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Abstract

:

Let H be an infinite-dimensional separable complex Hilbert space and   B ( H )   the algebra of all bounded linear operators on H. In this paper, we characterized the linear maps   ϕ : B ( H ) → B ( H )  , which are surjective up to compact operators preserving the set of left semi-Weyl operators in both directions. As an application, we proved that  ϕ  preserves the essential approximate point spectrum if and only if the ideal of all compact operators is invariant under  ϕ  and the induced map  φ  on the Calkin algebra is an automorphism. Moreover, we have   i n d ( ϕ ( T ) ) = i n d ( T )   if both   ϕ ( T )   and T are Fredholm.






Keywords:


left semi-Weyl operator; Calkin algebra; linear preservers




MSC:


47B48; 47A10; 46H05












1. Introduction


Let H be an infinite-dimensional separable complex Hilbert space,   B ( H )   the algebra of all bounded linear operators on H, and   K ( H ) ⊆ B ( H )   the closed ideal of all compact operators. For an operator   T ∈ B ( H )  , we write   T *   for the conjugate operator of T,   N ( T )   for its kernel, and   R ( T )   for its range. The dimension, codimension, and index of T are denoted by   d i m T ,   c o d i m T  , and   i n d T  , respectively.



An operator   T ∈ B ( H )   is called upper semi-Fredholm if   R ( T )   is closed and   N ( T )   is finite- dimensional. If   R ( T )   is closed and finite-codimensional,   T ∈ B ( H )   is called a lower semi-Fredholm operator. We call   T ∈ B ( H )   Fredholm if   R ( T )   is closed and finite-codimensional and   N ( T )   is finite-dimensional. For a semi-Fredholm operator (upper semi-Fredholm operator or lower semi-Fredholm operator), let   n ( T ) = d i m N ( T )   and   d ( T ) = d i m H / R ( T ) = c o d i m R ( T )  . The index of a semi-Fredholm operator   T ∈ B ( H )   is given by   i n d ( T ) = n ( T ) − d ( T )  . The operator T is Weyl if it is Fredholm of index zero.   T ∈ B ( H )   is called left (right) semi-Weyl if T is upper (lower) semi-Fredholm with   i n d ( T ) ≤ 0   (  i n d ( T ) ≥ 0  ). Let   S  F + −   ( H )    denote the set of all left semi-Weyl operators. For an operator   T ∈ B ( H )  , the spectrum   σ ( T )  , the essential spectrum    σ e   ( T )   , the Weyl spectrum    σ w   ( T )   , and the essential approximate point spectrum    σ  e a    ( T )    of T are defined by   σ ( T ) = { λ ∈ C : T − λ I   is  not  invertible  }  ,    σ e   ( T )  =  { λ ∈ C : T − λ I   is  not  Fredholm  }   ,    σ w   ( T )  =  { λ ∈ C : T − λ I   is  not  Weyl  }   , and    σ  e a    ( T )  =  { λ ∈ C : T − λ I   is  not  left  semi − Weyl  }   , respectively.



Let   Φ ( H ) ⊆ B ( H )   be the set of all Fredholm operators. We denote the Calkin algebra   B ( H ) / K ( H )   by   C ( H )  . Let   π : B ( H ) → C ( H )   be the quotient map. It is well known that   T ∈ Φ ( H )   if and only if   π ( T )   is invertible in   C ( H )  .



A bijective linear map   ϕ : B ( H ) → B ( H )   is called a Jordan isomorphism if   ϕ  (  A 2  )  =   ( ϕ  ( A )  )  2    for every   A ∈ B ( H )   or, equivalently,   ϕ ( A B + B A ) = ϕ ( A ) ϕ ( B ) + ϕ ( B ) ϕ ( A )   for all A and B in   B ( H )  . It is obvious that every isomorphism and every anti-isomorphism is a Jordan isomorphism. For further properties of Jordan homomorphisms, we refer the reader to [1,2].



In the last two decades, there has been considerable interest in the so-called linear preserver problems (see the survey articles [3,4,5]). The goal of studying linear preservers is to give structural characterizations of linear maps on algebras having some special properties such as leaving invariant a certain subset of the algebra or leaving invariant a certain function on the algebra. One of the most-famous problems in this direction is Kaplansky’s problem ([6]): Let  ϕ  be a surjective linear map between two semi-simple Banach algebras  A  and  B . Suppose that   σ ( ϕ ( x ) ) = σ ( x )   for all   x ∈ A  . Is it true that  ϕ  is a Jordan isomorphism? This problem was first solved in the finite-dimensional case. Dieudonné ([7]) and Marcus and Purves ([8]) proved that every unital invertibility preserving linear map on a complex matrix algebra is either an inner automorphism or a linear anti-automorphism. This result was later extended to the algebra of all bounded linear operators on a Banach space by Sourour ([9]) and to von Neumann algebra by Aupetit ([10]). Many linear preserver problems have been of interest for infinite-dimensional cases. For the most-significant partial results relevant to our discussions, we refer the reader to [9,10,11]. New contributions to the study of the linear preserver problem have been recently made by Mbekhta in [12], Alizadeh and Shakeri in [13], Bueno, Furtado, and Sivakumar in [14], Buenoa, Furtadob, Klausmeierc, and Veltrid in [15], and Bendaoud, Bourhim and Sarih in [16].



In this article, we studied linear maps preserving left (right) semi-Weyl operators in both directions. We characterized the linear maps   ϕ : B ( H ) → B ( H )  , which are surjective up to compact operators preserving the set of semi-Weyl operators in both directions. As an application, we proved that  ϕ  preserves the essential approximate point spectrum if and only if the ideal of all compact operators is invariant under  ϕ , the induced map  φ  on the Calkin algebra is an automorphism, and   i n d ( ϕ ( T ) ) = i n d ( T )   if both   ϕ ( T )   and T are Fredholm.




2. Linear Maps Preserving the Set of Left (Right) Semi-Weyl Fredholm Operators


We say that a linear map  ϕ  preserves property X in both directions, which means that if T is in the domain, then T has property X if and only if   ϕ ( T )   has property X. Therefore, a linear map   ϕ : B ( H ) → B ( H )   preserves the set of left semi-Weyl operators in both directions if   T ∈ S  F + −   ( H )  ⇔ ϕ  ( T )  ∈ S  F + −   ( H )   .



A linear map   ϕ : B ( H ) → B ( H )   is said to be surjective up to compact operators if, for every   T ∈ B ( H )  , there exists    T ′  ∈ B  ( H )    such that   T − ϕ  (  T ′  )  ∈ K  ( H )   . It is clear that if  ϕ  is surjective, then it is surjective up to compact operators.



In order to prove the theorem and the corollaries, we need some known results.



Lemma 1

(Theorem 4.2 in [5]). Let H be an infinite-dimensional separable Hilbert space and   ϕ : B ( H ) → B ( H )   be a linear map surjective up to compact operators. Then, the following are equivalent:




	(1) 

	
ϕ preserves upper semi-Fredholm operators in both directions;




	(2) 

	
ϕ preserves lower semi-Fredholm operators in both directions;




	(3) 

	
  ϕ ( K ( H ) ) ⊆ K ( H )  , and the induced map   φ : C ( H ) → C ( H ) , φ ∘ π = π ∘ ϕ   is an automorphism multiplied by an invertible element   a ∈ C ( H )  .











Lemma 2

(Theorem 2.1 in [12]). Let H be an infinite-dimensional separable Hilbert space and   ϕ : B ( H ) → B ( H )   be a linear map surjective up to compact operators. Then, the following are equivalent:




	 (1)

	
ϕ preserves the set of Fredholm operators in both directions;




	 (2)

	
  ϕ ( K ( H ) ) ⊆ K ( H )  , and the induced map   φ : C ( H ) → C ( H ) ,  φ ∘ π = π ∘ ϕ ,   is the composition of either an automorphism or an anti-automorphism and left multiplication by an invertible element in   C ( H )  .











Lemma 3

(Theorem 4.8 in [3]). Let A be a factor, and let B be a primitive Banach algebra. For a surjective up to inessential elements linear map   ϕ : A → B  , the following are equivalent:




	 (1)

	
ϕ preserves Fredholm elements in both directions and   ϕ ( I )   is the Weyl element of B;




	 (2)

	
ϕ preserves Weyl elements in both directions;




	 (3)

	
Let   I ( A )   and   I ( B )   be the ideal of the inessential elements of A and B. Then,   ϕ ( I ( A ) ) ⊆ I ( B )  , and the induced map   φ : C ( A ) → C ( B )   is either an isomorphism or an anti-isomorphism multiplied by an invertible element   a ∈ B  .











Lemma 4

(Theorem 3.1 in [4]). Let A be a unital C*-algebra of real rank zero and B a unital semi-simple complex Banach algebra. Let   Δ ( · )   denote any one of the spectral functions   σ  ( · )  ,  σ l   ( · )  ,  σ r   ( · )  ,  σ l   ( · )  ∩  σ r   ( · )  , ∂ σ  ( · )   , and   η σ ( · )  . Suppose   ϕ : A → B   is a surjective linear map. If   Δ ( ϕ ( T ) ) ⊆ Δ ( T )   for every   T ∈ A  , then ϕ is a Jordan homomorphism. Furthermore, if B is prime, then ϕ is either a homomorphism or an anti-homomorphism.





Theorem 1. 

Let H be an infinite-dimensional Hilbert space, and let   ϕ : B ( H ) → B ( H )   be a linear map preserving left (or right) semi-Weyl operators in both directions. Assume that ϕ is surjective up to compact operators and   ϕ ( I )   is Weyl, then   ϕ ( K ( H ) ) ⊆ K ( H )  , and the induced map   φ : C ( H ) → C ( H ) ,  φ ∘ π = π ∘ ϕ   is an automorphism multiplied by an invertible element   [ B ] ∈ C ( H )  .





Proof. 

Suppose that   ϕ : B ( H ) → B ( H )   is a linear map preserving left semi-Weyl operators in both directions. Let   ϕ  ( I )  = G +  K 0   , where   G ∈ B ( H )   is invertible and    K 0  ∈ K  ( H )   . There exists    B 0  ∈ B  ( H )    such that   G  B 0  =  B 0  G = I  .



The linear map    ϕ 1  : B  ( H )  → B  ( H )    is defined by:


   ϕ 1   ( T )  =  B 0  ϕ  ( T )  , ∀ T ∈ B  ( H )  .  








Then,   ϕ 1   preserves the left semi-Weyl operators in both directions and    ϕ 1   ( I )  = I +  K 1   , where    K 1  ∈ K  ( H )   . Let us give some properties for the linear map   ϕ 1  : (i)   ϕ 1   is surjective up to compact operators.



In fact, for any   T ∈ B ( H )  , there exists    T ′  ∈ B  ( H )    and    K 2  ∈ K  ( H )    such that   G T = ϕ  (  T ′  )  +  K 2   . Then,   T =  B 0  G T =  B 0  ϕ  (  T ′  )  +  K 3  =  ϕ 1   (  T ′  )  +  K 3   , where    K 3  =  B 0   K 2  ∈ K  ( H )   .



(ii) For any   T ∈ B ( H )  ,    σ  e a    ( T )  =  σ  e a    (  ϕ 1   ( T )  )   .



Since   T − λ I ∈ S  F + −   ( H )   ⇔   ϕ 1   ( T − λ I )  =  ϕ 1   ( T )  − λ  ϕ 1   ( I )  =  ϕ 1   ( T )  − λ I − λ  K 1  ∈ S  F + −   ( H )   ⇔   ϕ 1   ( T )  − λ I ∈ S  F + −   ( H )   , it follows that    σ  e a    ( T )  =  σ  e a    (  ϕ 1   ( T )  )    for any   T ∈ B ( H )  .



(iii)   ϕ 1   preserves compact operators in both directions.



First, we claim that


  K  ( H )  = { K ∈ B  ( H )  : K + S  F + −   ( H )  ∈ S  F + −   ( H )  }  










  = { K ∈ B  ( H )  :  σ  e a    ( T + K )  =  σ  e a    ( T )    for  all   T ∈ S  F + −   ( H )  } .  








From the stability properties of the index function, it is clear that   K  ( H )  ⊆ { K ∈ B  ( H )  : K + S  F + −   ( H )  ∈ S  F + −   ( H )  }    = { K ∈ B  ( H )  :  σ  e a    ( T + K )  =  σ  e a    ( T )    for  all   T ∈ S  F + −   ( H )  } .  



Let   ∂ E   and   η E   denote the boundary and the polynomial convex hull of a compact subset E of ℂ, respectively. For any   T ∈ B ( H )  , since


  ∂  σ w   ( T )  ⊆ ∂  σ e   ( T )  ⊆  σ e   ( T )  ⊆  σ w   ( T )   and  ∂  σ w   ( T )  ⊆ ∂  σ  e a    ( T )  ⊆  σ  e a    ( T )  ⊆  σ w   ( T )  ,  








it follows that   η  σ  e a    ( T )  = η  σ w   ( T )  = η  σ e   ( T )   .



Now, let   K ∈ B ( H )   such that    σ  e a    ( T + K )  =  σ  e a    ( T )    for all   T ∈ B ( H )  . Then,   η  σ e   ( T + K )  = η  σ e   ( T )    for all   T ∈ B ( H )  . Taking into account the semisimplicity of   C ( H )   and the spectral characterization of the radical, it is not difficult to prove that   K  ( H )  = { K ∈ B  ( H )  : K + S  F + −   ( H )  ∈ S  F + −   ( H )  }    = { K ∈ B  ( H )  :  σ  e a    ( T + K )  =  σ  e a    ( T )     for  all   T ∈ S  F + −   ( H )  } .  



Let   K ∈ K ( H )  , for any   T ∈ S  F + −   ( H )   ; since   ϕ 1   preserves left semi-Weyl operators in both directions, there exists    T ′  ∈ S  F + −   ( H )    and    K ′  ∈ K  ( H )    for which   T =  ϕ 1   (  T ′  )  +  K ′   . Hence,   T +  ϕ 1   ( K )  =  ϕ 1   (  T ′  )  +  K ′  +  ϕ 1   ( K )  =  ϕ 1   (  T ′  + K )  +  K ′  ∈ S  F + −   ( H )   . Then,    ϕ 1   ( K )  ∈ K  ( H )   . For the converse, let    ϕ 1   ( K )  ∈ K  ( H )   , for any   T ∈ S  F + −   ( H )   ,    ϕ 1   ( T + K )  =  ϕ 1   ( T )  +  ϕ 1   ( K )  ∈ S  F + −   ( H )   , then   T + K ∈ S  F + −   ( H )   . It follows that   K ∈ K ( H )  . Now, we prove that   ϕ 1   preserves compact operators in both directions.



(iv)   N  (  ϕ 1  )  ⊆ K  ( H )   , and consequently,   N ( ϕ ) ⊆ K ( H )  .



If   K ∈ N (  ϕ 1  )   and   T ∈ S  F + −   ( H )   , then    ϕ 1   ( T + K )  =  ϕ 1   ( T )  ∈ S  F + −   ( H )   . Thus, for all   T ∈ S  F + −   ( H )   ,   T + K ∈ S  F + −   ( H )   . From the proof of (iii), we know that   K ∈ K ( H )  .



(v) Let    φ 1  : C  ( H )  → C  ( H )    be an induced linear map such that    ϕ 1  ∘ π = π ∘  ϕ 1   , then   φ 1   is an isomorphism or an anti-isomorphism.



From the fact that   K ( H )   is invariant under   ϕ 1  , then   ϕ 1   induces a linear map    φ 1  : C  ( H )  → C  ( H )    such that    φ 1  ∘ π = π ∘  ϕ 1   . Clearly,   φ 1   is surjective, since   ϕ 1   is surjective up to compact operators. We prove now that   φ 1   is injective. Since   N  (  φ 1  )  = π  ( N  (  ϕ 1  )  )    and   N  (  ϕ 1  )  ⊆ K  ( H )   , we can obtain that   φ 1   is injective.



From (ii), we know that, for any   T ∈ B ( H )  ,   η  σ  e a    ( T )  = η  σ  e a    (  ϕ 1   ( T )  )   . Then, from (iii),   η  σ e   ( T )  = η  σ e   (  ϕ 1   ( T )  )   . This shows that   ϕ 1   is an   η  σ e   -preserving map. Thus, the induced mapping   φ 1   is an   η σ  -preserving map. By Lemma 4,   φ 1   is either an isomorphism or an anti-isomorphism.



(vi)   φ 1   is an isomorphism.



First, we will prove that   ϕ 1   preserves upper semi-Fredholm operators in both directions. By Lemma 2, we know that   ϕ 1   preserves Fredholm operators in both directions. Let   T ∈ B ( H )   be an upper semi-Fredholm; there are two cases to consider:   d ( T ) = ∞   and   d ( T ) < ∞  . If   d ( T ) = ∞  , using the fact that    ϕ 1  : B  ( H )  → B  ( H )    is a linear map preserving left semi-Weyl operators in both directions, we know that    ϕ 1   ( T )    is upper semi-Fredholm. If   d ( T ) < ∞  , then T is Fredholm; thus,    ϕ 1   ( T )    is Fredholm since   ϕ 1   preserves Fredholm operators in both directions. Using the same way, we can prove that T is upper semi-Fredholm if    ϕ 1   ( T )    is upper semi-Fredholm. By Lemma 1,   φ 1   is an isomorphism.



From the definition of   ϕ 1  , we know that  ϕ  preserves compact operators in both directions, and hence,   K ( H )   is invariant under  ϕ . Let  ϕ  induce a linear map   φ : C ( H ) → C ( H )   such that   φ ∘ π = π ∘ ϕ  . Then,   φ =   [ B ]   − 1    φ 1   .



Similar to the above proof, the result is true if  ϕ  is a linear map preserving right semi-Weyl operators in both directions. The proof is completed. □





Under the same hypothesis and notation as in Theorem 1, we obtain that   ϕ 1   preserves the essential spectrum ([12], Theorem 3.2). Then,   i n d ( ϕ ( T ) ) = i n d ( T )   or   i n d ( ϕ ( T ) ) = − i n d ( T )   for any   T ∈ Φ ( H )  . Since   ϕ 1   preserves left semi-Weyl operators in both directions, it follows that   i n d ( ϕ ( T ) ) · i n d ( T ) ≥ 0   for any   T ∈ Φ ( H )  . Thus,   i n d ( ϕ ( T ) ) = i n d ( T )   for any   T ∈ Φ ( H )  . Furthermore, we can prove that   i n d ( ϕ ( T ) ) = i n d ( T )   for any upper (lower) semi-Fredholm operator   T ∈ B ( H )  . By Lemma 1, Lemma 2, and Lemma 3, we can obtain:



Corollary 1.

Let   ϕ : B ( H ) → B ( H )   be a linear map preserving left (right) semi-Weyl operators in both directions. Assume that ϕ is surjective up to compact operators and   ϕ ( I )   is Weyl, then:




	 (1)

	
ϕ preserves Fredholm operators in both directions;




	 (2)

	
ϕ preserves Weyl operators in both directions;




	 (3)

	
ϕ preserves upper semi-Fredholm operators in both directions;




	 (4)

	
ϕ preserves lower semi-Fredholm operators in both directions;




	 (5)

	
ϕ preserves semi-Fredholm operators in both directions;




	 (6)

	
For any   T ∈ Φ ( H )  ,   i n d ( ϕ ( T ) ) = i n d ( T )  ;




	 (7)

	
For any upper (lower) semi-Fredholm operator T,   i n d ( ϕ ( T ) ) = i n d ( T )  .











Remark 1.

If   ϕ : B ( H ) → B ( H )   is a linear map preserving Fredholm operators (or upper semi-Fredholm operators, or lower semi-Fredholm operators, or semi-Fredholm operators) in both directions, we cannot induce that ϕ is a linear map preserving left semi-Weyl operators in both directions. For example, let   A ,   B ∈ B (  ℓ 2  )   be defined by:


   A  (  x 1  ,    x 2  ,    x 3  , ⋯ )  =  (  x 2  ,    x 3  ,    x 4  , ⋯ )  ,  B  (  x 1  ,    x 2  ,    x 3  , ⋯ )  =  ( 0 ,   0 ,   0 ,    x 1  ,    x 2  , ⋯ )  ,   








then there exists    A 1  ,    B 1  ∈ B  (  ℓ 2  )    such that   A  A 1  =  B 1  B = I  . Define   ϕ : B  (  ℓ 2  )  → B  (  ℓ 2  )    as   ϕ ( T ) = A T B  ,   T ∈ B (  ℓ 2  )  . We can see that ϕ is surjective and preserves Fredholm operators (upper semi-Fredholm operators, lower semi-Fredholm operators, semi-Fredholm operators) in both directions, but ϕ is not a linear map preserving left semi-Weyl operators in both directions.



From Remark 1, we have the question: If   ϕ : B ( H ) → B ( H )   is a linear map preserving Fredholm operators (or upper semi-Fredholm operators, or lower semi-Fredholm operators, or semi-Fredholm operators) in both directions, when does ϕ preserve left semi-Weyl operators in both directions. To answer this question, let us begin by a Lemma (Lemma 2.4 in [5]).





Lemma 5.

Let   A ∈ B ( H )   be a lower (respectively upper) semi-Fredholm. If A is not Fredholm, then there exists a lower (respectively upper) semi-Fredholm operator B such that every non-trivial linear combination   λ A + μ B  ,   λ ≠ 0   or   μ ≠ 0  , is lower (respectively upper) semi-Fredholm, but not Fredholm.





Corollary 2.

Let   ϕ : B ( H ) → B ( H )   be a linear map preserving left (right) semi-Weyl operators in both directions. Assume that ϕ is surjective up to compact operators, then   ϕ ( I )   is a Fredholm operator.





Proof. 

Denote   ϕ ( I ) = T  . We will prove that T is Fredholm. On the contrary, we assumed that this is not the case. Since I is a left semi-Weyl operator, T must be a left semi-Weyl operator. Then, by Lemma 5, there exists   S ∈ B ( H )   such that   λ T − S   is upper semi-Fredholm, but not Fredholm, which means that   λ T − S   is left semi-Weyl. We can further find   R ∈ B ( H )   such that   ϕ ( R ) = S + K   for some   K ∈ K ( H )  . Any compact perturbation of a left semi-Weyl operator is a left semi-Weyl operator; thus,   λ T − ϕ ( R ) = ϕ ( λ I − R )   is left semi-Weyl for every   λ ∈ C  . As   ϕ : B ( H ) → B ( H )   is a linear map preserving left semi-Weyl operators in both directions, we obtain that    σ  e a    ( R )  = ∅  , a contradiction. □





Corollary 3.

Let linear map   ϕ : B ( H ) → B ( H )   be surjective up to compact operators, then the following statements are equivalent:




	 (1)

	
ϕ preserves left semi-Weyl operators in both directions, and   ϕ ( I )   is Weyl;




	 (2)

	
ϕ preserves left semi-Weyl operators in both directions, and   i n d ( ϕ ( T ) ) = i n d ( T )   if both   ϕ ( T )   and T are Fredholm;




	 (3)

	
ϕ preserves right semi-Weyl operators in both directions, and   i n d ( ϕ ( T ) ) = i n d ( T )   if both   ϕ ( T )   and T are Fredholm;




	 (4)

	
ϕ preserves Fredholm operators in both directions, and   i n d ( ϕ ( T ) ) = i n d ( T )   if both   ϕ ( T )   and T are semi-Fredholm;




	 (5)

	
ϕ preserves upper semi-Fredholm operators in both directions, and   i n d ( ϕ ( T ) ) = i n d ( T )   if both   ϕ ( T )   and T are upper semi-Fredholm;




	 (6)

	
  ϕ ( K ( H ) ) ⊆ K ( H )  ; the induced map   φ : C ( H ) → C ( H ) ,  φ ∘ π = π ∘ ϕ   is an automorphism multiplied by an invertible element   [ B ] ∈ C ( H )  , and   i n d ( ϕ ( T ) ) = i n d ( T )   if both   ϕ ( T )   and T are Fredholm.











Proof. 

By the proof of Theorem 1 and Corollary 1, we only need to prove that   ( 6 ) ⇒ ( 1 )  . By Lemma 1, we know that  ϕ  preserves upper semi-Fredholm operators and Fredholm operators in both directions. Let   T ∈ S  F + −   ( H )   , then   ϕ ( T )   is upper semi-Fredholm. If   d ( T ) = ∞  , then   d ( ϕ ( T ) ) = ∞   because  ϕ  preserves Fredholm operators in both directions, thus   ϕ  ( T )  ∈ S  F + −   ( H )   . If   d ( T ) < ∞  , then   ϕ ( T )   is Fredholm, and hence,   i n d ( ϕ ( T ) ) = i n d ( T ) ≤ 0  , again   ϕ  ( T )  ∈ S  F + −   ( H )   . Using the same way, we can prove that   T ∈ S  F + −   ( H )    if   ϕ  ( T )  ∈ S  F + −   ( H )   . This proves that  ϕ  preserves left semi-Weyl operators in both directions. Thus,   ϕ ( I )   is Fredholm. Since both   ϕ ( I )   and I are Fredholm, it follows that   i n d ( ϕ ( I ) ) = i n d ( I ) = 0  . Then,   ϕ ( I )   is Weyl. □





Let   ϕ : B ( H ) → B ( H )   be surjective up to compact operators. If  ϕ  preserves left semi-Weyl operators in both directions and   ϕ ( I )   is Weyl, we cannot induce that  ϕ  is   σ  e a   -preserving. For example, let    A 1  ,  B 1  ∈ B  (  ℓ 2  )    be defined by:


   A 1   (  x 1  ,  x 2  ,  x 3  , ⋯ )  =  (  x 2  ,  x 3  ,  x 4  , ⋯ )  ,   B 1   (  x 1  ,  x 2  ,  x 3  , ⋯ )  =  ( 0 ,  x 1  ,  x 2  , ⋯ )  ,  








and define   A =      A 1    0     0   I       and   B =     I   0     0    B 1       . Let   χ : B  (  ℓ 2  ⊕  ℓ 2  )  → K  (  ℓ 2  ⊕  ℓ 2  )    be a linear map, and consider the linear map   ϕ : B  (  ℓ 2  ⊕  ℓ 2  )  → B  (  ℓ 2  ⊕  ℓ 2  )    defined by   ϕ ( T ) = A T B + χ ( T )  . Then,  ϕ  is surjective up to compact operators and preserves the set of left semi-Weyl operators in both directions; also,   ϕ ( I )   is Weyl. According to the calculation, we obtain that    σ  e a    ( I )  =  { 1 }   , while    σ  e a    ( ϕ  ( T )  )  =  { λ ∈ C : | λ | = 1 }   . This says that  ϕ  is not   σ  e a   -preserving. There is a question: When does a map satisfying the hypothesis of Theorem 1 preserve the essential approximate point spectrum?



Corollary 4.

Let H be an infinite-dimensional Hilbert space, and let   ϕ : B ( H ) → B ( H )   be a linear map. Assume that ϕ is surjective up to compact operators, then the following statements are equivalent:




	 (1)

	
ϕ preserves left semi-Weyl operators in both directions and   I − ϕ ( I ) ∈ K ( H )  ;




	 (2)

	
ϕ preserves right semi-Weyl operators in both directions and   I − ϕ ( I ) ∈ K ( H )  ;




	 (3)

	
ϕ is   σ  e a   -preserving, i.e.,    σ  e a    ( ϕ  ( T )  )  =  σ  e a    ( T )    for all   T ∈ B ( H )  ;




	 (4)

	
  ϕ ( K ( H ) ) ⊆ K ( H )  ; the induced map   φ : C ( H ) → C ( H ) ,  φ ∘ π = π ∘ ϕ   is an automorphism, and   i n d ( ϕ ( T ) ) = i n d ( T )   if both   ϕ ( T )   and T are Fredholm.











Proof. 

In view of the preceding theorem and corollaries, we only need to prove the equivalence of (1) and (3). Suppose that  ϕ  preserves the left semi-Weyl operators in both directions and   I − ϕ ( I ) ∈ K ( H )  . Let   ϕ  ( I )  = I +  K 0   ,    K 0  ∈ K  ( H )   . Since   T − λ I ∈ S  F + −   ( H )   ⇔  ϕ  ( T − λ I )  = ϕ  ( T )  − λ ϕ  ( I )  = ϕ  ( T )  − λ I − λ  K 0  ∈ S  F + −   ( H )   ⇔  ϕ  ( T )  − λ I ∈ S  F + −   ( H )   , it follows that    σ  e a    ( T )  =  σ  e a    ( ϕ  ( T )  )    for any   T ∈ B ( H )  . For the converse, suppose that    σ  e a    ( ϕ  ( T )  )  =  σ  e a    ( T )    for all   T ∈ B ( H )  , then  ϕ  preserves the left semi-Weyl operators in both directions. We need to prove that   I − ϕ ( I ) ∈ K ( H )  . Put   K = ϕ ( I ) − I  . Let   T ∈ B ( H )  ,    T ′  ∈ B  ( H )   , and    K ′  ∈ K  ( H )    for which   T = ϕ  (  T ′  )  +  K ′    ( ϕ  is surjective up to compact operators). Then,    σ  e a    ( T )  =  σ  e a    ( ϕ  (  T ′  )  +  K ′  )  =  σ  e a    ( ϕ  (  T ′  )  )  =  σ  e a    (  T ′  )    and


          σ  e a    ( T + K )  =  σ  e a    ( T + ϕ  ( I )  − I )  =  σ  e a    ( T + ϕ  ( I )  )  − 1       =     σ  e a    ( ϕ  (  T ′  )  + ϕ  ( I )  +  K ′  )  − 1 =  σ  e a    ( ϕ  (  T ′  + I )  )  − 1       =     σ  e a    (  T ′  + I )  − 1 =  σ  e a    (  T ′  )  =  σ  e a    ( T )  ,     








This gives    σ  e a    ( T + K )  =  σ  e a    ( T )    for all   T ∈ B ( H )  . It follows from the proof of Theorem 1 that   K ∈ B ( H )   is compact. □





Let   S W ( H ) = { T ∈ B ( H ) : T   be left semi-Weyl or right semi-Weyl}. Define the semi-Weyl spectrum    σ  S W    ( T )    of an operator   T ∈ B ( H )   as    σ  S W    ( T )  =  { λ ∈ C : T − λ I ∉ S W  ( H )  }   . Similar to the proof of Theorem 1, we have that   K ( H ) = { K ∈ B ( H ) : K + S W ( H ) ∈ S W ( H ) }    = { K ∈ B  ( H )  :  σ  S W    ( T + K )  =  σ  S W    ( T )    for  all   T ∈ S W  ( H )  } .   We can prove the following:



Corollary 5.

Let H be an infinite-dimensional Hilbert space, and let   ϕ : B ( H ) → B ( H )   be a linear map. Assume that ϕ is surjective up to compact operators, then the following statements are equivalent:




	 (1)

	
ϕ preserves semi-Weyl operators in both directions, and   I − ϕ ( I ) ∈ K ( H )  ;




	 (2)

	
ϕ is   σ  S W   -preserving, i.e.,    σ  S W    ( ϕ  ( T )  )  =  σ  S W    ( T )    for all   T ∈ B ( H )  ;




	 (3)

	
ϕ preserves semi-Fredholm operators in both directions, and   I − ϕ ( I ) ∈ K ( H )  ;




	 (4)

	
  ϕ ( K ( H ) ) ⊆ K ( H )  ; the induced map   φ : C ( H ) → C ( H ) ,  φ ∘ π = π ∘ ϕ   is an automorphism or an anti-isomorphism.









We conclude this paper by a natural conjecture that we have been unable to answer:





Conjecture 1. 

Let H be an infinite-dimensional Hilbert space, and let   ϕ : B ( H ) → B ( H )   be a linear map. Assume that  ϕ  is surjective up to compact operators, then the following statements are equivalent:




	 (1)

	
 ϕ  preserves the essential approximate point spectrum;




	 (2)

	
There exists   ψ : B ( H ) → B ( H )   an automorphism and there exists   χ : B ( H ) → K ( H )   a linear map such that   ϕ ( T ) = ψ ( T ) + χ ( T )   for every   T ∈ B ( H )  ;




	 (3)

	
  ϕ  ( T )  = A T  A  − 1   + χ  ( T )    for every   T ∈ B ( H )  , where A is an invertible operator in   B ( H )   and   χ : B ( H ) → K ( H )   is a linear map.
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