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Abstract: The aim of this paper is to determine several saturated classes of structurally regular
semigroups. First, we show that structurally (n, m)-regular semigroups are saturated in a subclass of
semigroups for any pair (n, m) of positive integers. We also demonstrate that, for all positive integers
n and k with 1 ≤ k ≤ n, the variety of structurally (0, n)-left seminormal bands is saturated in the
variety of structurally (0, k)-bands. As a result, in the category of structurally (0, k)-bands, epis from
structurally (0, n)-left seminormal bands is onto.
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1. Introduction and Preliminaries

The morphism Θ : S→ T is known as an epimorphism (epi for short) in the category of
all semigroups if for all morphisms φ, ψ with Θφ = Θψ implies φ = ψ, where throughout
this article we write mappings to the right of their arguments. The morphic image of
a morphism Θ is the subset of codomain T that is the image of the morphism. It is
simple to confirm that all surjective morphisms are epi. Depending on the category under
examination, the reverse may or may not be true. It holds true for some categories, such
as sets and groups. However, in the category of semigroups, there are non-surjective
epimorphisms. For instance, the inclusion i : (Z, ·) → (Q, ·), is an epimorphism in the
category of semigroups. Therefore, it is worthwhile to investigate the classes of semigroups
in which epis are onto or otherwise not onto. Epimorphisms in the category of semigroups
are investigated using dominions and zigzags. The systematic study of epimorphisms and
dominion in semigroups was initiated by Isbell [1] and Howie and Isbell [2].

Assuming that U is a subsemigroup of a semigroup S, we say that U dominates an
element d ∈ S if for every semigroup Q and all morphisms φ, ψ : S→ Q, φ|U = ψ|U implies
dφ = dψ. The set containing all elements of such type is said to be the dominion of U in S and
is denoted by Dom(U, S). We say that U is closed in S if Dom(U, S) = U and absolutely closed
if it is closed in every enclosing semigroup S. If Dom(U, S) = S, a semigroup U is said to
be epimorphically embedded in a semigroup S. If Dom(U, S) 6= S for any properly containing
semigroup S, the semigroup U is said to be saturated. It is clear that i : Sα→ T is the inclusion
map if, and only if, Dom(Sα, T) = T, and that α : S→ T is epi.

Let C be the class of semigroups. If C is closed under morphic images and each member
of C is saturated, then every epi from a member of C is onto. If Dom(U, S) 6= S for any
properly containing semigroup S inside C, a semigroup U is said to be C-saturated. If all
members of a class C of semigroups are saturated, the class is said to be saturated. We
say that C1 is C2-saturated if every member of C1 is C2-saturated. Let C1 and C2 be classes of
semigroups with C1 ⊆ C2, we say that C1 is C2-saturated if every member of C1 is C2-saturated.
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Isbell provided the useful characterization of semigroup dominions, known as the
Isbell’s Zigzag Theorem which is the main tool to prove the main results of this paper
(Theorems 5 and 7). The theorem is stated as:

Theorem 1 ([3], Theorem 8.3.5). Let U be a subsemigroup of a semigroup S and d ∈ S. Then
d ∈ Dom(U, S) if, and only if, d ∈ U or there exists a system of equalities for d as under:

d = a0y1 a0 = x1a1

a1y1 = a2y2 x1a2 = x2a3

...
... (1)

a2i−1yi = a2iyi+1 xia2i = xi+1a2i+1

a2m−1ym = a2m xma2m = d

where ai ∈ U(0 ≤ i ≤ 2m) and xi, yi ∈ S(1 ≤ i ≤ m).

The above system of equalities (1) is said to be the zigzag of length m in S over U with
value d. In whatever follows, by zigzag equations, we shall mean a system of equations of
type (1). Further, we mention that the bracketed statements shall mean statements dual to
each other.

The following results due to Khan are also useful for our investigation:

Theorem 2 ([4], Result 3). Let U be a subsemigroup of a semigroup S. Take any d ∈ S \U,
such that d ∈ Dom(U, S), and let (1) be a zigzag of minimal length m over U with value d. Then
xi, yi ∈ S \U(1 ≤ i ≤ m).

Theorem 3 ([4], Result 4). Let U be a subsemigroup of a semigroup S and Dom(U, S) = S. Then,
for any d ∈ S \U and any positive integer k, there exist b1, b2, . . . , bk ∈ U and dk ∈ S \U, such
that d = b1b2 · · · bkdk [d = dkbkbk−1 · · · b1]. In particular, d ∈ Sk for every positive integer k.

Definition 1. An element a of a semigroup S is said to be regular if there exists an element b in S,
such that aba = a and bab = b (b is called an inverse element) and semigroup consisting entirely of
such type of elements is called regular.

The set of all inverses of a regular element a is denoted by Va.

Definition 2. An element a of S is said to be idempotent if a2 = a and the set of all idempotent
elements of a semigroup S is denoted by E(S).

Definition 3. A semigroup consisting entirely of idempotent elements is called a band.

Definition 4. A band is said to be

(i) left [right] regular if it satisfies the identity axa = ax[axa = xa],
(ii) left [right] seminormal if it satisfies the identity axy = axyay [yxa = yayxa].

The following countable family of congruences on a semigroup S was introduced by
Samuel J. L. Kopamu in [5]. For each ordered pair (n, m) of non-negative integers, the
congruence θ(n, m) is defined as

θ(n, m) = {(a, b) : zaw = zbw, for all z ∈ Sn and w ∈ Sm},

where S1 = S and S0 denotes the set containing the empty word. In particular,

θ(0, m) = {(a, b) : av = bv, for all v ∈ Sm},
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while θ(0, 0) is the identity relation on S.

The notion of structurally regular semigroups was introduced by Kopamu in [6]. He
provided its characterization, listed some examples, and examined its relationship with
various known generalizations of the class of regular semigroups.

Definition 5. A semigroup S is said to be structurally regular if there exists some ordered pair
(n, m) of non-negative integers, such that S/θ(n, m) is regular.

The class of structurally regular semigroups is larger than the class of regular semi-
groups. Indeed, it is distinct from each of the following well-known extensions of the class
of regular semigroups, locally regular semigroups, weakly regular semigroups, eventu-
ally regular semigroups and nilpotent extensions of regular semigroups (see [6], for more
details). Clearly, every regular semigroup is structurally (structurally (0, 0)) regular.

For any class V of regular semigroups, we say that a semigroup S is a structurally
(n,m)-V semigroup if S/θ(n, m) belongs to V . In particular, a semigroup S is said to be
structurally (n, m)- inverse [or band] if S/θ(n, m) is a generalised inverse [or band]. More
precisely, for any class V of semigroups and any (n, m) ∈ N{0} ×N{0}, we define a class of
semigroups

V (n,m) = {S : S/θ(n, m) ∈ V}.

According to ([5], Theorem 4.2) , V (n,m) is a variety of semigroups, if so is V .

Definition 6. An element a of a semigroup S is said to be an (n, m)-idempotent if it is θ(n, m)
related to a2; that is, if za2w = zaw for all z ∈ Sn and w ∈ Sm.

We denote the set of all (n, m)-idempotents of S by

E(n,m)(S) = {x ∈ S : (x, x2) ∈ θ(n, m)} = {x ∈ S : zxw = zx2w ∀ z ∈ Sn, w ∈ Sm}.

The statement that x is an (n, m)-idempotent in S is equivalent to that of xθ(n, m) is
idempotent in S/θ(n, m), so E(n,m)(S) = E(S/θ(n, m)). Even E(S) ⊆ E(n,m)(S) as every
idempotent of S is truly an (n, m)-idempotent of S.

The next result provides the useful characterization of structurally regular semigroups.

Theorem 4 ([6], Theorem 2.1). Let (n, m) be an ordered pair of non-negative integers. For any
semigroup S, S/θ(n, m) is regular (and hence, S is structurally regular) if, and only if, for each
element a of S, there exists x

′
in S such that

zxx
′
xw = zxw and zx

′
xx
′
w = zx

′
w, for all z ∈ Sn and w ∈ Sm.

The condition that for each element x there exists y such that zxw = zxyxw for all z in Sn

and w in Sm implies that there exists an element x∗ = yxy, such that zxw = zxx∗xw and
zx∗w = zx∗xx∗w. Therefore, the set

VS(x; n, m) = {x∗ ∈ S : (xx∗x, x), (x∗xx∗, x∗) ∈ θ(n, m)}

is non-empty. We refer to each element of the set VS(x; n, m) as an (n, m)− inverse of x.
Clearly, V(x) ⊆ VS(x; n, m) and S is structurally (n, m)-regular if every element of S has an
(n, m)-inverse in S. Note that, if x∗ is an (n, m) inverse of x in a semigroup S, then xx∗ and
x∗x are in E(n,m)(S).

In 1975, Gardner [7] proved that any epimorphism from a regular ring is onto, in the
category of rings. Therefore, it is natural to ask the same question for semigroups, and
indeed Hall [8] has posed the question, does there exist a regular semigroup which is not
saturated? This is equivalent to asking the question, does there exist an epimorphism
from a regular semigroup which is not onto (in the category of semigroups)? In this
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direction Hall [9] had shown that epimorphisms are onto for finite regular semigroups.
Higgins [10,11] had shown that epimorphisms are onto for generalised inverse semigroups
and epimorphisms are onto for locally inverse semigroups, respectively. Recently, Shah
et al. [12] have shown that epis from a structurally (n, m) generalised inverse semigroup
is surjective.

2. Epis and Structurally (n, m)-Regular Semigroups

Epis are not onto for structurally regular semigroups in general, as they are not onto
for regular semigroups. Since there exists a regular semigroup which is not saturated
(Ref. [13] [Example 7.15]). Thus, the problem of finding saturated varieties of semigroups is
an open problem. Therefore, it becomes natural to ask that under what conditions epis are
onto for structurally regular semigroups. In this section, we show that structurally regular
semigroups are saturated in a subclass of semigroups.

Let U and S be any semigroups. Then

θS(n, m) = {(x, y) ∈ S× S : zxw = zyw ∀z ∈ Sn, w ∈ Sm},

θU(n, m) = {(x, y) ∈ U ×U : zxw = zyw ∀z ∈ Un, w ∈ Um}.

Next lemma shows that the class of structurally (n, m)-regular semigroups is closed
under morphic images.

Lemma 1 ([12], Corollary C.2). Any morphic image of structurally (n, m)-regular semigroup is
structurally (n, m)-regular.

To prove the main result of this section, we shall need the following lemma in which
U is a structurally (n, m)-regular semigroup and S is any semigroup with U as a proper
subsemigroup, such that Dom(U, S) = S. For any semigroup A, A(1) denotes the semigroup
A with identity adjoined.

Lemma 2 ([12], Lemma 2.5). For any x, y ∈ S \U and u, v ∈ U(1)

xuavy = xuaa∗avy, and xua∗vy = xua∗aa∗vy for all a ∈ U.

Let Ce [Ce] be the class of semigroups, such that for any U, S ∈ Ce with U ⊆ S, se = ses [es =
ses] for all s ∈ S and e ∈ E(n,m)(U).

Theorem 5. Let U be a structurally (n, m)-regular semigroup. Then, U is Ce-saturated.

Proof. Suppose, on the contrary, that U is not Ce-saturated. Then, there exists a semigroup
S in Ce containing U properly, such that Dom(U, S) = S. Let d ∈ S \U, then by Theorem 1
there exists a zigzag equation of type (1) in S over U with value d of minimum length m.
Now, by using se = ses for all s ∈ S and e ∈ E(n,m)(U), we have

d = x1a1y1 (by zigzag equations)

= x1a1a
∗
1a1y1 (by Lemma 2)

= x1a1a∗1 x1a1y1 (since se = ses)

= x1a1a∗1 x2a3y2 (by zigzag equations)

= x1a1a∗1 x2a3a∗3 a3y2 (by Lemma 2)

= x1a1a∗1 x2a3a∗3 x2a3y2 (since se = ses)

=

(
2

∏
i=1

xia2i−1a∗2i−1

)
x2a3y2

...
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=

(
m

∏
i=1

xia2i−1a∗2i−1

)
xma2m−1ym

=

(
m−1

∏
i=1

xia2i−1a∗2i−1

)
xma2m−1a∗2m−1a2m−1ym (by Lemma 2)

=

(
m−1

∏
i=1

xia2i−1a∗2i−1

)
xm−1a2m−2a∗2m−1a2m (by zigzag equations)

=

(
m−2

∏
i=1

xia2i−1a∗2i−1

)
xm−1a2m−3a∗2m−3xm−1a2m−2a∗2m−1a2m) (since se = ses)

=

(
m−2

∏
i=1

xia2i−1a∗2i−1

)
xm−1a2m−3a∗2m−3a2m−2a∗2m−1a2m)

=

(
m−2

∏
i=1

xia2i−1a∗2i−1

)
xm−2a2m−4a∗2m−3a2m−2a∗2m−1a2m (by zigzag equations)

...

=

(
2

∏
i=1

xia2i−1a∗2i−1

)
x2a4

(
m

∏
i=3

a∗2i−1a2i

)

= x1a1a∗1 x2a3a∗3 a4

(
m

∏
i=3

a∗2i−1a2i

)

= x1a1a∗1 x1a2

(
m

∏
i=2

a∗2i−1a2i

)
(by zigzag equations)

= x1a1a∗1 a2

(
m

∏
i=2

a∗2i−1a2i

)
(since se = ses)

= a0

(
m

∏
i=1

a∗2i−1a2i

)
.

Hence, d ∈ U, a contradiction as required.

Dually, we can prove the following theorem.

Theorem 6. Let U be a structurally (n, m)-regular semigroup. Then, U is Ce-saturated.

Thus, we have the following immediate corollary.

Corollary 1. In class Ce [Ce] of semigroups, for each pair (n, m) of positive integers, any epi from
a structurally (n, m)-regular semigroup is onto.

Example 1. Let S = {0, u} be two element semi-lattice. Define the Cartesian product T =
S1 × S = {(s1, s2) : s1 ∈ S1 and s2 ∈ S}, where S1 is the semigroup obtained by adjoining
an identity element to S. Define a binary operation ∗ by (s1, s2) ∗ (s′1, s′2) = (s1s′2, s2s′2). It
can been easily shown that (T, ∗) is a semigroup. Now take any θ(1, 0)-related elements,
say (s1, s2)and (s′1, s′2). Then, for all (a, b) ∈ T, we have

(a, b) ∗ (s1, s2) = (a, b) ∗ (s′1, s′2)

⇒ (as2, bs2) = (as′2, bs′2)

⇒ as2 = as′2,

for all a ∈ S1. Since S1 is monoid, it follows that s2 = s′2 and hence quotient T/θ(1, 0) is
isomorphic to the semi-lattice S. Therefore, T is structurally regular.
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3. Epis and Structurally (0, n)-Bands

In [14], Ahanger and Shah proved that in the variety of all bands any epi from the left
[right] seminormal band is surjective and thus extending the result of Alam and Khan [15],
that the variety of left [right] seminormal bands is closed. Moreover in [12], Shah and
Bano proved that the varieties of structurally (0, n)-left regular bands are saturated in the
varieties of structurally (0, k) left regular bands for any k and n with 1 ≤ k ≤ n. In this
section, we generalize the above results by proving that the variety of structurally (0, n)-left
seminormal bands is saturated in the variety of structurally (0, k)-bands for any k and n
with 1 ≤ k ≤ n. In particular, we show that, in the category of structurally (0, k)-bands, any
epi from a structurally (0, n)-left seminormal band is onto.

It can be easily verified that for each positive integer n and k with 1 ≤ k ≤ n, the class
of structurally (0, n) semigroups is contained in the class of structurally (0, k) semigroups.

Definition 7. A structurally (0, k)-band B is said to be structurally (0, k)-left regular band, if
B/θ(0, k) is a left regular band; that is, for any a, x ∈ S, we have

xaw = xaxw for all w ∈ Bk.

Definition 8. A structurally (0, k)-band B is said to be structurally (0, k)-left seminormal band, if
B/θ(0, k) is left seminormal band; that is, for any a, x, y in S, we have

axyw = axyayw for all w ∈ Bk.

Dually, a structurally (k, 0)-right seminormal band or a structurally (k, 0)-right regular
band can be defined.

Remark 1 ([5], Theorem 4.2). The class V (0,n) of a structurally (0, n)-left seminormal bands is a
variety for each positive integer n. Furthermore, for each positive integers k and n with 1 ≤ k ≤ n,
V (0,n) ⊆ V (0,k).

In order to prove the main result of this section, we first prove the following lemmas in
which U is a structurally (0, n)-left seminormal band and S is any structurally (0, k)-band
containing U as a proper subband, such that Dom(U, S) = S.

Lemma 3. If any d ∈ S \U has zigzag equations of type (1) in S over U of the shortest length m,
then for all w ∈ Sk we have,

a0a2w = a0a2x2a3a0a2w.

Proof. From (1), we have

a0a2w = x1a1a2w (by zigzag equations)

= x1a1(a2x1)a1a2w (since S is (0, k)-band)

= a0(a2x1a2x1)a1a2w (since S is (0, k)-band )

= a0a2x2a3x1a1a2w (by zigzag equations)

= a0a2x2a3a0a2w,

as required.

Lemma 4. If any d ∈ S \U has zigzag equations of type (1), then for all w ∈ Sk

a0a2u2a4w = a0a2u2a4a0a2x3a5a0a2u2a4w,

where y2 = u2v2ȳ2 for some u2 ∈ U, v2 ∈ Uk and ȳ2 ∈ S \U.
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Proof. Since (1) is the zigzag of shortest length, so by Theorems 2 and 3, we can factorize
y2 as y2 = u2v2ȳ2, where u2 ∈ U, v2 ∈ Uk and ȳ2 ∈ S \U. Now

a0a2u2a4w = (a0a2u2a4(a0a2)u2a4)w ( since S is (0, k)-band)

= a0a2u2a4(a0a2x2a3a0a2)u2a4w (by Lemma 3 as u2a4w ∈ Sk)

= a0a2u2(a4a0a2x2)a3a0a2u2a4w

= a0a2u2(a4a0a2(x2a4)a0a2x2)a3a0a2u2a4w (since S is (0, k)-band)

= a0a2u2a4a0a2(x3a5)a0a2x2a3a0a2u2a4w (by zigzag equations)

= a0a2u2a4a0a2(x3a5)a0a2u2a4w, (by Lemma 3 as u2a4w ∈ Sk)

as required.

Lemma 5. If any d ∈ S \U has zigzag equations of type (1) in S over U of shortest length m, then
for all w ∈ Sk

sjw = sjsj−1 · · · s2a0a2xj+1a2j+1sj−1a2jw with 3 ≤ j ≤ m,

where si = a0a2u2a4u3a6 · · · uia2i and yi = uivi ȳi, ui ∈ U, vi ∈ Uk and ȳi ∈ S \ U with
2 ≤ i ≤ m.

Proof. Since (1) is the zigzag of shortest length, so by Theorems 2 and 3, we can factorize
yi as yi = uivi ȳi with ui ∈ U, vi ∈ Uk and ȳi ∈ S \U for i = 1, 2, · · ·m. We now prove the
lemma by induction on j. For j = 3, we have

s3w = (a0a2u2a4)(u3)(a6)w

= a0a2u2a4u3a6(a0a2u2a4)a6w

(since U is structurally (0, n)-left seminormal band)

= a0a2u2a4u3(a6a0a2u2a4a0a2x3)a5a0a2u2a4a6w (by Lemma 4 as a6w ∈ Sk)

= a0a2u2a4u3a6a0a2u2a4a0a2(x3a6)(a0a2u2a4a0a2x3a5a0a2u2a4)a6w

(since S is structurally (0, k)-band)

= (a0a2u2a4u3a6)(a0a2u2a4)a0a2(x4a7)(a0a2u2a4a0a2x3a5a0a2u2a4)a6w

(by zigzag equations)

= (a0a2u2a4u3a6)(a0a2u2a4)a0a2(x4a7)(a0a2u2a4)a6w (by Lemma 4 as a6w ∈ Sk)

= s3s2a0a2x4a7s2a6w.

Thus, the lemma holds for j = 3. Assume for the sake of induction that the lemma holds
for j = r (r ≥ 3). Then, we have

srw = srsr−1 · · · s2a0a2xr+1a2r+1sr−1a2rw.

We now show that it also holds for j = r + 1. Now

sr+1w = a0a2u2a4 · · · ura2rur+1a2r+2w

= srur+1a2r+2w

= srur+1a2r+2sra2r+2w (since U is structurally (0, n)-left seminormal band)

= srur+1(a2r+2srsr−1 · · · s2a0a2xr+1)a2r+1sr−1a2ra2r+2w

(by inductive hypothesis, as a2r+2w ∈ Uk )

= srur+1(a2r+2sr · · · s2a0a2(xr+1a2r+2)srsr−1 · · · s2a0a2xr+1)a2r+1sr−1a2ra2r+2w

(since S is structurally (0, k)-band)

= srur+1a2r+2srsr−1 · · · s2a0a2(xr+2a2r+3)(srsr−1 · · · s2a0a2xr+1a2r+1sr−1a2r)a2r+2w
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(by zigzag equations)

= (srur+1a2r+2)srsr−1 · · · s2a0a2(xr+2a2r+3)sra2r+2w

(by inductive hypothesis, as a2r+2w ∈ Uk )

= sr+1srsr−1 · · · s2a0a2(xr+2a2r+3)sra2r+2w,

as required.

Theorem 7. For each positive integer n and k with 1 ≤ k ≤ n, the variety V (0,n) of structurally
(0, n)-left seminormal bands is saturated in the variety V (0,k) of structurally (0, k)-bands.

Proof. Assume, on the contrary, that the variety V (0,n) of structurally left (0, n)-seminormal
bands is not saturated in the variety of structurally (0, k)-bands for k ≥ n. Then, there exists
a structurally left (0, n)-seminormal band U and a structurally (0, k)-band containing U
properly, such that Dom(U, S) = S. Take any d ∈ S \U, then by Theorem 1, d has a zigzag
of type (1) in S over U of minimum length m. Since the zigzag is of minimum length, so by
Theorem 2, yi ∈ S \U for all i, 1 ≤ i ≤ m. Therefore, by Theorem 3, we can write

yi = uiwi ȳi (2)

with ui ∈ U, wi ∈ Uk and ȳi ∈ S \U for i = 1, 2, · · ·m. Now, we have

d = x1a1y1 (by zigzag equations)

= x1a1u1w1ȳ1 (by Equation (2))

= x1a1a1u1w1ȳ1 (since S is structurally (0, k)-band)

= x1a1a1y1 (by Equation (2))

= a0a2y2 (by zigzag equations)

= a0a2u2w2ȳ2 (by Equation (2))

= a0a2x2(a3)(a0a2)(u2)w2ȳ2 (by Lemma 3)

= a0a2x2a3a0a2u2a3u2w2ȳ2 (since U is structurally left (0, n)-seminormal band)

= a0a2x2a3a0a2u2a3y2 (by Equation (2))

= a0a2x2a3a0a2u2a4y3 (by zigzag equations)

= (a0a2x2a3a0a2)u2a4u3w3ȳ3 (by Equation (2))

= (a0a2u2a4)u3w3ȳ3 (by Lemma 3)

= a0a2u2a4a0a2x3(a5)(a0a2u2a4)(u3)w3ȳ3 (by Lemma 4)

= a0a2u2a4a0a2x3(a5a0a2u2a4u3a5u3)w3ȳ3

(since U is structurally left (0, n)-seminormal band)

= a0a2u2a4a0a2x3a5a0a2u2a4u3a5y3 (by Equation (2))

= a0a2u2a4a0a2x3a5a0a2u2a4u3a6y4 (by zigzag equations)

= (a0a2u2a4a0a2x3a5a0a2u2a4)u3a6u4w4ȳ4 (by Equation (2))

= (a0a2u2a4u3a6)u4w4ȳ4 (by Lemma 4)

= s3u4w4ȳ4

= s3s2a0a2x4a7s2a6u4w4ȳ4 (by Lemma 5)

= s3s2a0a2x4(a7)(a0a2u2a4a6)(u4)w4ȳ4 (by Lemma 5)

= s3s2a0a2x4a7a0a2u2a4a6u4a7u4w4ȳ4

(since U is structurally left (0, n)-seminormal band)

= s3s2a0a2x4a7a0a2u2a4a6u4a7y4 (by Equation (2))

= s3s2a0a2x4a7a0a2u2a4a6u4a8y5 (by zigzag equations)

= (s3s2a0a2x4a7a0a2u2a4a6)u4a8u5w5ȳ5 (by Equation (2))
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= s3u4a8u5w5ȳ5 (by Lemma 5)

= s4u5w5ȳ5

Continuing as above, we obtain

d = sm−1umwmȳm

= sm−1sm−2 · · · s2a0a2xm(a2m−1sm−2a2m−2um)wmȳm (by Lemma 5 )

= sm−1sm−2 · · · s2a0a2xm(a2m−1sm−2a2m−2uma2m−1um)wmȳm

(since U is structurally left (0, n)-seminormal band)

= (sm−1sm−2 · · · s2a0a2xma2m−1sm−2a2m−2)uma2m−1umwmȳm

= sm−1uma2m−1umwmȳm (by Lemma 5)

= sm−1uma2m−1ym (by Equation (2))

= sm−1uma2m (by zigzag equations).

Thus, d ∈ U, which is a contradiction.

Dually, we can prove the following:

Theorem 8. For each positive integers n and k with 1 ≤ k ≤ n the variety V (n,0) of structurally
(n, 0)-right seminormal bands is saturated in the variety V (k,0) of structurally (k, 0)-bands.

Corollary 2. For each positive integers n and k with 1 ≤ k ≤ n the variety V (0,n) [V (n,0)] of
structurally (0, n)-left [(n, 0)-right] regular bands is saturated in the variety V (0,k) [V (k,0)] of
structurally (o, k)-bands [(k, 0)-bands].

Corollary 3. In the category of structurally (0, k)-bands [(k, 0)-bands] any epi from a structurally
(0, n)-left [(n, 0)-right] seminormal bands is surjective for each positive integers k and n with
1 ≤ k ≤ n.

Corollary 4. In the category of structurally (0, k)-bands [(k, 0)-bands] any epi from a structurally
(0, n)-left [(n, 0)-right] regular bands is surjective for each positive integers k and n with 1 ≤ k ≤ n.

Example 2. Let S = {a1, a2, a3, a4} be a four element semigroup. The Cayley’s table for S is
given below:

. a1 a2 a3 a4
a1 a1 a2 a1 a4
a2 a1 a2 a2 a1
a3 a1 a2 a3 a4
a4 a4 a1 a4 a4.

It can be easily verified that S is a regular band. Let U = {a1, a2, a3} be a subsemigroup
of S. Thus, a4 ∈ S \U. It is clear that a4 ∈ Dom(U, S), since we have the following zigzag
equation for a4,

a4 = a1a4 a1 = a4a2

a2a4 = a1 a4a1 = a4.

Since U ⊆ Dom(U, S) ⊆ S. Therefore, Dom(U, S) = S. Thus, it is worth interesting to
finding those varieties of regular semigroup and regular bands for which Dom(U, S) 6= S.

4. Conclusions

In the present paper, authors have determined several saturated varieties of struc-
turally regular semigroups. It has been shown that structurally (n, m)-regular semigroups
are saturated in a subclass of semigroups for any pair (n, m) of positive integers. Then it has
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been shown that, the variety of structurally (0, n)-left seminormal bands is saturated in the
variety of structurally (0, k)-bands. As a result, in the category of structurally (0, k)-bands,
epis from structurally (0, n)-left seminormal bands is onto.

The results obtained in the paper have their immense utility as they imply that epis
from these classes are onto. We hope to explore further classes of semigroups which are
more general for which epis are onto; for example we list some open problems in this
direction:

(i) As the determination of all saturated classes of bands has not been settled yet, an
effort may be made in this direction.

(ii) Is epi from a structurally locally inverse semigroup onto or not.
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