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Abstract: This study is intended as a note and provides an extension to a much-used and established 
test for portfolio efficiency, the Gibbons, Ross, and Shanken GRS-Wald test. Tests devised to meas-
ure portfolio efficiency are crucial to the theoretical issues related to CAPM (Capital Asset Pricing 
Model) testing and have applications for the fund manager who seeks to rank portfolio perfor-
mance. This study looks at the GRS-Wald test for portfolio efficiency and extends it to make it visu-
ally more interpretive without any loss of generality in its structure. The geometrically recast statis-
tic draws upon the trigonometric properties of a portfolio in the mean-variance space and a mathe-
matical proof of the equivalence of the two statistics is provided. The GRS-Wald test is a widely used 
statistic in studies addressing the issue of portfolio efficiency and CAPM deviations. A simulation 
demonstrates the use of the recast GRS-Wald test in testing for the mean-variance efficiency of a test 
portfolio. The study also provides a table of the GRS-Wald test, based on a range of mean-variance 
locations (cosine of portfolio angles) at which the test portfolio and the efficient market portfolio can 
be placed. 

Keywords: GRS-Wald test; GRS statistic; trigonometric test; geometric portfolio efficiency; CAPM; 
minimum-variance simulation; tangency portfolios; mean-variance optimization 
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1. Introduction 
The GRS-Wald test statistic, Gibbons, Ross, and Shanken [1] (hereinafter the GRS-W 

test or the GRS-test, or the GRS-statistic), is a widely used statistic to test for portfolio 
efficiency. This study is a note and provides an extension to the GRS test, which is also 
used to study the CAPM (Capital Asset Pricing Model) deviations (Galea, Curci, and Mo-
lina [2]; Fama and French [3]). The test is recast in a form that is visually more intuitive 
(geometrically), while maintaining its original structure. At the same time, the recast sta-
tistic does not suffer from any loss of generality or rigor in its structure. The recast statistic 
draws upon the trigonometric properties (Gustafson [4,5], Rodriguez [6]) of a portfolio in 
the mean-variance space, and a mathematical proof of the equivalence of the two statistics 
is provided. A simulation is also employed to demonstrate the use of the recast GRS sta-
tistic in testing for the mean-variance efficiency of a test portfolio, and a table of values, 
based on a range of angles, spanning the various points on the mean-variance spectrum 
is presented (Appendix A.3). The GRS~W test is a multivariate statistic for testing the 
mean-variance efficiency of a portfolio, it also has a geometric interpretation. The statistic 
tests for the efficiency of proxies used for the market portfolio and enables them to address 
issues related to the critique by Roll [7] regarding the validity of the empirical testing 
procedures on the CAPM (Capital Asset Pricing Model, Chen [8]. Testing for the efficiency 
of the proxies used is important because, “if the proxy is not a valid surrogate, then as 
tests of the CAPM the existing empirical investigations are somewhat beside the point” 
(Gibbons, Ross, and Shanken [1]). Hu et al. [9] solved the portfolio optimization problem 
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of the mean-variance model (as used in the GRS-test) by developing an interactive multi-
criterion, self-learning system that does not require an a priori assumption of the agent�s 
utility preference structure. 

2. The Gibbons, Ross, and Shanken Test Statistic and Its Relevance 
Bodnar and Schmid [10] speak of the GRS test as an exact F-test for the efficiency of 

a given portfolio which has become a fundamental test in portfolio theory. Cueto, Grané, 
and Caascos [11], deploy the GRS test to assess the ability of a multifactorial risk model to 
explain excess returns, by determining if the regression intercepts are jointly zero, α1 = α2 
= … = αn = 0. Ryan et al. [12], utilizing the GRS-test, look at the average value of absolute 
intercepts, αi = 0 to test whether the regression intercepts are jointly equal to zero, with 
the idea being that the intercept is indistinguishable from zero if an asset pricing model 
completely captures the expected returns (in which case the portfolio is efficient). Suarez 
and Alonso-Conde [13] looked at an entropy-based decomposition that captures the di-
vergence between the factor-mimicking portfolio and the minimum-variance pricing ker-
nel as distinct from quadratic test statistics, such as the GRS-test (determined as a function 
of pricing errors). Solórzano-Taborga et al. [14], utilize the GRS test for identifying re-
strictions (they termed �efficiency factor�) to test the null of asset pricing errors equaling 
zero. Barillas et al. [15] utilized the GRS test to accommodate the comparison of non-
nested models as in a squared Sharpe-ratio (Sharpe [16]). Kamstra and Shi [17] rigorously 
generalized the Sharpe ratio-based interpretation of the GRS test to the multiple portfolio 
case but also suggested modifications to it when extended to multiple factors. 

It may be noted that the GRS test does not accommodate short-selling restrictions 
(Fletcher [18]). Vigo-Pereira and Laurini [19] stated that for the GRS test to be effective the 

error terms have to be i.i.d N(0,1), normally distributed ~ N(µ, σ2); 𝑓(𝑥) = √ 𝑒 , 
homoscedastic with the diagonal elements jj and kk of two var-cov matrices A and B being 
equal, ∑ 𝑗𝑗 =  ∑ 𝑘𝑘 , ∀ 𝑗 = 𝑘, and uncorrelated 𝜌 𝜖 , 𝜖  = 0. Kamstra and Shi [17] as-
serted that the GRS statistic can lead to higher failure rates especially when the returned 
model has K-factors, K > 1 and N-assets, N < N*; “the bias to over-reject is non-negligible 
in small samples”. The short-selling constraint prevents the replication of an investible 
benchmark index, thus invoking Roll�s Critique [7] of whether the benchmark is repre-
sentative of the test portfolio. However, tests of mean-variance efficiency with no short 
sales constraints have been proposed by Basak et al. [20]. Kim and Robinson [21] also point 
out that perfect efficiency cannot exist in practice and that it would be unrealistic that all 
intercept values were jointly and exactly zero, hence they introduce an interval-based hy-
pothesis testing and get lower rejection rates with the GRS-test. 

Shanken [22] provided an exhaustive review of 23 statistical methods that have been 
used in testing mean-variance portfolio efficiency. Kamstra and Shi [17] posited that “the 
Gibbons, Ross, and Shanken ([1], GRS) test of mean-variance efficiency of asset returns is 
the gold standard of empirical asset pricing, used by virtually every paper in the literature 
exploring empirical asset pricing models. Not only is it used to establish if an asset pricing 
model can account for expected returns of a set of test assets, but the GRS test is also used 
to rank models for relatively superior performance, that is, which model produces the 
lower GRS statistic (see, for instance, Fama and French [3])”. Essentially, this is done by 
testing for the intercepts on a multifactor risk model to be jointly zero, indicating that there 
is no excess return to the factor loadings. Cueto et al. [11], deploy the GRS test to assess 
the ability of a multifactorial risk model to explain excess returns, by determining if the 
regression intercepts are jointly zero, α1 = α2 = … = αn = 0. Ryan et al. [12], utilizing the GRS 
test, looked at the average value of absolute intercepts, αi = 0 to test whether the regression 
intercepts are jointly equal to zero, with the idea being that the intercept is indistinguish-
able from zero if an asset pricing model completely captures the expected returns (in 
which case the portfolio is efficient). It can be surmised that there is a substantive link 
between the GRS test, and portfolio performance evaluation and that it has been well-
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researched. This paper abstracts from those empirical tests and seeks to provide a trigo-
nometric interpretation of the GRS test. 

MacKinlay [23] discriminated between the risk-based and the non-risk-based expla-
nations of CAPM deviations and indicates that models that base their explanations on the 
need for additional risk factors may be making premature conclusions (Roll and Ross [24]. 
He further adds that on an ex ante basis, “CAPM deviations due to missing risk factors 
will be very difficult to statistically detect”. The main point of his study is that the adop-
tion of empirically developed multifactor models is not the answer to observed CAPM 
deviations. His study utilized the GRS test to detect CAPM deviations on an ex ante basis. 
Using a 342-month time series of excess returns for 32 portfolios (25 stock and 7 bond 
portfolios) as the dependent variable, with market excess returns being the independent 
variable, he tested for the null hypothesis that the intercept on the CAPM is zero. He finds 
that on an ex ante basis, it is more probable that the deviations are better explained by 
non-risk-based alternatives than by additional risk-based alternatives. This is inferred 
from the degree of overlap the alternative distributions have over the GRS-test statistic 
MacKinlay [23]. For purposes of comparing a risk-based model with a non-risk-based al-
ternative, MacKinlay [23] stated, “the zero-intercept test can be very useful since the dis-
tributions of the test statistic for these alternatives have little overlap”. 

Zhou [25] stated, “the GRS test has rich economic interpretations and attractive sta-
tistical properties … the GRS test is fundamental for testing MV (mean-variance) efficiency 
under normality.” He uses the statistic and rejects the MV efficiency on the CRSP (Center 
for Research in Security Prices, WRDS [26]; Agrrawal [27]) value-weighted stock index for 
three of the six consecutive ten-year sub-periods from 1926 to 1986 besides rejecting the 
normality assumption of the data at the same time. Zhou [25] conducts the zero-intercept 
test on the CAPM under the normality as well as the alternative (elliptical) distribution 
assumption and uses the values of the GRS statistic to calculate the p-values (level of sig-
nificance). Bodnar et al. [28] also mentioned that Zhou [25] extended the findings of Gib-
bons et al. [1] by applying their GRS test of the validity of the CAPM to elliptically distrib-
uted returns. For the alternative distributions of excess returns, he reported that the p-
values for five of the six sub-periods from 1926–1976 exceed 5% and are larger than the p-
values under the normality assumption (Table V, Panel B, pp. 1938, Zhou [25]). This pre-
vents the rejection of the null hypothesis (zero-intercept on the excess return form of the 
CAPM) for the period under study. The Zhou [25] paper thus introduces a refinement to 
the GRS-test by way of testing the implications of the GRS-test to alternative distributions 
and cautions that “empirical studies that ignore the nonnormality are likely to over reject 
the theory being tested”. At the same time, it brings out the appeal of the GRS test to situ-
ations that call for the testing of portfolios. 

The Fama and French [29] study used 32 portfolios over 342 monthly observations to 
arrive at the GRS-test F-value of 1.91 (for the single factor case with excess market returns 
as the sole independent factor). The study rejects the null of a zero-intercept at the 99.6% 
level (Fama and French [29]). Their lowest F-statistic (closer to zero, implying higher effi-
ciency) has a value of 1.56 and rejects the null at the 96.1% level; in this case, their model 
is the three-factor stock market model. Despite its �marginal rejection� in the F-tests, they 
feel “the three-factor model does a good job on the cross-section of stock returns”. The 
five-factor (3 stock and 2 bond market) model has an F-value of 1.66 and rejects the null at 
the 97.5% level, which is lower than the three other scenarios. This prompts them to con-
clude that “the five-factor regressions provide the best model for returns on bonds and 
stocks”. A look at the p-values for the overall regressions clearly shows that the null of a 
zero-intercept is rejected at least at the 96.1% level (which is the lowest on the table re-
ferred to above). Evidently, the Fama and French [29] study makes a strong case for multi-
factor risk-based alternates to the univariate proposition of the CAPM. Hou, Karolyi, and 
Kho [30] used the GRS-test statistic for their country, industry, and characteristic-based 
global test portfolios. Ehsani and Linnainmaa [31] utilized the GRS test to see if factor 
momentum contributes to the returns of cross-sectional momentum strategies and test the 
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null hypothesis of the alphas being jointly zero. This note provides an extension/rechar-
acterization of the GRS test with the objective of giving it a geometrical interpretation and 
making its implementation easier. 

3. Suggested Recharacterization of the GRS-Statistic 
Gibbons, Ross, and Shanken [1] devised a statistic to test for the MV efficiency of any 

particular portfolio. Their motivation was to examine the MV efficiency of market proxies 
used in CAPM testing, especially given the equivalence of the CAPM to MV efficiency of 
the market. They derived an exact form test and examined its sensitivity to the choice of 
the portfolio and the number of assets used to derive the MV efficiency frontier (Merton 
[32]). They found that “conclusions regarding the efficiency of a given index can be altered 
by the type of assets used to construct the ex post frontier”. Their tests reject the efficiency 
of the CRSP value-weighted (VW) index but do not reject the efficiency of the CRSP equal-
weighted (EW) index, and utilized monthly data over the period from 1931–1965. They 
also provided a geometrical (Gomez-Deniz et al. [33]; Danko and Soltés [34]) interpreta-
tion of their test in “the mean-standard deviation space of portfolio theory”, something 
that this study attempted to extend. 

The GRS statistic measures the distance, in mean-standard deviation space, between 
a test portfolio (market index), and a tangency portfolio (on the efficient frontier) and re-
turns a value, which is then used to assess the relative efficiency of the portfolio under 
consideration. The GRS test statistic, also called the GRS-W, statistic is as follows: 

11
ˆ1

ˆ1 2

2

2

2
* −≡−














+

+
= ψ

θ

θ
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W  (1)

and *̂θ  is the Sharpe measure of the ex post efficient portfolio (ratio of expected excess 

return to the standard deviation of the excess return), and θ p  is the Sharpe measure of 

the test portfolio. Note that Ψ cannot be less than one since *̂θ  is the slope of the ex post 
frontier and is based on all the assets in the test (including the test portfolio p). To accept 
the efficiency of the test portfolio, Ψ  should be close to 1. Larger numerical values of Ψ  

imply portfolio inefficiency (MacKinlay et al. [35]) arising out of the increased distance 
between the test portfolio and the global MV efficient portfolio on the frontier (𝑊 =  Ψ  − 1 →  0 implies efficiency). In other words, for values of W close to zero, the test portfolio 
cannot be called inefficient. 

The null hypotheses of a zero intercept on the excess-return form of the CAPM can 
be rejected when the value of W is greater than the F-statistic value with degrees of free-
dom N and (T-N-1), where N is the number of assets and T is the number of time series 
observations on the underlying asset returns. 

It may be noticed that the above statistic involves the prior calculation of the slopes 
of the tangent to the efficient frontier and the segment joining the test portfolio to the 
origin. Additionally, θ is a slope measure (θ ≡ σ/r ) with excess return ( r ) and standard 
deviation of return (σ). The simplification of this approach involves the direct use of the 
angles stretched by the two lines, and could perhaps aid in a more visually intuitive use 
of the GRS test statistic. The suggested modification on the original form of the GRS sta-
tistic is as follows. 

Let φ* be the angle between tangent OM and the X-axis (Figure 1), and φp  be the 
angle between the segment OP and the X-axis.  
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Figure 1. The geometric basis of the GRS-W test statistic. The test coordinates of the EW portfolio 
(P) and the tangency portfolio (M) are plotted relative to the mean-variance efficient frontier. The 
further away P is from the tangency portfolio, the less efficient the portfolio P is. 

Then, we can recast the GRS-W statistic as W, where: 𝑊 = ∗ −1 (2)

If W =   Ψ  −  1 →  0, we cannot reject Ho (which indicates that the test portfolio P is 

efficient), and φ* is the angle between the tangency portfolio and the X-axis: 

∗
−1 (3)

and φp
 is the angle between the test portfolio and the X-axis, 

∗
−1 

∗
−1 
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̂∗̂ −1 

where θ is a slope measure (θ ≡ r / σ ); tan(φ) = θ 

which is the exact form of 
~W , the original GRS-W test statistic (Gibbons, Ross, and 

Shanken [1]). 
The return vectors ri ≡ xi generate a scalar variance product 𝑥1. 𝑥2 → var(𝑥) 

where correlation 𝜌 = ( ) 
= ⃗∙ ⃗ ( )‖ ‖   ‖ ‖   

 for scaled returns 𝑥 , 𝑥  and 𝜂 observations. Where the squared length of vector 𝑥⃗, 𝑥⃗ is: 
‖𝑥 ‖ = 𝑎 + 𝑎 + ⋯ 𝑎  

‖𝑥 ‖ = 𝑏 + 𝑏 + ⋯ 𝑏  

Product of vectors 𝐴, 𝐵 is �⃗�. 𝑏 = ‖𝑎‖ ∙  ‖𝑏‖ cos (α)  ∀ �⃗� = (𝑎 , 𝑎 … 𝑎 ) ≡ 𝑥  ∀ 𝑏 = (𝑏 , 𝑏 … 𝑏 ) ≡ 𝑥  

Note that P denotes the test portfolio, so it lies on or below the frontier (above it 
would violate the budget constraint and is hence infeasible). The proof involves the use 
of some basic axioms of trigonometry (such as 1 + 𝑡𝑎𝑛 𝜃 = 𝑠𝑒𝑐 𝜃), and displays the equiv-
alence of the original form of the GRS test to its recast form. This is important because the 
recast GRS-W statistic leaves the numerical value of the test unchanged while at the same 
time providing a geometrical interpretation (the closer the test portfolio line is to the tan-
gency portfolio line, the more efficient the test portfolio is) and computational ease. In that 
sense, there is no structural change to the original GRS-W test; it is just extended to pro-
vide a geometric and trigonometric interpretation. 

A calculator with trigonometric functions can easily compute the W statistic, thus 
giving it a quick-and-ready status. It also obviates the need to calculate the length of the 
hypotenuse for the two points under consideration, and all that is needed is the value of 
the angles between the two lines and the X-axis. This quick-and-ready W statistic that 
measures the efficiency of a portfolio can be useful for professional fund manager presen-
tations and instruction on the MV efficiency criterion. At the same time the recast statistic W does not suffer from any loss of generality or rigor in its structure. The study suggests 
this recast portfolio efficiency test statistic as an extension and not a replacement for the 
GRS-W test statistic.  



Mathematics 2023, 11, 2198 7 of 21 
 

 

4. A Simulated Efficient Frontier and a Test of Portfolio Efficiency 
This section delves into the mechanics of tracing out an efficient MV frontier and 

identifying the relative location of the global MV-efficient portfolio. Thereafter, the loca-
tion of an EW portfolio having the same return distribution as those of the assets em-
ployed in the formation of the efficient frontier is noted and its efficiency is tested using 
the recast GRS statistic. This enables us to improve on the simple eyeballing technique 
employed in testing the efficiency of a test portfolio used in the works of Roll and Ross 
[24].  

The simulations begin with an initial set of five assets i whose returns are randomly 
generated under the assumption of normality. More specifically, the distribution specified 
is a Gaussian distribution of the return (r) random variable x, with mean and standard 
deviation ~ N(µ, σ2) and having a p.d.f.: 𝑓(𝑥) = √ 𝑒   (4)

where µi was successively set at 0, 2, 4, 6, 8, 10 and σi was set at 0, 5, 10, 15, 20, 25. 
Now, the problem reduces to one of minimizing the variance of a portfolio subject to 

a target rate of return and a budget constraint. The MV portfolio selection problem is one 
where the investor seeks to minimize the portfolio variance subject to the budget and tar-
get return constraint. A short selling, Black [36] non-negativity constraint is optional, de-
pending on the model (Buckle [37] utilized a bivariate normal distribution due to option 
payoffs). Simply stated, the problem is to 

2 ( )
,

1 [1, 1,...1]

( )

T

T T

T
p

Minimize
subject to

where

and optional

σ

μμ

= Σ

= =
=

≥

x x x

x e e
x

x o

 (5)

where, μ and x  are n-vectors composed of asset rates of return and portfolio weights 
respectively: 

Σ  is an n x n positive-definite non-singular covariance matrix; 
e  is a unit vector; 
μ p  is a scalar equal to the targeted portfolio return; 
and x ≥ 0 is the short-selling constraint. 
The equivalent Parametric Quadratic Programming (PQP) problem (Best and Grauer 

[38,39]) is 

2

T
TMax μ γ

  Σ− ≤  
  

x xx Ax  (6)

where, A is an m × n constraint matrix, γ  an m × 1 vector, for a given var-cov matrix Σ 
and |Σ| = σ σ sin 𝛼, where σ is the standard deviation of returns; it is well known that 
Generalized Variance is 

𝐺𝑉 = ‖𝑥 ‖‖𝑥 ‖ sin 𝛼𝜂 − 1  
for η observations, with α, the angle between the vectors x1 and x2 respectively. Another 
approach, called the Risk parity based allocation approaches does not require an estimate 
of the return vectors. Lee [40] outlined a process that is elaborated in Appendix A.4). 
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The solution involves the use of the Kuhn-Tucker [41] conditions (please see Appen-
dix A.1 for the K-T conditions) to arrive at a global optimum portfolio (it is a saddle point 
where the variance is minimized in one plane and the mean return is maximized in the 
other).  

However, computational solutions that hinge on algorithms, are developed for the 
solution of non-linear quadratic programming situations. Greene [42] reviewed some 
commonly used NLP algorithms and stated that the quasi-Newton algorithms belong to 
a ”very effective class of algorithms that eliminates second derivatives altogether and has 
excellent convergence properties, even for ill-behaved problems.” The results of this opti-
mization can be seen in Table 1, which gives us the GRS-test values for a range of portfolio 
returns and standard deviations (Appendix A.2). Following Roll and Ross [24] and Shefrin 
and Statman [43], feasible portfolios away from the tangency portfolio will plot below the 
efficient frontier (infeasible above the frontier). 

The plot of the efficient frontier (Figure 2) shows that this is indeed the case. The 
inefficient EW portfolio lies inside the frontier and considerably away from the global MV 
efficient portfolio. The global tangency portfolio (M) produces the highest return per unit 
of risk amongst all other efficient portfolios; in other words, it generates the highest value 
of the Sharpe ratio [16] measure for portfolio performance.  

 
Figure 2. Results of an actual simulation are plotted here, the MV portfolio (red square) and the test 
portfolio (triangular orange) are also utilized to derive the actual GRS−W statistic value (Table 2). 
The Rf rate is 1%. 
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Glabadanidis [44] proposed a new finite sample mean-variance efficiency test based 
on the risk reduction of the global minimum variance (GMV) portfolio, which he found 
has a straightforward geometric and portfolio interpretation and complements the cele-
brated GRS-test well Notice that M is tangential to a line emanating from the origin and 
has the property of maximizing the angle formed between the axis that measures risk and 
the line through the origin. Any other portfolio on or below the frontier will generate an 
angle that will be lesser in value. The study noted the significance of this property of the 
global MV efficient portfolio and employed this unique characteristic to devise a formal 
test for portfolio efficiency using the values of the angles formed by the test and the global 
MV efficient portfolio with the risk axis. While it may be visually appealing to comment 
on the efficiency of a test portfolio based on its distance from the global MV efficient port-
folio, a mathematically precise test conveys the information with greater clarity and con-
viction. 

Table 1. Showing the values of the GRW-W test statistic and the Sharpe ratio θ. 
 GRS~W Stat   θ = (r − rf)/s    

r\s 10.00 12.00 14.00 16.00 10.00 12.00 14.00 16.00 s/r 
5.00 0.198 0.276 0.328 0.364 0.400 0.333 0.286 0.250 5.00 
5.50 0.150 0.2374 0.297 0.339 0.450 0.375 0.321 0.281 5.50 
6.00 0.101 0.198 0.265 0.313 0.500 0.417 0.357 0.313 6.00 
6.50 0.053 0.158 0.232 0.285 0.550 0.458 0.393 0.344 6.50 
7.00 0.005 0.117 0.198 0.257 0.600 0.500 0.429 0.375 7.00 
7.50  0.077 0.163 0.228  0.542 0.464 0.406 7.50 
8.00  0.037 0.129 0.198  0.583 0.500 0.438 8.00 
8.50   0.094 0.168   0.536 0.469 8.50 
9.00   0.060 0.137   0.571 0.500 9.00 
9.50   0.025 0.107   0.607 0.531 9.50 
10.00    0.077    0.563 10.00 
10.50    0.047    0.594 10.50 

Bold numbers are r: return and s: std. dev.; p-value is <0.05 for all non-bold, non-italicized cells, 

implying inefficient portfolios. The italicized numbers are the GRS-W values W = [ ^ ∗^ ] − 1 ≡ψ − 1, that correspond to efficient portfolios. 

The first step in arriving at the values of the recast GRS statistic requires the precise 
calculation of the “portfolio angles”, since these values form an integral part of the test of 
portfolio efficiency. The change in the gradient of the “W stat” as (x, y) changes is shown 
in Figure 3; with the X-coordinate representing return and the Y-coordinate measuring 
the standard deviation on the portfolio, an application of the Pythagorean theorem allows 
us to arrive at the values of the angles created by such coordinates in the Cartesian plane. 
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Figure 3. A plot of the left panel of Table 1, showing the spike in the GRS−W as variance approaches 
16% with a low return of 5%, high “W stat” values imply inefficiency of the test portfolio. 

Stated simply, the theorem states that for any right-angled triangle, the value of the 
hypotenuse-squared (h2) equals the sum of the values of the perpendicular (p2)-squared 
and the base-squared (b2), i.e., h2 = p2 + b2. For example, for the coordinates of the EW 
portfolio and the M portfolio (8, 4.67) and (12, 5.05); the values of the angles stretched by 
the two given coordinates are found as follows: 

2 2
ph( ) 4.67 8 9.263φ = + =  (7)
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*

where  h( )  is  the hypotenuse of the right angled triangle formed with two
known vertices at (0,0) and (4.67,8).

cos b/h (4.67 / 9.263) 0.5042

cos 0.5042 59.717
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Similarly,  h( )=13.019
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o
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 =

 = 7.176 , the angle stretched by the global min-var portfolio M.o

 

Recalling that the GRS-statistic also called the GRS-W statistic is 
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(For values of W close to zero, the test portfolio cannot be called inefficient). 
It has been shown that it can be recast in the following form: 
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Using the values found above we can see that 
~W  = 0.689 which is not close to zero, 

thus implying inefficiency of the test portfolio p, which, in this case, is the EW portfolio 

comprised of the five asset universe. Is the value of the recast GRS statistic 
~W  equal to 

the original form value of W? The original form of the GRS construction θ is the slope of 

a line and the Sharpe measure for the ex post price of risk. The GRS test defines θ ≡ r / σ  
as the Sharpe measure with excess return ( r ) and standard deviation of return (σ). On a 
more specific basis, *θ̂  is the Sharpe measure of the ex post efficient portfolio (ratio of 

expected excess return to the standard deviation of the excess return), while pθ̂  is the 
Sharpe measure of the test portfolio. Jurdi [45] and Agrrawal et al. [46] note that investors 
rely on the ex-post performance of portfolios to assess the economic utility of their asset 
allocation and guide the portfolio rebalancing decision. Bazhutov et al. [47] further note 
that no market portfolio is clearly defined in CAPM testing. The coordinates of the EW 
test portfolio (P) and the M portfolio are (8, 4.67) and (12, 5.05), respectively, with the X-
coordinate representing return and the Y-coordinate measuring the standard deviation on 
the portfolio. Then, 

( )
( )

2
2

*

2

2
2

2

ˆ1
1

ˆ1

121 5.05 1
81 4.67

0.689
ˆ

p

W

W

θ

θ

 + = −
 + 

 
+ 

= − 
 +  

=

=

 (10)

The above mentioned demonstration shows the equality of the two statistics when 
actual numbers are used. The recast approach, however, involves the direct use of the 
angles stretched by the two lines in the hope that this could perhaps aid in a visually more 
intuitive use of the GRS statistic. 

The GRS statistic also measures the distance, in mean-standard deviation space, be-
tween a test portfolio (market index) and a tangency portfolio (on the efficient frontier) 
and returns a value which is then used to assess the relative efficiency of the portfolio 
under consideration. The GRS statistic denoted by GRS-W is given as 

11
ˆ1

ˆ1 2

2

2

2
* −≡−














+

+
= ψ

θ

θ

p

W  (11)

where, *θ̂  is the Sharpe measure of the ex post efficient portfolio (ratio of expected excess 

return to the standard deviation of the excess return), and pθ̂  is the Sharpe measure of 

the test portfolio. Essentially, θ is a slope measure (θ ≡ r / σ ) with excess return ( r ) and 
standard deviation of return (σ), and is the ray emanating from the origin on the Y-axis 
connecting to a portfolio in the first quadrant. Note that ψ cannot be less than one since 

*θ̂  is the slope of the ex post frontier and is based on all the assets in the test (including 

portfolio p). To accept the efficiency of the test portfolio, ψ
2
 should be close to 1. Larger 



Mathematics 2023, 11, 2198 12 of 21 
 

 

values of ψ
2
 imply portfolio inefficiency arising out of the increased distance between the 

test portfolio and the global MV efficient portfolio on the frontier (𝑊 =  Ψ  −  1 →  0 im-
plies efficiency). In other words, for values of W close to zero, the test portfolio cannot be 
called inefficient (visual implementation in Appendix A.5). 

The test statistic is numerically determined as 

[T(T-N-1)/N(T-2)] 

2

2

2
*

ˆ1

ˆ1














+

+

pθ

θ
 ≡ XF (12)

It follows an F-distribution ~ F (N, T-N-1), where N is the number of assets and T is 
the number of time series observations on the underlying asset returns. 

H0: Portfolio is efficient. 
The decision rule to reject H0 is Rej. H0, iff. F(XF, N, T-N-1) < a threshold p-value. For 

the two portfolios with the given sample (r, rf, σ) in the table below, the various parameters 
required to determine the GRS statistic are displayed below: 

Table 2. These represent a range of actual GRS-W test statistic values and the associated Sharpe ratio 
values for a set of mean-variance points (as applied in Figure 2). This table has the p-values as well. 
N = 30 and a 10-year weekly period of T = 520. The top panel of the table illustrates the values arrived 
in the first two rows of the larger table, with the first row corresponding to the tangency portfolio 
(7.93 r, 9.83 σ), which is also applied in Figure 2, as the tangency portfolio on the efficient frontier. 
Cells in bold text are the efficient portfolios with low GRS-W statistics. 

 Tangency Portfolio (*) Test Portfolio (p) 
mean, r 7.93 10.50 
risk free, rf 1.00 1.00 
sigma, s 9.83 8.00 
θ = (r − rf)/s 0.705 1.188 
GRS~W Stat  0.046 
N No. of Assets 30 
T No. of Weekly Intervals 520 
XF  0.759 
p-value Rej. H0 (is an Efficient Port) iff p~0 0.8202 

 Mean, r Sigma, s θ = (r − rf)/s GRS~W Stat N T XF p-Value  

Tangency Portfolio 
(*) 

7.93 9.83 0.705  No. of As-
sets 

No. of 
Weekly 

Intervals 

 Rej. H0 (Efficient 
Port) iff p~0 

 

Test Portfolio (p) 10.50 16.00 0.594 0.047 30 520 0.763 0.81564721900 Eff. 
Test Portfolio (p) 3.00 10.00 0.2 0.3737 30 520 6.115 0.00000000000 Not Efficient 
Test Portfolio (p) 5.00 10.00 0.400 0.198 30 520 3.238 0.00000004498 Not Efficient 
Test Portfolio (p) 5.50 10.00 0.450 0.150 30 520 2.448 0.00004374410 Not Efficient 

 6.00 10.00 0.500 0.101 30 520 1.652 0.01746340000 Not Efficient 
 6.50 10.00 0.550 0.053 30 520 0.861 0.68131012700 Eff. 
 7.00 10.00 0.600 0.005 30 520 0.081 1.00000000000 Eff. 

Test Portfolio (p) 5.00 12.00 0.333 0.276 30 520 4.513 0.00000000000 Not Efficient 
 5.50 12.00 0.375 0.237 30 520 3.884 0.00000000012 Not Efficient 
 6.00 12.00 0.417 0.198 30 520 3.238 0.00000004498 Not Efficient 
 6.50 12.00 0.458 0.158 30 520 2.580 0.00001444100 Not Efficient 
 7.00 12.00 0.500 0.117 30 520 1.917 0.00279042500 Not Efficient 
 7.50 12.00 0.542 0.077 30 520 1.256 0.16816038300 Eff. 
 8.00 12.00 0.583 0.037 30 520 0.599 0.95601098600 Eff. 

Test Portfolio (p) 5.00 14.00 0.286 0.328 30 520 5.366 0.00000000000 Not Efficient 
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 5.50 14.00 0.321 0.297 30 520 4.862 0.00000000000 Not Efficient 
 6.00 14.00 0.357 0.265 30 520 4.336 0.00000000000 Not Efficient 
 6.50 14.00 0.393 0.232 30 520 3.793 0.00000000028 Not Efficient 
 7.00 14.00 0.429 0.198 30 520 3.238 0.00000004498 Not Efficient 
 7.50 14.00 0.464 0.163 30 520 2.674 0.00000646460 Not Efficient 
 8.00 14.00 0.500 0.129 30 520 2.107 0.00067275200 Not Efficient 
 8.50 14.00 0.536 0.094 30 520 1.539 0.03571892400 Not Efficient 
 9.00 14.00 0.571 0.060 30 520 0.973 0.50892160100 Eff. 
 9.50 14.00 0.607 0.025 30 520 0.413 0.99780363100 Eff. 

Test Portfolio (p) 5.00 16.00 0.250 0.364 30 520 5.958 0.00000000000 Not Efficient 
 5.50 16.00 0.281 0.339 30 520 5.549 0.00000000000 Not Efficient 
 6.00 16.00 0.313 0.313 30 520 5.117 0.00000000000 Not Efficient 
 6.50 16.00 0.344 0.285 30 520 4.667 0.00000000000 Not Efficient 
 7.00 16.00 0.375 0.257 30 520 4.202 0.00000000001 Not Efficient 
 7.50 16.00 0.406 0.228 30 520 3.724 0.00000000053 Not Efficient 
 8.00 16.00 0.438 0.198 30 520 3.238 0.00000004498 Not Efficient 
 8.50 16.00 0.469 0.168 30 520 2.745 0.00000351764 Not Efficient 
 9.00 16.00 0.500 0.137 30 520 2.249 0.00022052900 Not Efficient 
 9.50 16.00 0.531 0.107 30 520 1.752 0.00899892900 Not Efficient 
 10.00 16.00 0.563 0.077 30 520 1.256 0.16816038300 Eff. 
 10.50 16.00 0.594 0.047 30 520 0.763 0.81564721900 Eff. 

The GRS test confirmed that the test portfolio is not efficient relative to the tangency 
portfolio. 

5. Conclusions 
The implication of using such an inefficient portfolio as a market index can be best 

stated in the words of Roll and Ross [24], who said “if the index is not efficient, the ex ante 
cross-sectional relation does not hold exactly and no other variables can have explanatory 
power”. Gibbons, Ross, and Shanken [1]) had earlier stated that “if the proxy is not a valid 
surrogate, then as tests of the CAPM the existing empirical investigations are somewhat 
beside the point”. Tests devised to measure portfolio efficiency are crucial to the theoreti-
cal issues related to CAPM testing, Fama and French [48] and have applications for fund 
managers who seek to rank portfolio performance. This study provides an extension/re-
characterization of the GRS-test with the objective of giving it a geometrical interpretation 
(Agrrawal [49]) and making its implementation easier; there is no structural change to the 
original GRS-W test, only that it is extended to provide a visual interpretation (Appendix 
A.5). It utilized the trigonometric properties of a portfolio in the mean-variance space to 
arrive at the mathematical equivalence of the two tests. A simulation demonstrates the use 
of the recast GRS-Wald test in testing for the mean-variance efficiency of a test portfolio. 
The study also provides a table of the GRS-Wald test, based on a range of mean-variance 
locations (cosine of portfolio angles, Appendix A.3) at which the test portfolio and the 
efficient market portfolio can be placed. 
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Appendix A 
Appendix A.1. The Kuhn-Tucker [41] Saddle Point Theorem 

 
The dual for the Lagrangian  ℒ(𝑥, 𝜆) = 𝑓 (𝑥) + ∑ 𝜆 𝑓 (𝑥)  is given as λ⋆ ∈arg max 𝑔 (λ) s.t. λ ≥ 0  where 𝑔(𝜆) = 𝑚𝑖𝑛 𝐿 (𝑥, 𝜆)  is the dual function. Duality holds 

when: 𝑚𝑖𝑛 𝑚𝑎𝑥 𝐿 (𝑥, 𝜆) = 𝑚𝑎𝑥 𝑚𝑖𝑛 𝐿 (𝑥, 𝜆) 
The problem of minimizing risk while simultaneously maximizing return is a con-

strained optimization problem (Markowitz [50]), where the budget constraint is ∑ 𝑤 = 1 and the short selling constraint on asset weights is ∀ 𝑖, 𝑤  ≥ 0) to which the 
K-T saddle point (Balbás et al. [51]) conditions apply.  

The first of these three plots is the K-T saddle point minmax optimal point, the next 
two are when the axis is rotated 90° and show the same optimal point, but on different 
reference planes. 
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Appendix A.2. Polar Plot of the Table of Sharpe Ratios and the GRS−W Statistic  
As the delta of the angle between the test and the tangency portfolio increases as the 

GRS-W statistic increases, implying inefficiency. The table is based on the internal area 
values of Table 1 for a range of return values on the outside columns and incremental 
variances on the top row. 
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 GRS~W Stat   θ = (r − rf)/s    

r\s 10 12 14 16 10 12 14 16 s/r 
5 0.198 0.276 0.328 0.364 0.4 0.333 0.286 0.25 5 

5.5 0.15 0.2374 0.297 0.339 0.45 0.375 0.321 0.281 5.5 
6 0.101 0.198 0.265 0.313 0.5 0.417 0.357 0.313 6 

6.5 0.053 0.158 0.232 0.285 0.55 0.458 0.393 0.344 6.5 
7 0.005 0.117 0.198 0.257 0.6 0.5 0.429 0.375 7 

7.5  0.077 0.163 0.228  0.542 0.464 0.406 7.5 
8  0.037 0.129 0.198  0.583 0.5 0.438 8 

8.5   0.094 0.168   0.536 0.469 8.5 
9   0.06 0.137   0.571 0.5 9 

9.5   0.025 0.107   0.607 0.531 9.5 
10    0.077    0.563 10 

10.5    0.047    0.594 10.5 
Bold numbers are r: return and s: std. dev.; p-value is <0.05 for all non-bold, non-italicized 
cells, implying inefficient portfolios. The italicized numbers are the GRS-W values W =[ �̂�∗�̂� ] − 1 ≡ ψ − 1, that correspond to efficient portfolios. 

Appendix A.3. Values of the GRS-W Statistic for a Range of Angles 
Test Port 

 ANGLE  0 10 20 30 40 45 50 60 70 80 90 

m
kt

 ta
ng

en
cy

 p
or

t 

 cosine (xo) 1.00 0.98 0.94 0.87 0.77 0.71 0.64 0.50 0.34 0.17 0.00 
0 1.00 0.000           

10 0.98 0.031 0.000          
20 0.94 0.132 0.098 0.000         
30 0.87 0.333 0.293 0.177 0.000        
40 0.77 0.704 0.653 0.505 0.278 0.000       
45 0.71 1.000 0.940 0.766 0.500 0.174 0.000      
50 0.64 1.420 1.347 1.137 0.815 0.420 0.210 0.000     
60 0.50 3.000 2.879 2.532 2.000 1.347 1.000 0.653 0.000    
70 0.34 7.549 7.291 6.549 5.411 4.017 3.274 2.532 1.137 0.000   
80 0.17 32.163 31.163 28.284 23.873 18.461 15.582 12.702 7.291 2.879 0.000  

0°

30°

60°

90°

120°

150°

180°
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240°

270°

300°
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0
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0.4

0.6
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90 0.00 
2.6,10+32 2.58,10+32 2.35,10+32 1.99,10+32 1.56,10+32 1.33,10+3

2 
1.10,10+32 6.66,10+31 3.12,10+31 8.04,10+30 

0.000 

This table provides the values of the recast GRS—test statistic and is based on the 
angles (in italics) stretched by the portfolio under test (test port) and the globally MV effi-
cient portfolio (mkt tangent port). Only the lower triangular matrix is relevant because the 
test portfolio has to lie in the feasible zone of the ellipse. Values of the statistic close to zero 
(in italics) imply efficiency (say 40° test port, and 45° tangency port (cosine(.) values in 
Bold text (0.77, 0.71), results in a GRS-test value of 0.174). The further the location of a test 
portfolio from the tangency portfolio the larger the distance (GRS-test values) and the 
lower the portfolio efficiency. The values of N and T impact the p-values as applied to the 
test and not the GRS-W test per se. They are also provided in Table 2 for a set of mean-
variance locations. Essentially the trigonometric test has to be digitized since there would 
be a very large number of mean-variance combinations and locations on the X-Y plane. A 
digital copy can be supplied upon request. 

Appendix A.4. Risk Parity: Avoiding the Problem of Error Maximization in a Mean-Variance 
Optimization Framework 

Lee (2011), shows that for a portfolio with a variance–covariance structure Σ, risk 
parity is the state when the percentage contribution to total risk (PCTR) of an asset equals 
that of another, resulting in an even distribution of risk across all constituent asset classes. 
Mathematically, as reported in Agrrawal [52] for the “bivariate (Maillard, Roncalli, and 
Teiletche [53] also provide the general case for n > 2 assets, and Qian [54] for the n = 2 case) 
n = 2 asset case, where ρ12 is the correlation, σ1, σ2 and σp the standard deviations of the 
assets and the portfolio, and non-negative weights such that w1 + w2 =1, the problem re-
duces to equating PCTRi = PCTRj ∀ 𝑖 ≠ 𝑗: 
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This also implies that wi, the weight of asset i is inversely proportional to its beta βi. 
Choueifaty and Coignard [55], also abstract from the classic mean-variance optimized 
portfolios and thereafter developed risk-parity based strategies.Yu [56], in a comprehen-
sive study on the leading methodological issues surrounding CAPM modeling identified 
nine major mathematical issues that affect beta estimation, of which Agrrawal [46] and 
Fama and French [3] link to frequency, interval and dynamic weighting constructs that 
ultimately affect portfolio efficiency measures. In a recent paper, de Jong and diBar-
tolomeo [57], discuss evolving implications of optimization that deal with new alpha 
sources emanating from multiple performance sources and portfolio efficiency measures. 
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Stone et al. [58] find evidence that points to a fundamental revision in the theory of the 
relationship between cash levels in an financial system and central bank interest rates; this 
paper fundamentally recasts the GRS-W statistic based on its trigonometric properties. 

Appendix A.5. Risk Parity: Efficient Portfolio Zone as a Floating Hyperplane, the Tangency 
Portfolio and the GRS-W Statisctic Gradient -3D Efficient Frontier with Actual ETFs 

Based on large scale numerical runs with actual pricing data, using a variety of multi-
asset portfolios, WRDS [26], Agrrawal [52], a stable and realistic tangency portfolio placed 
at 8% annual return with a standard deviation of 10% per year. Utilizing that central point 

a mesh grid of the GRS-W test values 𝑊 = [ �̂�∗�̂� ] − 1 ≡ ψ − 1 , were spanned for 

µ∈(5% to 15%) and σ∈(5% to 25%). The gradient of the Z-axis values is indicative of the 
inefficiencies associated with even minor perturbations in the mean-variance space 
around the tangency portfolio (blue sphere). The floating hyperplane is the efficiency 
space projected around the tangency portfolio. 

 
At a reviewer�s suggestion, a set of highly liquid and diversified Exchange traded 

Funds -ETFs (VT, VTI, IWM, VEU, BND, GLD, AOK, AOM, UUP, FXE, IYR), were plotted 
in the mean-variance-GRS-test space. As can be seen in the figure with the multiple 
spheres, these ETFs plotted around the bright-blue tangency portfolio. However, this effi-
cient frontier is now an “efficient dome” and the GRS-W test is the Z-axis, making it visu-
ally quite apparent which of the assets are in the efficiency zone.  
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The author will be glad to provide additional granularity and the implementation of 

Matlab�s #fmesh (f) protocol to generate these analytics. It can be seen that the efficiency 
zone is in the vicinity of the GRS-W value of around zero, implying portfolio efficiency. 
These are not some randomly chosen ETFs, they represent the major asset-classes that 
extend beyond the equity market to the various components of the capital markets (Agrra-
wal [52]. One desirable attribute of these, apart from automatic diversification and high 
liquidity is low within pair correlation and a lower matrix covariance structure, following 

from Equation (3) earlier in the text. Correlation = 𝑥1⃗∙𝑥2⃗ 𝜂−1𝑥1𝜂−1 1  𝑥2𝜂−1 1
𝜌x1x2 = cov(x1x2)σx1σx2 . 
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