimensional separable Hilbert space and $\phi: B(H) \rightarrow B(H)$ be a linear map surjective up to compact operators. Then, the following are equivalent:
(1) ϕ preserves upper semi-Fredholm operators in both directions;
(2) ϕ preserves lower semi-Fredholm operators in both directions;
(3) $\phi(\mathcal{K}(H)) \subseteq \mathcal{K}(H)$, and the induced map $\varphi: \mathcal{C}(H) \rightarrow \mathcal{C}(H), \varphi \circ \pi=\pi \circ \phi$ is an automorphism multiplied by an invertible element $a \in \mathcal{C}(H)$.

Lemma 2 (Theorem 2.1 in [12]). Let H be an infinite-dimensional separable Hilbert space and $\phi: B(H) \rightarrow B(H)$ be a linear map surjective up to compact operators. Then, the following are equivalent:
(1) ϕ preserves the set of Fredholm operators in both directions;
(2) $\phi(\mathcal{K}(H)) \subseteq \mathcal{K}(H)$, and the induced map $\varphi: \mathcal{C}(H) \rightarrow \mathcal{C}(H), \varphi \circ \pi=\pi \circ \phi$, is the composition of either an automorphism or an anti-automorphism and left multiplication by an invertible element in $\mathcal{C}(H)$.

Lemma 3 (Theorem 4.8 in [3]). Let A be a factor, and let B be a primitive Banach algebra. For a surjective up to inessential elements linear map $\phi: A \rightarrow B$, the following are equivalent:
(1) ϕ preserves Fredholm elements in both directions and $\phi(I)$ is the Weyl element of B;
(2) ϕ preserves Weyl elements in both directions;
(3) Let $\mathcal{I}(A)$ and $\mathcal{I}(B)$ be the ideal of the inessential elements of A and B. Then, $\phi(\mathcal{I}(A)) \subseteq$ $\mathcal{I}(B)$, and the induced map $\varphi: \mathcal{C}(A) \rightarrow \mathcal{C}(B)$ is either an isomorphism or an antiisomorphism multiplied by an invertible element $a \in B$.

Lemma 4 (Theorem 3.1 in [4]). Let A be a unital C^{*}-algebra of real rank zero and B a unital semi-simple complex Banach algebra. Let $\Delta(\cdot)$ denote any one of the spectral functions $\sigma(\cdot), \sigma_{l}(\cdot), \sigma_{r}(\cdot), \sigma_{l}(\cdot) \cap \sigma_{r}(\cdot), \partial \sigma(\cdot)$, and $\eta \sigma(\cdot)$. Suppose $\phi: A \rightarrow B$ is a surjective linear map. If $\Delta(\phi(T)) \subseteq \Delta(T)$ for every $T \in A$, then ϕ is a Jordan homomorphism. Furthermore, if B is prime, then ϕ is either a homomorphism or an anti-homomorphism.

Theorem 1. Let H be an infinite-dimensional Hilbert space, and let $\phi: B(H) \rightarrow B(H)$ be a linear map preserving left (or right) semi-Weyl operators in both directions. Assume that ϕ is surjective up to compact operators and $\phi(I)$ is Weyl, then $\phi(\mathcal{K}(H)) \subseteq \mathcal{K}(H)$, and the induced map $\varphi: \mathcal{C}(H) \rightarrow \mathcal{C}(H), \varphi \circ \pi=\pi \circ \phi$ is an automorphism multiplied by an invertible element $[B] \in \mathcal{C}(H)$.

Proof. Suppose that $\phi: B(H) \rightarrow B(H)$ is a linear map preserving left semi-Weyl operators in both directions. Let $\phi(I)=G+K_{0}$, where $G \in B(H)$ is invertible and $K_{0} \in \mathcal{K}(H)$. There exists $B_{0} \in B(H)$ such that $G B_{0}=B_{0} G=I$.

The linear map $\phi_{1}: B(H) \rightarrow B(H)$ is defined by:

$$
\phi_{1}(T)=B_{0} \phi(T), \forall T \in B(H) .
$$

Then, ϕ_{1} preserves the left semi-Weyl operators in both directions and $\phi_{1}(I)=I+K_{1}$, where $K_{1} \in \mathcal{K}(H)$. Let us give some properties for the linear map ϕ_{1} : (i) ϕ_{1} is surjective up to compact operators.

In fact, for any $T \in B(H)$, there exists $T^{\prime} \in B(H)$ and $K_{2} \in \mathcal{K}(H)$ such that $G T=$ $\phi\left(T^{\prime}\right)+K_{2}$. Then, $T=B_{0} G T=B_{0} \phi\left(T^{\prime}\right)+K_{3}=\phi_{1}\left(T^{\prime}\right)+K_{3}$, where $K_{3}=B_{0} K_{2} \in \mathcal{K}(H)$.
(ii) For any $T \in B(H), \sigma_{e a}(T)=\sigma_{e a}\left(\phi_{1}(T)\right)$.

Since $T-\lambda I \in S F_{+}^{-}(H) \Leftrightarrow \phi_{1}(T-\lambda I)=\phi_{1}(T)-\lambda \phi_{1}(I)=\phi_{1}(T)-\lambda I-\lambda K_{1} \in$ $S F_{+}^{-}(H) \Leftrightarrow \phi_{1}(T)-\lambda I \in S F_{+}^{-}(H)$, it follows that $\sigma_{e a}(T)=\sigma_{e a}\left(\phi_{1}(T)\right)$ for any $T \in B(H)$.
(iii) ϕ_{1} preserves compact operators in both directions.

First, we claim that

$$
\begin{gathered}
\mathcal{K}(H)=\left\{K \in B(H): K+S F_{+}^{-}(H) \in S F_{+}^{-}(H)\right\} \\
=\left\{K \in B(H): \sigma_{e a}(T+K)=\sigma_{e a}(T) \text { for all } T \in S F_{+}^{-}(H)\right\} .
\end{gathered}
$$

From the stability properties of the index function, it is clear that $\mathcal{K}(H) \subseteq\{K \in B(H)$: $\left.K+S F_{+}^{-}(H) \in S F_{+}^{-}(H)\right\}=\left\{K \in B(H): \sigma_{e a}(T+K)=\sigma_{e a}(T)\right.$ for all $\left.T \in S F_{+}^{-}(H)\right\}$.

Let ∂E and ηE denote the boundary and the polynomial convex hull of a compact subset E of \mathbb{C}, respectively. For any $T \in B(H)$, since

$$
\partial \sigma_{w}(T) \subseteq \partial \sigma_{e}(T) \subseteq \sigma_{e}(T) \subseteq \sigma_{w}(T) \text { and } \partial \sigma_{w}(T) \subseteq \partial \sigma_{e a}(T) \subseteq \sigma_{e a}(T) \subseteq \sigma_{w}(T)
$$

it follows that $\eta \sigma_{e a}(T)=\eta \sigma_{w}(T)=\eta \sigma_{e}(T)$.
Now, let $K \in B(H)$ such that $\sigma_{e a}(T+K)=\sigma_{e a}(T)$ for all $T \in B(H)$. Then, $\eta \sigma_{e}(T+$ $K)=\eta \sigma_{e}(T)$ for all $T \in B(H)$. Taking into account the semisimplicity of $\mathcal{C}(H)$ and the spectral characterization of the radical, it is not difficult to prove that $\mathcal{K}(H)=\{K \in B(H)$: $\left.K+S F_{+}^{-}(H) \in S F_{+}^{-}(H)\right\}=\left\{K \in B(H): \sigma_{e a}(T+K)=\sigma_{e a}(T)\right.$ for all $\left.T \in S F_{+}^{-}(H)\right\}$.

Let $K \in \mathcal{K}(H)$, for any $T \in S F_{+}^{-}(H)$; since ϕ_{1} preserves left semi-Weyl operators in both directions, there exists $T^{\prime} \in S F_{+}^{-}(H)$ and $K^{\prime} \in \mathcal{K}(H)$ for which $T=\phi_{1}\left(T^{\prime}\right)+K^{\prime}$. Hence, $T+\phi_{1}(K)=\phi_{1}\left(T^{\prime}\right)+K^{\prime}+\phi_{1}(K)=\phi_{1}\left(T^{\prime}+K\right)+K^{\prime} \in S F_{+}^{-}(H)$. Then, $\phi_{1}(K) \in$ $\mathcal{K}(H)$. For the converse, let $\phi_{1}(K) \in \mathcal{K}(H)$, for any $T \in S F_{+}^{-}(H), \phi_{1}(T+K)=\phi_{1}(T)+$ $\phi_{1}(K) \in S F_{+}^{-}(H)$, then $T+K \in S F_{+}^{-}(H)$. It follows that $K \in \mathcal{K}(H)$. Now, we prove that ϕ_{1} preserves compact operators in both directions.
(iv) $\quad N\left(\phi_{1}\right) \subseteq \mathcal{K}(H)$, and consequently, $N(\phi) \subseteq \mathcal{K}(H)$.

If $K \in N\left(\phi_{1}\right)$ and $T \in S F_{+}^{-}(H)$, then $\phi_{1}(T+K)=\phi_{1}(T) \in S F_{+}^{-}(H)$. Thus, for all $T \in S F_{+}^{-}(H), T+K \in S F_{+}^{-}(H)$. From the proof of (iii), we know that $K \in \mathcal{K}(H)$.
(v) Let $\varphi_{1}: \mathcal{C}(H) \rightarrow \mathcal{C}(H)$ be an induced linear map such that $\phi_{1} \circ \pi=\pi \circ \phi_{1}$, then φ_{1} is an isomorphism or an anti-isomorphism.

From the fact that $\mathcal{K}(H)$ is invariant under ϕ_{1}, then ϕ_{1} induces a linear map φ_{1} : $\mathcal{C}(H) \rightarrow \mathcal{C}(H)$ such that $\varphi_{1} \circ \pi=\pi \circ \phi_{1}$. Clearly, φ_{1} is surjective, since ϕ_{1} is surjective up to compact operators. We prove now that φ_{1} is injective. Since $N\left(\varphi_{1}\right)=\pi\left(N\left(\phi_{1}\right)\right)$ and $N\left(\phi_{1}\right) \subseteq \mathcal{K}(H)$, we can obtain that φ_{1} is injective.

From (ii), we know that, for any $T \in B(H), \eta \sigma_{e a}(T)=\eta \sigma_{e a}\left(\phi_{1}(T)\right)$. Then, from (iii), $\eta \sigma_{e}(T)=\eta \sigma_{e}\left(\phi_{1}(T)\right)$. This shows that ϕ_{1} is an $\eta \sigma_{e}$-preserving map. Thus, the induced mapping φ_{1} is an $\eta \sigma$-preserving map. By Lemma $4, \varphi_{1}$ is either an isomorphism or an anti-isomorphism.
(vi) φ_{1} is an isomorphism.

First, we will prove that ϕ_{1} preserves upper semi-Fredholm operators in both directions. By Lemma 2, we know that ϕ_{1} preserves Fredholm operators in both directions. Let $T \in B(H)$ be an upper semi-Fredholm; there are two cases to consider: $d(T)=\infty$ and $d(T)<\infty$. If $d(T)=\infty$, using the fact that $\phi_{1}: B(H) \rightarrow B(H)$ is a linear map preserving left semi-Weyl operators in both directions, we know that $\phi_{1}(T)$ is upper semi-Fredholm. If $d(T)<\infty$, then T is Fredholm; thus, $\phi_{1}(T)$ is Fredholm since ϕ_{1} preserves Fredholm operators in both directions. Using the same way, we can prove that T is upper semi-Fredholm if $\phi_{1}(T)$ is upper semi-Fredholm. By Lemma $1, \varphi_{1}$ is an isomorphism.

From the definition of ϕ_{1}, we know that ϕ preserves compact operators in both directions, and hence, $\mathcal{K}(H)$ is invariant under ϕ. Let ϕ induce a linear map $\varphi: \mathcal{C}(H) \rightarrow \mathcal{C}(H)$ such that $\varphi \circ \pi=\pi \circ \phi$. Then, $\varphi=[B]^{-1} \varphi_{1}$.

Similar to the above proof, the result is true if ϕ is a linear map preserving right semi-Weyl operators in both directions. The proof is completed.

Under the same hypothesis and notation as in Theorem 1, we obtain that ϕ_{1} preserves the essential spectrum ([12], Theorem 3.2). Then, ind $(\phi(T))=\operatorname{ind}(T)$ or ind $(\phi(T))=$ $-\operatorname{ind}(T)$ for any $T \in \Phi(H)$. Since ϕ_{1} preserves left semi-Weyl operators in both directions, it follows that $\operatorname{ind}(\phi(T)) \cdot \operatorname{ind}(T) \geq 0$ for any $T \in \Phi(H)$. Thus, $\operatorname{ind}(\phi(T))=\operatorname{ind}(T)$ for any $T \in \Phi(H)$. Furthermore, we can prove that $\operatorname{ind}(\phi(T))=\operatorname{ind}(T)$ for any upper (lower) semi-Fredholm operator $T \in B(H)$. By Lemma 1, Lemma 2, and Lemma 3, we can obtain:

Corollary 1. Let $\phi: B(H) \rightarrow B(H)$ be a linear map preserving left (right) semi-Weyl operators in both directions. Assume that ϕ is surjective up to compact operators and $\phi(I)$ is Weyl, then:
(1) ϕ preserves Fredholm operators in both directions;
(2) ϕ preserves Weyl operators in both directions;
(3) ϕ preserves upper semi-Fredholm operators in both directions;
(4) ϕ preserves lower semi-Fredholm operators in both directions;
(5) ϕ preserves semi-Fredholm operators in both directions;
(6) For any $T \in \Phi(H)$, ind $(\phi(T))=\operatorname{ind}(T)$;
(7) For any upper (lower) semi-Fredholm operator $T, \operatorname{ind}(\phi(T))=\operatorname{ind}(T)$.

Remark 1. If $\phi: B(H) \rightarrow B(H)$ is a linear map preserving Fredholm operators (or upper semi-Fredholm operators, or lower semi-Fredholm operators, or semi-Fredholm operators) in both directions, we cannot induce that ϕ is a linear map preserving left semi-Weyl operators in both directions. For example, let $A, B \in B\left(\ell_{2}\right)$ be defined by:

$$
A\left(x_{1}, x_{2}, x_{3}, \cdots\right)=\left(x_{2}, x_{3}, x_{4}, \cdots\right), \quad B\left(x_{1}, x_{2}, x_{3}, \cdots\right)=\left(0,0,0, x_{1}, x_{2}, \cdots\right),
$$

then there exists $A_{1}, B_{1} \in B\left(\ell_{2}\right)$ such that $A A_{1}=B_{1} B=I$. Define $\phi: B\left(\ell_{2}\right) \rightarrow B\left(\ell_{2}\right)$ as $\phi(T)=A T B, T \in B\left(\ell_{2}\right)$. We can see that ϕ is surjective and preserves Fredholm operators
(upper semi-Fredholm operators, lower semi-Fredholm operators, semi-Fredholm operators) in both directions, but ϕ is not a linear map preserving left semi-Weyl operators in both directions.

From Remark 1, we have the question: If $\phi: B(H) \rightarrow B(H)$ is a linear map preserving Fredholm operators (or upper semi-Fredholm operators, or lower semi-Fredholm operators, or semiFredholm operators) in both directions, when does ϕ preserve left semi-Weyl operators in both directions. To answer this question, let us begin by a Lemma (Lemma 2.4 in [5]).

Lemma 5. Let $A \in B(H)$ be a lower (respectively upper) semi-Fredholm. If A is not Fredholm, then there exists a lower (respectively upper) semi-Fredholm operator B such that every non-trivial linear combination $\lambda A+\mu B, \lambda \neq 0$ or $\mu \neq 0$, is lower (respectively upper) semi-Fredholm, but not Fredholm.

Corollary 2. Let $\phi: B(H) \rightarrow B(H)$ be a linear map preserving left (right) semi-Weyl operators in both directions. Assume that ϕ is surjective up to compact operators, then $\phi(I)$ is a Fredholm operator.

Proof. Denote $\phi(I)=T$. We will prove that T is Fredholm. On the contrary, we assumed that this is not the case. Since I is a left semi-Weyl operator, T must be a left semi-Weyl operator. Then, by Lemma 5 , there exists $S \in B(H)$ such that $\lambda T-S$ is upper semiFredholm, but not Fredholm, which means that $\lambda T-S$ is left semi-Weyl. We can further find $R \in B(H)$ such that $\phi(R)=S+K$ for some $K \in \mathcal{K}(H)$. Any compact perturbation of a left semi-Weyl operator is a left semi-Weyl operator; thus, $\lambda T-\phi(R)=\phi(\lambda I-R)$ is left semi-Weyl for every $\lambda \in \mathbb{C}$. As $\phi: B(H) \rightarrow B(H)$ is a linear map preserving left semi-Weyl operators in both directions, we obtain that $\sigma_{e a}(R)=\varnothing$, a contradiction.

Corollary 3. Let linear map $\phi: B(H) \rightarrow B(H)$ be surjective up to compact operators, then the following statements are equivalent:
(1) ϕ preserves left semi-Weyl operators in both directions, and $\phi(I)$ is Weyl;
(2) ϕ preserves left semi-Weyl operators in both directions, and ind $(\phi(T))=\operatorname{ind}(T)$ if both $\phi(T)$ and T are Fredholm;
(3) ϕ preserves right semi-Weyl operators in both directions, and ind $(\phi(T))=\operatorname{ind}(T)$ if both $\phi(T)$ and T are Fredholm;
(4) ϕ preserves Fredholm operators in both directions, and ind $(\phi(T))=\operatorname{ind}(T)$ if both $\phi(T)$ and T are semi-Fredholm;
(5) $\quad \phi$ preserves upper semi-Fredholm operators in both directions, and ind $(\phi(T))=\operatorname{ind}(T)$ if both $\phi(T)$ and T are upper semi-Fredholm;
(6) $\phi(\mathcal{K}(H)) \subseteq \mathcal{K}(H)$; the induced map $\varphi: \mathcal{C}(H) \rightarrow \mathcal{C}(H), \varphi \circ \pi=\pi \circ \phi$ is an automorphism multiplied by an invertible element $[B] \in \mathcal{C}(H)$, and ind $(\phi(T))=$ ind (T) if both $\phi(T)$ and T are Fredholm.

Proof. By the proof of Theorem 1 and Corollary 1, we only need to prove that $(6) \Rightarrow(1)$. By Lemma 1, we know that ϕ preserves upper semi-Fredholm operators and Fredholm operators in both directions. Let $T \in S F_{+}^{-}(H)$, then $\phi(T)$ is upper semi-Fredholm. If $d(T)=\infty$, then $d(\phi(T))=\infty$ because ϕ preserves Fredholm operators in both directions, thus $\phi(T) \in$ $S F_{+}^{-}(H)$. If $d(T)<\infty$, then $\phi(T)$ is Fredholm, and hence, $\operatorname{ind}(\phi(T))=\operatorname{ind}(T) \leq 0$, again $\phi(T) \in S F_{+}^{-}(H)$. Using the same way, we can prove that $T \in S F_{+}^{-}(H)$ if $\phi(T) \in S F_{+}^{-}(H)$. This proves that ϕ preserves left semi-Weyl operators in both directions. Thus, $\phi(I)$ is Fredholm. Since both $\phi(I)$ and I are Fredholm, it follows that $\operatorname{ind}(\phi(I))=\operatorname{ind}(I)=0$. Then, $\phi(I)$ is Weyl.

Let $\phi: B(H) \rightarrow B(H)$ be surjective up to compact operators. If ϕ preserves left semi-Weyl operators in both directions and $\phi(I)$ is Weyl, we cannot induce that ϕ is $\sigma_{e a}$ preserving. For example, let $A_{1}, B_{1} \in B\left(\ell_{2}\right)$ be defined by:

$$
A_{1}\left(x_{1}, x_{2}, x_{3}, \cdots\right)=\left(x_{2}, x_{3}, x_{4}, \cdots\right), \quad B_{1}\left(x_{1}, x_{2}, x_{3}, \cdots\right)=\left(0, x_{1}, x_{2}, \cdots\right)
$$

and define $A=\left(\begin{array}{cc}A_{1} & 0 \\ 0 & I\end{array}\right)$ and $B=\left(\begin{array}{cc}I & 0 \\ 0 & B_{1}\end{array}\right)$. Let $\chi: B\left(\ell_{2} \oplus \ell_{2}\right) \rightarrow \mathcal{K}\left(\ell_{2} \oplus \ell_{2}\right)$ be a linear map, and consider the linear map $\phi: B\left(\ell_{2} \oplus \ell_{2}\right) \rightarrow B\left(\ell_{2} \oplus \ell_{2}\right)$ defined by $\phi(T)=A T B+\chi(T)$. Then, ϕ is surjective up to compact operators and preserves the set of left semi-Weyl operators in both directions; also, $\phi(I)$ is Weyl. According to the calculation, we obtain that $\sigma_{e a}(I)=\{1\}$, while $\sigma_{e a}(\phi(T))=\{\lambda \in \mathbb{C}:|\lambda|=1\}$. This says that ϕ is not $\sigma_{e a}$-preserving. There is a question: When does a map satisfying the hypothesis of Theorem 1 preserve the essential approximate point spectrum?

Corollary 4. Let H be an infinite-dimensional Hilbert space, and let $\phi: B(H) \rightarrow B(H)$ be a linear map. Assume that ϕ is surjective up to compact operators, then the following statements are equivalent:
(1) ϕ preserves left semi-Weyl operators in both directions and $I-\phi(I) \in \mathcal{K}(H)$;
(2) ϕ preserves right semi-Weyl operators in both directions and $I-\phi(I) \in \mathcal{K}(H)$;
(3) ϕ is $\sigma_{e a}$-preserving, i.e., $\sigma_{e a}(\phi(T))=\sigma_{e a}(T)$ for all $T \in B(H)$;
(4) $\phi(\mathcal{K}(H)) \subseteq \mathcal{K}(H)$; the induced map $\varphi: \mathcal{C}(H) \rightarrow \mathcal{C}(H), \varphi \circ \pi=\pi \circ \phi$ is an automorphism, and ind $(\phi(T))=\operatorname{ind}(T)$ if both $\phi(T)$ and T are Fredholm.

Proof. In view of the preceding theorem and corollaries, we only need to prove the equivalence of (1) and (3). Suppose that ϕ preserves the left semi-Weyl operators in both directions and $I-\phi(I) \in \mathcal{K}(H)$. Let $\phi(I)=I+K_{0}, K_{0} \in \mathcal{K}(H)$. Since $T-\lambda I \in S F_{+}^{-}(H) \Leftrightarrow$ $\phi(T-\lambda I)=\phi(T)-\lambda \phi(I)=\phi(T)-\lambda I-\lambda K_{0} \in S F_{+}^{-}(H) \Leftrightarrow \phi(T)-\lambda I \in S F_{+}^{-}(H)$, it follows that $\sigma_{e a}(T)=\sigma_{e a}(\phi(T))$ for any $T \in B(H)$. For the converse, suppose that $\sigma_{e a}(\phi(T))=\sigma_{e a}(T)$ for all $T \in B(H)$, then ϕ preserves the left semi-Weyl operators in both directions. We need to prove that $I-\phi(I) \in \mathcal{K}(H)$. Put $K=\phi(I)-I$. Let $T \in B(H)$, $T^{\prime} \in B(H)$, and $K^{\prime} \in \mathcal{K}(H)$ for which $T=\phi\left(T^{\prime}\right)+K^{\prime}$ (ϕ is surjective up to compact operators). Then, $\sigma_{e a}(T)=\sigma_{e a}\left(\phi\left(T^{\prime}\right)+K^{\prime}\right)=\sigma_{e a}\left(\phi\left(T^{\prime}\right)\right)=\sigma_{e a}\left(T^{\prime}\right)$ and

$$
\begin{aligned}
& \sigma_{e a}(T+K)=\sigma_{e a}(T+\phi(I)-I)=\sigma_{e a}(T+\phi(I))-1 \\
= & \sigma_{e a}\left(\phi\left(T^{\prime}\right)+\phi(I)+K^{\prime}\right)-1=\sigma_{e a}\left(\phi\left(T^{\prime}+I\right)\right)-1 \\
= & \sigma_{e a}\left(T^{\prime}+I\right)-1=\sigma_{e a}\left(T^{\prime}\right)=\sigma_{e a}(T),
\end{aligned}
$$

This gives $\sigma_{e a}(T+K)=\sigma_{e a}(T)$ for all $T \in B(H)$. It follows from the proof of Theorem 1 that $K \in B(H)$ is compact.

Let $S W(H)=\{T \in B(H): T$ be left semi-Weyl or right semi-Weyl $\}$. Define the semiWeyl spectrum $\sigma_{S W}(T)$ of an operator $T \in B(H)$ as $\sigma_{S W}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \notin S W(H)\}$. Similar to the proof of Theorem 1, we have that $\mathcal{K}(H)=\{K \in B(H): K+S W(H) \in$ $S W(H)\}=\left\{K \in B(H): \sigma_{S W}(T+K)=\sigma_{S W}(T)\right.$ for all $\left.T \in S W(H)\right\}$. We can prove the following:

Corollary 5. Let H be an infinite-dimensional Hilbert space, and let $\phi: B(H) \rightarrow B(H)$ be a linear map. Assume that ϕ is surjective up to compact operators, then the following statements are equivalent:
(1) $\quad \phi$ preserves semi-Weyl operators in both directions, and $I-\phi(I) \in \mathcal{K}(H)$;
(2) ϕ is $\sigma_{S W}$-preserving, i.e., $\sigma_{S W}(\phi(T))=\sigma_{S W}(T)$ for all $T \in B(H)$;
(3) ϕ preserves semi-Fredholm operators in both directions, and $I-\phi(I) \in \mathcal{K}(H)$;
(4) $\phi(\mathcal{K}(H)) \subseteq \mathcal{K}(H)$; the induced $\operatorname{map} \varphi: \mathcal{C}(H) \rightarrow \mathcal{C}(H), \varphi \circ \pi=\pi \circ \phi$ is an automorphism or an anti-isomorphism.
We conclude this paper by a natural conjecture that we have been unable to answer:
Conjecture 1. Let H be an infinite-dimensional Hilbert space, and let $\phi: B(H) \rightarrow B(H)$ be a linear map. Assume that ϕ is surjective up to compact operators, then the following statements are equivalent:
(1) ϕ preserves the essential approximate point spectrum;
(2) There exists $\psi: B(H) \rightarrow B(H)$ an automorphism and there exists $\chi: B(H) \rightarrow \mathcal{K}(H) a$ linear map such that $\phi(T)=\psi(T)+\chi(T)$ for every $T \in B(H)$;
(3) $\quad \phi(T)=A T A^{-1}+\chi(T)$ for every $T \in B(H)$, where A is an invertible operator in $B(H)$ and $\chi: B(H) \rightarrow \mathcal{K}(H)$ is a linear map.

Author Contributions: Writing-Original Draft Preparation, W.-Y.Y.; Writing—Review \& Editing, X.-H.C.; Funding Acquisition, W.-Y.Y. All authors have read and agreed to the published version of the manuscript.

Funding: Supported by the NSF of China (No.12061031, 11461018), Hainan Province Natural Science Foundation of China (No.120MS030, 120QN250), and the Hainan Province Higher Education Research Grant of China (hnjg2019ZD-13).

Acknowledgments: The authors would like to thank the Referee for his/her valuable comments and suggestions.

Conflicts of Interest: No potential conflict of interest is reported by the authors.

References

1. Herstein, I.N. Jordan homomorphisms. Trans. Am. Math. Soc. 1956, 81, 331-341. [CrossRef]
2. Jacobson, N.; Rickart, C.E. Jordan homomorphisms of rings. Trans. Am. Math. Soc. 1950, 69, 479-502. [CrossRef]
3. Bendaoud, M.; Bourhim, A.; Burgos, M.; Sarih, M. Linear maps preservig Fredholm and Atkinson elements of C^{*}-algebra. Linear Multilinear Algebra 2009, 57, 823-838. [CrossRef]
4. Cui, J.; Hou, J. Linear maps between Banach algebras compressing certain spectral functions. Rocky Mt. J. Math. 2004, 34, 565-585.
5. Mbekhta, M.; Šemrl, P. Linear maps preserving semi-Fredholm operators and generalized invertibility. Linear Multilinear Algebra 2009, 57, 55-64. [CrossRef]
6. Kaplansky, I. Algebraic and analytic aspects of opertors algebras. In CBMS Regional Conference Series in Math. 1; American Mathematical Society: Providence, RI, USA, 1970.
7. Dieudonné, J. Sur une généralisation du groupe orthogonal à quatre variables. Arch. Math. 1949, 1, 282-287. [CrossRef]
8. Marcus, M.; Purves, R. Linear transformations on algebras of matrices: The invariance of the elementary symmetric functions. Canad. J. Math. 1959, 11, 383-396. [CrossRef]
9. Sourour, A.R. Invertibility preserving linear maps on L(H). Trans. Am. Math. Soc. 1996, 348, 13-30. [CrossRef]
10. Aupetit, B. Spectrum-preserving linear mapping between Banach algebra or Jordan-Banach algebras. J. Lond. Math. Soc. 2000, 62, 917-924. [CrossRef]
11. Želozko, W. Characterization of multiplicative linear functionals in complex Banach algebras. Stud. Math. 1968, 30, 83-85.
12. Mbekhta, M. Linear maps preserving the set of Fredholm operators. Proc. Am. Math. Soc. 2007, 135, 3613-3619. [CrossRef]
13. Alizadeh, R.; Shakeri, F. Linear maps preserving Pareto eigenvalues. Linear Multilinear Algebra 2017, 65, 1053-1061. [CrossRef]
14. Bueno, M.I.; Furtado, S.; Sivakumar, K.C. Linear maps preserving the Lorentz-cone spectrum in certain subspaces of M_{n}. Banach J. Math. Anal. 2021, 15, 58. [CrossRef]
15. Buenoa, M.I.; Furtadob, S.; Klausmeierc, A.; Veltrid, J. Linear maps preserving the Lorentz spectrum: The 2×2 case. Electron. J. Linear Algebra 2022, 38, 317-330. [CrossRef]
16. Bendaoud, M.; Bourhim, A.; Sarih, M. Linear maps preservig the essential spectral radius. Linear Alg. Appl. 2008, 428, 1041-1045. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and / or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

