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Abstract: This paper presents a solution to the consensus problem for a particular category of un-
certain switched multi-agent systems (MASs). In these systems, the communication topologies
between agents and the system dynamics are governed by a time-homogeneous Markovian chain in
a stochastic manner. To address this issue, we propose a novel neuroadaptive distributed dynamic
event-triggered control (DETC) strategy. By leveraging stochastic Lyapunov theory and matrix in-
equality methodology, we establish sufficient conditions for practical ultimate mean square consensus
(UMSBC) of MASs using a combination of neural networks (NNs) adaptive control strategy and
DETC method. Our approach employs a distributed adaptive NNs DETC mechanism in MASs with
unknown nonlinear dynamics and upgrades it at the moment of event sampling in an aperiodic
manner, resulting in significant savings in computation and resources. We also exclude the Zeno
phenomenon. Finally, we provide numerical examples to demonstrate the feasibility of our proposed
approach, which outperforms existing approaches.

Keywords: neuroadaptive control; dynamic event-triggered; consensus; Markovian switched;
multi-agent systems

MSC: 93A14; 90B18; 68T42

1. Introduction

Cooperative behaviors in MASs have been extensively studied by scholars, particularly
in computer science and engineering, to address large-scale issues [1–6]. Synchronization
or consensus is a crucial problem for MASs and has gained increasing scholarly attention.
Although research on MASs has produced significant results [7–10], most existing consen-
sus results pertain to linear systems with identical dynamics and fixed topologies [11–13].
However, in reality, internal or external factors such as environmental changes may intro-
duce unknown, nonlinear, heterogeneous, or switched components into MASs, which must
be addressed. Therefore, research on MASs has made significant strides in making systems
more realistic [14–19]. For instance, ref. [14] thoroughly explored the fixed-time consen-
sus issue for a family of nonhomogeneous nonlinear MASs, while ref. [16] considered a
group of nonlinear MASs vulnerable to external shocks for the leader-following bipartite
consensus under directed fixed and switching topologies. In cooperative-competitive
networks, ref. [17] investigated couple-group consensus for heterogeneous MASs with
switching topology, and ref. [18] mainly focused on a type of nonlinear switching MASs
about event-triggered adaptable tracking control. Moreover, ref. [15] researched the con-
sensus control issue of second-order MASs with switched dynamics. Additionally, ref. [19]
proved the existence of a unique global positive solution for a new stochastic epidemic
model explaining the dynamics of hepatitis B with the inclusion of white noise, Markovian
switching, and vaccination control. This paper concentrates on Markovian switching MASs
and demonstrates interacting systems with unknown, heterogeneous, nonlinear dynamics,
as well as arbitrarily switched systems and network architectures.
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Achieving consensus control in MASs requires each agent to constantly receive infor-
mation about its nearby neighbors, resulting in additional computing costs, processing
power requirements, and communication delays. To address these challenges, event-
triggered control methods [20–26] have been developed as an approach to avoid continuous
communication. Two prominent event-triggered control methods are static event-triggered
control (SETC) [21] and distributed event-triggered control (DETC) [27–31]. Compared to
SETC, DETC can drastically reduce the occurrence of events without significantly affecting
the controller’s functionality. In this paper, we propose a dynamic event-triggered (DET)
consensus control method that combines the benefits of event-triggered control with the
ability to handle unknown, nonlinear, heterogeneous, or switched systems. The main chal-
lenge in the DET synchronization issue is to establish a distributed dynamic event-based
protocol for MASs that combines an event-based control rule and triggering function. Prior
research on DETC includes observer-based DET semiglobal bipartite consensus (SGBC)
for linear MASs with input saturation in a competitive network [27], DETC’s application
to universal linear MASs [28], and event-triggered consensus of generalized linear MASs
in leaderless and leader-following networks within the setting of adaptive control [29].
However, to the best of our knowledge, there is still a need for a breakthrough in develop-
ing a distributed DET synchronization control procedure for generic nonlinear Markovian
switching systems.

NNs have become a popular technique for dealing with nonlinearity and uncertainties
in systems and networks due to their high approximation capacity [32–37]. For example,
in [32], an adaptive NN-based control strategy was proposed to achieve asymptotic consen-
sus for a MASs with uncertain nonlinear dynamics and a high-dimensional leader under a
directed switching topology. Control concerns for MASs subjected to unknown nonlinearity
and external disturbances in a directed communication topology were addressed in [33].
An analytical tool was developed in [34] for the neuroadaptive tracking control of hybrid
Markovian switching networks with heterogeneous nonlinear dynamics and randomly
switched topologies. In [35], the observer-based event-triggered tracking control problem
for nonlinear MASs subject to denial-of-service (DoS) attacks was examined.

Based on the analysis presented earlier, the main focus of this study is on the adaptive
NN-based distributed DET consensus problem for switching MASs. We propose a novel
distributed DET consensus methodology that updates only when the DET criteria are
violated. Information from neighboring agents is used to distribute the control rule and
event-triggering function, thereby avoiding Zeno behavior. The main contributions of this
study, compared to relevant works, are as follows:

1. The consensus control problem of switched MASs prompted by a discrete Markovian
process in the network and system is addressed. Notably, existing consensus control
approaches have primarily focused on MASs communicated via a fixed connected
graph [10–14,16,20–23]. However, few consensus control techniques have been inves-
tigated for unknown nonlinear switching MASs. As a result, it is increasingly crucial
to investigate the synchronous control of unknown nonlinear MASs with switching
topologies and systems.

2. In this paper, the consistency problem of a class of MASs with unknown nonlin-
earities is handled by employing a neural adaptive DET strategy. Compared with
continuous-time neuroadaptive consensus control algorithms [32–34,36], the proposed
consensus control rule not only accomplishes consensus control but also successfully
reduces communication.

3. A new adaptive distributed DET conditions to steer the proposed nonlinear systems
to consensus is presented. The key to achieving event-triggered consensus control
is designing suitable triggering circumstances. Notably, while there have been a few
event-triggered consensus control methods for nonlinear MASs researched [20–22],
current event-triggered synchronization control approaches mostly focus on linear
MASs [27–30] on undirected graphs. Therefore, it is more relevant to research DET
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consensus control of nonlinear MASs on switched undirected networks, as opposed
to the findings in [27–30].

The rest of this paper is organized as follows. Section 2 presents the study topic,
preliminary information, and a discussion of a hybrid adaptive DETC. Theoretical study
of the consensus of switched MASs with unknown nonlinear dynamics is provided in
Section 3. Examples of simulations are provided in Section 4, and the conclusions are
drawn in Section 5.

Notations: The following standard notations are used in this text. q-dimensional
real vectors make up the collection Rq, while nonnegative real numbers make up the
collection R+. Euclidean norm, Frobenuis norm and Kronecker product are described
by ‖ · ‖, ‖ · ‖F and ⊗, respectively. x = col(x1, x2, · · · , xN), xi ∈ Rq, is a column vector of
dimension qN. diag{· · · } represents the diagonal matrix. IN ∈ RN×N is the identity matrix
and 1N = [1, 1, · · · , 1]> ∈ RN . For symmetric matrix A, A � 0(A � 0) means that A is
positive definite (positive semidefinite) matrix, and λmax(A) (λmin(A)) is the maximum
(minimum) eigenvalue of matrix A. P stands for probability, and E stands for expectation,
both of which are specified in a complete probability space.

2. Problem Formulation and Preliminaries
2.1. Markovian Switched MASs

This paper considers Markovian switched MASs with unknown nonlinear dynamics,
consisting of N agents. The system dynamics are expressed as follows:

ẋi(τ) = Aδ(τ)xi(τ) + Bδ(τ)(hi(xi(τ), τ) + ui(τ)), τ > τ0, (1)

where xi ∈ Rq and ui ∈ Rm represent the state vector and the control input vector of
the i-th agent, xi(τ0) is the initial state, Aδ(τ) ∈ Rq×q and Bδ(τ) ∈ Rq×m are the system
state matrix and the system control input matrix, and hi : Rq ×R+ → Rm denotes a
smooth unknown nonlinear function, i = 1, 2, · · · , N. The time-depend switched signal
is represented as δ(τ) : [0, ∞) → ℵ = {1, 2, · · · , ϑ} (ϑ ∈ N), where ϑ > 1 is the number
of modes. For the time sequence {τv, v ∈ Z+} satisfying 0 = τ0 < τ1 < · · · < τv < · · ·
and limv→+∞ τv = +∞. Suppose that {τv}v>1 is the Markovian switched time sequence
and the form {δ(τv)}v>1 is a homogeneous Markovian chain, with a state set ℵ, initial

distribution probability π(0) =
[
π
(0)
1 , π

(0)
2 , · · · , π

(0)
ϑ

]>
and transition probability matrix

P =
[
pij
]
∈ Rϑ×ϑ, where pij = P{δ(τv+1) = j | δ(τv) = i} and π

(0)
i = P{δ(τ0) = i}. In this

case, for δ(τ) = l ∈ ℵ, Aδ(τ) and Bδ(τ) are denoted as Al and Bl .
The network topology of MASs (1) is denoted by an undirected switched graph

Gδ(τ) = {V , Eδ(τ),Aδ(τ)}. The edge set of Gδ(τ) denotes as Eδ(τ) = {(i, j) ∈ V × V}, where
V = {1, 2, · · · , N} represents the agent set. (j, i) ∈ Eδ(τ) represents that the information of

agent j is accessible to agent i at time τ and defineN δ(τ)
i = {j ∈ V : (j, i) ∈ Eδ(τ), j 6= i}, for

i ∈ V . Aδ(τ) =
[

aδ(τ)
ij

]
∈ RN×N is the adjacency matrix of the graph Gδ(τ), where aδ(τ)

ii = 0

and if (j, i) ∈ Eδ(τ), aδ(τ)
ij = aδ(τ)

ji = 1, ∀i, j ∈ V . The Laplacian matrix of graph Gδ(τ) can

be denoted as Lδ(τ) =
[
lδ(τ)
ij

]
∈ RN×N , where lδ(τ)

ij = −aδ(τ)
ij if i 6= j and lδ(τ)

ii =
N
∑
j 6=i

aδ(τ)
ij .

The graph Gδ(τ) randomly switches among ϑ graphs, resulting in a Markovian switched
topology for the MASs (1).

Remark 1. Each agent in a networked system can only perceive the behavior of its neighboring
agents, which is why the system is often referred to as distributed or cooperative. However, the control
issues in network (1) arise from factors such as heterogeneity, unidentified nonlinearity, and Marko-
vian switching. While existing works mostly focus on fixed systems of MASs [1,11,27–30], it is
more meaningful to consider switched systems of MASs since systems can change in practical
situations. Furthermore, it is important to investigate how Markovian switching topology affects
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consensus effectiveness. Therefore, the main objective of this study is to construct a distributed
control technique for the MASs in (1) that maintains consensus despite these challenges.

Assumption 1 ([34,38]). The average dwell time of the Markovian switched time sequence
{δ(τv)}v>1 is more than χd > 0 if there exist a positive integer N0 and a positive number χd > 0,
such that

τ − τ0

χd
6 N(τ, τ0) 6 N0 +

τ − τ0

χd
, τ > τ0 ≥ 0, (2)

where N(τ, τ0) denotes the number of switched times of the switched sequence {τv}v>1 in the time
interval (τ0, τ].

Assumption 2 ([34,39]).

(1) the pair (Al , Bl) is controllable for all l ∈ ℵ, ;
(2) the graph Gl is connected for all l ∈ ℵ;
(3) the discrete Markovian process {τv}v>1 is ergodic.

Remark 2. According to Assumption 1, there is no strict requirement for the the Markovian
switched time sequence {τv}v>1, which has an average dwell time smaller than χd > 0 , but it must
be larger than τ−τ0

N(τ,τ0)−N0
.

Remark 3. These assumptions are commonly used in the analysis of Markovian switched systems.
They ensure that the system is controllable, the switching topologies are well-connected, and the
Markovian chain is well-behaved. Furthermore, Assumption 2 (3) ensures that the Markovian
chain {δ(τv)}v>1 has a unique, positive, invariant probability distribution π = (π1, π2, . . . , πϑ)
satisfying πP = π. Each mode may be accessed from any other, in other words.

Lemma 1 ([39,40]). ∀l ∈ ℵ, the Laplacian matrix Ll , linked to the undirected graph Gl , has an
eigenvalue 0 with 1N as a corresponding right eigenvector, while all the other eigenvalues are
positive. Plus, when Gl is connected, 0 is a simple eigenvalue of Ll .

2.2. Preliminaries

Let the error be explained by zi = xi − 1
N ∑N

j=1 xj, i ∈ V and z = col(z1, · · · , zN)
can be used to denote the compact form of error vector. The error can be given by
z = (M ⊗ Iq)x, where M = IN − 1

N 1N1>N > 0 and x = col(x1, x2, · · · , xN). Noticeably,
with Assumption 2 (2), for ∀l ∈ ℵ, Ll M = Ll = MLl , M2 = M. The subsequent consensus
definition is thereafter provided to clarify the control goal of this study.

Definition 1. The Markovian switched MASs (1) is said to achieve practical ultimate mean square
bounded consensus (UMSBC) at an error level ε0 > 0 if there exists a compact set O such that for
any initial condition z(τ0), the error signal z converges to

O =
{

z(τ) ∈ RqN : E[‖z(τ)‖2] 6 ε0

}
as τ → ∞.

Remark 4. The above definition introduces the concept of practical UMSBC involving a key
constant ε0, where ε0 6 0 is a predetermined threshold. In particular, if ε0 = 0, one may have
the common UMSBC. By using the practical UMSBC as a foundation, the practical consensus
is described.

2.3. Hybrid Adaptive Control Using Neural Networks

In light of the fact that the uncertainties hi(xi, τ) are permitted to differ, it should be
noted that the agents are basically heterogeneous. In addition, hi(xi, τ) might be unknown
towards the control architect. Within this study, NNs are used as a direct means of offsetting
the unidentified nonlinear functions of system. The following lemma is required to do this.
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Lemma 2 ([39]). The unidentified becoming function hi(xi, τ) in (1) can be linearly parameterized
by a NNs approximation given

hi(xi, τ) = W>i φi(xi) + εi(τ), ∀xi ∈ Ωi,

where the optimum weight matrix Wi ∈ Rr×m is unknown, which is constrained by ‖Wi‖F ≤Wi
M

and the basis function vector φi(xi) : Rq 7→ Rr with φi(xi) = (φi1(xi), · · · , φir(xi))
> and

satisfies ‖φi(xi)‖ ≤ φi
M. εi(τ) is the approximation error vector meeting ‖εi(τ)‖ ≤ εi

M and Ωi is
a big enough compact set in Rq, i ∈ V .

Remark 5. The universal approximation theorem, which is often used when handling approxima-
tion problems with NNs, may ensure Lemma 2 [32–36]. NNs approximation of unknown smooth
function hi(xi, τ) is depicted in Figure 1. Here, for the controller design, the constants Wi

M, φi
M,

and εi
M could be unknown, which is solely used for theoretical study.

��

��

...
...

...

...
...

��

��1:ℜ� → ℜ1

��
��� + ��

�=1

�

���
� ��� �� + ����

�=1

�

��1
� ��� �� + ��1�

�=1

�

���
� ��� �� + ����
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���:ℜ� → ℜ1

Input Layer Hide Layer Output Layer

Figure 1. Neural networks estimation.

Assume that xi(τ0) ∈ Ωi and xi stays inside Ωi during the trajectory of system (1).
The NNs estimator is constructed as Ŵ>i (τ)φi(xi) to obtain real data hi(xi, τ), while the
approximating error is identified by

hi(xi, τ)− Ŵ>i (τ)φi(xi) = W>i (τ)φi(xi) + εi(τ),

where Wi(τ) = Wi − Ŵi(τ). Denote ε = col(ε1, ε2, · · · , εN), then ‖ε‖2 6
N
∑

i=1
εi

M
2
= ε̄, i ∈ V .

In order to implement practical tracking, a hybrid neuroadaptive control scheme is
developed, which includes a distributed control protocol and a hybrid NNs adaption law:

ui(τ) = αKδ(τ) ẽi(τ)− Ŵ>i (τi
k)φi(xi(τ

i
k)), τ ∈ [τi

k, τi
k+1), (3)

˙̂Wi =− βŴi + φix>i Pδ(τ)Bδ(τ), (4)

where ẽi(τ) = ∑j∈N δ(τ)
i

aδ(τ)
ij (xj(τ

i
k)− xi(τ

i
k)), τ ∈ [τi

k, τi
k+1), Kδ(τ) = B>

δ(τ)Pδ(τ) denotes the

control gain matrix, Pδ(τ) � 0 will be designed latter, α, β > 0 are the control and tuning
gains, and

{
τi

k
}

k>1 is the event-triggering instants series of agent i, which will be discussed
in more detail in the event-triggering condition, i ∈ V .

In these circumstances, for τ ∈ [τi
k, τi

k+1), the closed-loop system is enabled by the
control input (3)

ẋi(τ) =Aδ(τ)xi(τ) + αBδ(τ)Kδ(τ) ẽi(τ)

+ Bδ(τ)

(
W>i φi(xi(τ))− Ŵ>i (τi

k)φi(xi(τ
i
k)) + εi(τ)

)
. (5)
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Then, from (5), with some simple calculations, the compact form of the error system
can be rewritten as

ż(τ) =
[(

IN ⊗ Aδ(τ)

)
− α
(

Lδ(τ) ⊗ Bδ(τ)Kδ(τ)

)]
z(τ) + α

(
M⊗ Bδ(τ)Kδ(τv)

)
e∗(τ)

+
(

M⊗ Bδ(τ)

)
ε +

(
M⊗ Bδ(τ)

)
W(τ)>Φ(x(τ))

+
(

M⊗ Bδ(τ)

)
Ŵ>(τ)Φ∗(x(τ)) (6)

+
(

M⊗ Bδ(τ)

)
Ŵ∗

>
(τ)Φ(x(τ)), τ ∈ [τi

k, τi
k+1), (7)

where e∗(τ) = col(e∗1(τ), e∗2(τ), · · · , e∗N(τ)) with e∗i (τ) = ∑j∈N δ(τ)
i

aδ(τ)
ij (xi

j(τ)− xi
i(τ)) and

xi
j(τ) = xj(τ

i
k) − xj(τ), which is the measurement error of xj, Φ(x(τ)) = col(φ1(x1(τ)),

φ2(x2(τ)), · · · , φN(xN(τ))); Φ(x(τ)) = col(φ1(x1(τ
1
k )), φ2(x2(τ

2
k )), · · · , φN(xN(τ

N
k )));

Φ∗(x(τ)) = col(φ∗1 (x1(τ)), φ∗2 (x2(τ)), · · · , φ∗N(xN(τ))) with φ∗i (xi(τ)) = φi(xi(τ))
−φi(xi(τ

i
k)), which is the measurement error of φi; W(τ) = diag(W1(τ), W2(τ), · · · , WN(τ));

W(τ) = diag(W1(τ), W2(τ), · · · , WN(τ)); Ŵ(τ) = diag(Ŵ1(τ), Ŵ2(τ), · · · , ŴN(τ)) and
Ŵ∗(τ) = diag(Ŵ∗1 (τ), Ŵ∗2 (τ), · · · , Ŵ∗N(τ)) with Ŵ∗i (τ) = Ŵi(τ) − Ŵi(τ

i
k), which is the

measurement error of Ŵi, i, j ∈ V .

2.4. Dynamic Event-Triggered Control Protocols

To lessen the volume of communications for saving energy, the distributed DETC law
to be designed as follows:

τi
k+1 , inf

{
τ > τi

k : ξ‖e∗i (τ)‖
2 > d1‖ei(τ)‖2 + b−1

1 ψ
(1)
i (τ) or

ξ
(
‖Ŵ>i (τ)φ∗i (xi(τ))‖2 + ‖Ŵ∗>i (τ)φi(xi(τ

i
k))‖

2
)

> d2‖ei(τ)‖2 + b−1
2 ψ

(2)
i (τ)

}
, (8)

with

ψ̇
(1)
i (τ) =− a1ψ

(1)
i (τ) + a2

(
d1‖ei(τ)‖2 − ξ‖e∗i (τ)‖

2
)

, (9)

ψ̇
(2)
i (τ) =− a3ψ

(2)
i (τ) + a4

[
d2‖ei(τ)‖2 − ξ

(
‖Ŵ>i (τ)φ∗i (xi(τ))‖2

+ ‖Ŵ∗>i (τ)φi(xi(τ
i
k))‖

2)], (10)

where ξ = max
l∈ℵ

{
ρ1α2‖Pl BlKl‖2, ρ2‖Pl Bl‖2, ρ3‖Pl Bl‖2}, ei is the consensus error of agent

i, i.e., ei = ∑j∈N δ(τ)
i

aδ(τ)
ij
(

xj(τ)− xi(τ)
)
, i ∈ V and ai (i = 1, 2, 3, 4), bj (j = 1, 2) are

positive constants satisfying a1b1 + a2 > 1, a3b2 + a4 > 1 and ρ1, ρ2, ρ3, d1, d2 are given
positive parameters.

Remark 6. As a result, the time-triggered mechanism may lead to unnecessary waste of resources
due to the lack of explicit regulations for choosing appropriate triggered intervals. The event-
triggered mechanism, on the other hand, adopts the zero-order hold (ZOH) method, which means
that the control input remains constant until the next triggered instant, reducing the communication
load. Figure 2 illustrates the structure of the MASs with DET mechanism. Moreover, it can be
observed from (9) and (10) that ψ

(1)
i (τ) > 0 and ψ

(2)
i (τ) > 0 act as dynamic thresholds for the

DETC scheme, serving as positive scalar functions. A similar proof can be made as in [41]. The
dynamic threshold helps to decrease the number of triggers compared to the static case [20–26],
resulting in less frequent triggers overall.
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ZOH

Communication Network

Agent k Agent j

Agent i SensorActuator

DETCL

NNs

Figure 2. Structure of the MASs (1) with DET mechanism.

3. Main Results

The purpose of this study is to develop a neuroadaptive DET feedback control rule to
achieve consensus of Markovian switched networked systems. The major theorem of this
section is now prepared for presentation.

Theorem 1. If Assumptions 1 and 2 are valid, for ∀l ∈ ℵ, if there exist matrices Pl � 0, Ql � 0
and parameters ρ1, ρ2, ρ3, ρ4, d1, d2 > 0 satisfy

Pl Al + A>l Pl − 2αλ2(Ll)Pl Bl(Bl)
>Pl + κ Iq = −Ql , (11)

χd >
ln µ

θ
, (12)

where λ2(Ll) is the minimal positive eigenvalue of Ll , l ∈ ℵ, κ = (d1 + d2)max
l∈ℵ
‖Ll‖2 +

κ1, κ1 = ∑4
i=1 ρ−1

i , µ = πM
πm

, πM = max{π1, π2, . . . , πϑ}, πm = min{π1, π2, . . . , πϑ},

θ = min
{min

l∈ℵ
λmin(Ql)

max
l∈ℵ

λmax(Pl)
, θ1

}
and θ1 = min

{
β, a1b1+a2−1

b1
, a3b2+a4−1

b2

}
, then the practical UMSBC

of MASs (1) can be accomplished with the distributed control protocol (3), the hybrid NNs adaptation
law (4) and the distributed DETC law (8).

Proof. The Lyapunov function candidate is constructed as

V(τ) = V1(τ) + V2(τ) + V3(τ), (13)

V1(τ) = z>(τ)(IN ⊗ Pδ(τ))z(τ),

V2(τ) = ‖W(τ)‖2
F,

V3(τ) =
N

∑
i=1

ψ
(1)
i (τ) +

N

∑
i=1

ψ
(2)
i (τ).
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At time τ, exists v ∈ N+, such that when τ ∈ [τv, τv+1), δ(τ) = l ∈ ℵ. Therefore,
the right-Dini derivative of V1(τ) along (6) and Young’s inequality [42] can be obtained as

D+V1 =2z>[(IN ⊗ Pl Al)− α(Ll ⊗ Pl BlKl)]z + 2αz>(M⊗ Pl BlKl)e∗ + 2z>(M⊗ Pl Bl)W
>Φ

+ 2z>(M⊗ Pl Bl)Ŵ>Φ∗ + 2z>(M⊗ Pl Bl)Ŵ∗
>

Φ + 2z>(M⊗ Pl Bl)ε

62z>[(IN ⊗ Pl Al)− α(Ll ⊗ Pl BlKl)]z + 2x>(IN ⊗ Pl Bl)W
>Φ + ρ−1

4 ‖Pl Bl‖2 ε̄ + κ1‖z‖2

+ ξ
(
‖e∗‖2 + ‖ Ŵ>Φ∗‖2 + ‖Ŵ∗>Φ‖2

)
, (14)

where ξ and ε̄ have been defined above.
Additionally, in the view of (4), it is known that

D+V2 = −2β‖W‖2
F + 2β tr

(
W>W

)
− 2

N

∑
i=1

tr
(

W>i φix>i Pl Bl

)
6 −β‖W‖2

F + β‖W‖2
F − 2

N

∑
i=1

tr
(

W>i φix>i Pl Bl

)
= −β‖W‖2

F + β‖W‖2
F − 2x>(IN ⊗ Pl Bl)W

>Φ. (15)

One can immediately obtain by (9) and (10) that

D+V3 =(a2d1 + a4d2)‖e‖2 − a2ξ‖e∗‖2 − a4ξ
(
‖ Ŵ>Φ∗‖2 + ‖ Ŵ∗>Φ‖2

)
− a1

N

∑
i=1

ψ
(1)
i − a3

N

∑
i=1

ψ
(2)
i . (16)

Combining with (14)–(16) and the distributed DETC law (8), it immediately holds that

D+V 6z>
{[

IN ⊗ (Pl Al + A>l Pl)
]
− 2α(Ll ⊗ Pl BlKl) + κ1 IqN

}
z + (d1 + d2)‖e‖2 − β‖W‖2

F

− a1b1 + a2 − 1
b1

N

∑
i=1

ψ
(1)
i −

a3b2 + a4 − 1
b2

N

∑
i=1

ψ
(2)
i + ζ

6z>
{[

IN ⊗ (Pl Al + A>l Pl)
]
− 2α(Ll ⊗ Pl BlKl) + κ IqN

}
z− θ1(V2 + V3) + ζ, (17)

where ζ = ρ−1
4 ‖ Pl Bl‖2 ε̄ + β‖W‖2

F. Furthermore, based on lemma 1, there is an orthogonal

matrix Tl = [T(1)
l , T(2)

l ] ∈ RN×N with the property that T>l LlTl = Λl , where T(1)
l =

1√
N

1N ∈ RN , T(2)
l ∈ RN×(N−1), Λl = diag(λ1(Ll), λ2(Ll), · · · , λN(Ll)) and 0 = λ1(Ll) <

λ2(Ll) 6 · · · 6 λN(Ll) are the eigenvalues of Ll . Then, let y(τ) = (T>l ⊗ Iq)z(τ) =

col(y(1)(τ), y(2)(τ)) ∈ RqN , where noticing y(1)(τ) = (T(1)>
l ⊗ Iq)z(τ) = 0 ∈ Rq and

y(2)(τ) = (T(2)>
l ⊗ Iq)z(τ) ∈ Rq×(N−1), one can derive that

D+V 6y>
{[

IN ⊗
(

Pl Al + A>l Pl

)]
− 2α(Λl ⊗ Pl BlKl) + κ IqN

}
y− θ1(V2 + V3) + ζ

6y(2)>
[

IN−1 ⊗ (Pl Al + A>l Pl − 2αλ2(Ll)Pl BlKl + κ Iq)
]
y(2) − θ1(V2 + V3) + ζ.

Due to (11) and T(2)
l T(2)>

l = M, it holds that

D+V 6− z>(T(2)
l T(2)>

l ⊗Ql)z− θ1(V2 + V3) + ζ

6− z>(IN ⊗Ql)z− θ1(V2 + V3) + ζ
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6−
min
l∈S

λmin(Ql)

max
l∈S

λmax(Pl)
z>(IN ⊗ Pl)z− θ1(V2 + V3) + ζ

6− θV + ζ.

By integrating on both sides and using Fubini’s Theorem [43], it can be obtained that

E[V(τ)] 6
∫ τ

τv
(−θE[V(s)] + ζ)ds +E[V(τv)].

Furthermore, we can get

D+E[V(τ)] 6 −θE[V(τ)] + ζ. (18)

So, one also has

E
[
V
(
τ+

v
)]

=E
[
z>
(
τ+

v
)(

IN ⊗ Pδ(τ+v )

)
z
(
τ+

v
)]

+E
[
V2
(
τ+

v
)
+ V3

(
τ+

v
)]

=
S

∑
l=1

πlz>
(
τ+

v
)
(IN ⊗ Pl)z

(
τ+

v
)
+E

[
V2
(
τ+

v
)
+ V3

(
τ+

v
)]

6πM

S

∑
l=1

z>
(
τ+

v
)
(IN ⊗ Pl)z

(
τ+

v
)
+E

[
V2
(
τ+

v
)
+ V3

(
τ+

v
)]

=πM

S

∑
l=1

z>
(
τ−v
)
(IN ⊗ Pl)z

(
τ−v
)
+E

[
V2
(
τ+

v
)
+ V3

(
τ+

v
)]

6
πM
πm

E
[
V1
(
τ−v
)]

+E
[
V2
(
τ+

v
)
+ V3

(
τ+

v
)]

≤µE
[
V
(
τ−v
)]

. (19)

Since (12), (18), (19) and µ < 1, we have

E[V] 6e−θ(τ−τv)E
[
V(τ+

v )
]
+ ζ

∫ τ

τv
e−θ(τ−s)ds (20)

6e−θ(τ−τv)µE
[
V(τ−v )

]
+ ζ

∫ τ

τv
e−θ(τ−s)ds

6e−θ(τ−τv−1)µ2E
[
V(τ−v−1)

]
+ ζµ

∫ τv

τv−1

e−θ(τ−s)ds + ζ
∫ τ

τv
e−θ(τ−s)ds

6e−θ(τ−τ0)µN(τ,τ0)E[V(τ0)] + ζµN(τ,τ0)
∫ τ1

τ0

e−θ(τ−s)ds + ζµN(τ,τ1)
∫ τ2

τ1

e−θ(τ−s)ds + . . .

+ ζ
∫ τ

τv
e−θ(τ−s)ds

6e−θ(τ−τ0)µN(τ,τ0)E[V(τ0)] + ζ
∫ τ

τ0

µN(τ,s)e−θ(τ−s)ds

6e
−
(

θ− ln µ
χd

)
(τ−τ0)µN0E[V(τ0)] + ζµN0

∫ τ

τ0

e
−
(

θ− ln µ
χd

)
(τ−s)ds

6e
−
(

θ− ln µ
χd

)
(τ−τ0)µN0E[V(τ0)] +

ζµN0

θ − ln µ
χd

, (21)

which, along with (6) and (13), concludes the proof.

Remark 7. Theorem 1 presents a comprehensive approach for analyzing mean-square bounded
synchronization in switched MASs. By making certain assumptions, we obtain adequate conditions
for reducing the impact of switching. Fubini’s theorem is employed to solve the exchangeability
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of expectation and integral, which is facilitated by the continuity of system dynamics within each
switching interval. This criterion is straightforward to apply.

Remark 8. Note that in Equation (19), the impulse gain µ represents the effect of the Markovian
switched system Aδ(τ), Bδ(τ), and topology Gδ(τ) on the overall system. To demonstrate how the
Markovian switch affects the error and consensus performance, relationships between the systems,
network structures, and dwell time χd are derived in Equation (12).

Theorem 2. Under Assumptions 1 and 2, the Zeno performance is eliminated for nonlinear
MASs (1) by utilizing the triggering protocol (8).

Proof. We prove the statement by contradiction. Suppose that limk→∞ τi
k = τi

∞ < ∞,

and then, limk→∞ τi
k = limk→∞

(
τi

k+1 − τi
k

)
= 0. It is easy to check that

∥∥e∗i (τ)
∥∥ 6

∑j∈N δ(τ)
i

aδ(τ)
ij
(∥∥(xj(τ

i
k)− xj(τ))

∥∥+ ∥∥(xi(τ
i
k)− xi(τ))

∥∥) and xi(τ) is continuous for

τ ∈
[
τi

k, τi
k+1

]
, so are Ŵ∗i (τ) and φ∗i (xi(τ)) for τ ∈

[
τi

k, τi
k+1

]
, i ∈ V . Therefore, as τ → ∞,

it can be seen that∥∥∥e∗i (τ
i
∞)
∥∥∥ 6 lim

k→∞
∑

j∈N δ(τ)
i

aδ(τ)
ij

(∥∥∥(xj(τ
i
k+1)− xj(τ

i
k))
∥∥∥+ ∥∥∥(xi(τ

i
k+1)− xi(τ

i
k))
∥∥∥)→ 0, (22)

or ∥∥∥Ŵ>i (τi
∞)φ∗i (xi(τ

i
∞))
∥∥∥2

+
∥∥∥Ŵ∗>i (τi

∞)φi(xi(τ
i
∞))
∥∥∥2

= lim
k→∞

(∥∥∥Ŵ>i (τi
k+1)φ

∗
i (xi(τ

i
k+1))

∥∥∥2
+
∥∥∥Ŵ∗>i (τi

k+1)φi(xi(τ
i
k))
∥∥∥2
)

= lim
k→∞

(∥∥∥Ŵ>i (τi
k+1)(φi(xi(τ

i
k+1))− φi(xi(τ

i
k)))

∥∥∥2

+
∥∥∥(Ŵ>i (τi

k+1)− Ŵ>i (τi
k))φi(xi(τ

i
k)))

∥∥∥2)
→ 0. (23)

On the one hand, from (8), we have

lim
k→∞

∥∥∥e∗i (τ
i
k+1)

∥∥∥2
, lim

k→∞

(
d1

ξ

∥∥∥ei(τ
i
k+1)

∥∥∥2
+

1
b1ξ

ψ
(1)
i (τi

k+1)

)
>

1
b1ξ

ψ
(1)
i (τi

∞)

>0, (24)

or

lim
k→∞

(∥∥∥Ŵ>i (τi
k+1)φ

∗
i (xi(τ

i
k+1)))

∥∥∥2
+
∥∥∥Ŵ∗>i (τi

k+1)φi(xi(τ
i
k+1)))

∥∥∥2
)

, lim
k→∞

(
d2

ξ

∥∥∥ei(τ
i
k+1)

∥∥∥2
+

1
b2ξ

ψ
(1)
i (τi

k+1)

)
>

1
b2ξ

ψ
(2)
i (τi

∞)

>0. (25)

Derived by (22) and (23), limk→∞

∥∥∥e∗i (τ
i
k+1)

∥∥∥2
= 0 and

limk→∞

(∥∥∥Ŵ>i (τi
k+1)φ

∗
i (xi(τ

i
k+1))

∥∥∥2
+
∥∥∥Ŵ∗>i (τi

k+1)φi(xi(τ
i
k+1))

∥∥∥2
)

= 0, which con-

tradicts the outcome in (24) and (25).
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From the talks above, it can be deduced from the contradictions that limk→∞ τi
k = ∞.

As a result, there will not be any Zeno behavior within any short period and each agent
will only produce a certain amount of occurrences.

If the MASs (1) under the fixed topology G = {V , E ,A}, one can get a common
system which can achieve the practical UMSBC under the distributed control protocol (3),
the hybrid NNs adaptation law (4) and the distributed DETC law (8) as well. Meanwhile,
we get the outcome shown below.

Corollary 1. If Assumptions 1 and 2 are valid, for ∀l ∈ ℵ, there exist matrices Pl � 0 and
Ql � 0 which satisfy

Pl Al + A>l Pl − 2αλ2(L)Pl Bl B>l Pl + κ Iq = −Ql ,

χd >
ln µ

θ
,

where L is the Laplacian matrix of graph G, κ = (d1 + d2)‖L‖2 + κ1, κ1 = ∑4
i=1 ρ−1

i , µ = πM
πm

,

θ = min
{min

l∈ℵ
λmin(Ql)

max
l∈ℵ

λmax(Pl)
, θ1

}
, and θ1 = min

{
β, a1b1+a2−1

b1
, a3b2+a4−1

b2

}
, then the practical UMSBC

of MASs (1) can be accomplished with respect to the distributed control protocol (3), the hybrid NNs
adaptation law (4) and the distributed DETC law (8).

Remark 9. It will become a well-researched mean-square synchronization of MASs with nonidenti-
cal agents, if there is no impact of switching topology. Great studies have been conducted on this
issue by several scholars, see [44].

DETC is thought about in the argument above. Besides, the system (1) can realize the
practical UMSBC by the following SETC mechanism:

τi
k+1 , inf

{
τ > τi

k | γ
(1)
i (τ) > 0 or γ

(2)
i (τ) > 0

}
, (26)

with

γ
(1)
i (τ) =ξ‖e∗i (τ)‖

2 − c1‖ei(τ)‖2 − c2e
−c3τ ,

γ
(2)
i (τ) =ξ‖Ŵ>i (τ)φ∗i (xi(τ))‖2 + ξ‖Ŵ∗>i (τ)φi(xi(τ

i
k))‖

2 − c4e
−c5τ ,

where c1, c2, c3, c4, c5 > 0 are the designed parameter. Next, we get the outcome shown below.

Corollary 2. If Assumptions 1 and 2 are valid, for ∀l ∈ ℵ, there exist matrices Pl � 0 and
Ql � 0 which satisfy

Pl Al + A>l Pl − 2αλ2(Ll)Pl BlKl + κ Iq = −Ql ,

χd >
ln µ

θ
′ ,

where κ = (d1 + d2)max
l∈ℵ
‖Ll‖2 + κ1, κ1 = ∑4

i=1 ρ−1
i , µ = πM

πm
, and θ

′
= min

{min
l∈ℵ

λmin(Ql)

max
l∈ℵ

λmax(Pl)
, β

}
,

then the practical UMSBC of MASs (1) can be accomplished with respect to the distributed control
protocol (3), the hybrid NNs adaptation law (4) and the distributed SETC law (26).

Remark 10. It should be noted that the authors of [23] looked at synchronizing MASs with SETC
using the mean-square method. Different from the prior study, this research expands on the findings
to DETC. The number of DETCs that trigger an event is much lower than the number of SETCs,
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which will be represented in the numerical simulation later, even if the system (1) can attain
consensus via the SETC law (26). As a result, using the DETC technique (8) to create consensus
requires less effort and money. Our work has been a substantial expansion of [23] in this way.

4. Illustrative Examples

Two simulation experiments are provided in this part to demonstrate the usefulness
of the created hybrid neuroadaptive DETC and the practical convergence outcome. Taking
the ten nonlinear Markovian switching systems into account

ẋ1 = Aδ(τ)x1 + Bδ(τ)

(
u1 + 3sin(4x2

11(τ)) + 0.6
)
,

ẋ2 = Aδ(τ)x2 + Bδ(τ)(u2 − 4sin(4x21(τ)) + 0.61),
ẋ3 = Aδ(τ)x3 + Bδ(τ)(u3 + 2sin(4x32(τ)) + 0.51),
ẋ4 = Aδ(τ)x4 + Bδ(τ)(u4 − 5sin(4x41(τ)) + 0.45),
ẋ5 = Aδ(τ)x5 + Bδ(τ)(u5 + 3.5sin(2x51(τ)) + 0.6),
ẋ6 = Aδ(τ)x6 + Bδ(τ)(u6 + 2.5sin(2x61(τ)) + 0.6),
ẋ7 = Aδ(τ)x7 + Bδ(τ)

(
u7 + 2sin(4x3

71(τ)) + 0.5
)
,

ẋ8 = Aδ(τ)x8 + Bδ(τ)(u8 − 5sin(4x81(τ)) + 0.4),
ẋ9 = Aδ(τ)x9 + Bδ(τ)(u9 + 3.5sin(3x91(τ)) + 0.3),
ẋ10 = Aδ(τ)x10 + Bδ(τ)(u10 + 4sin(2x101(τ)) + 0.6),

with

A1 =

[
−0.7 −0.3
−0.1 −0.5

]
, A2 =

[
−0.5 −0.4
−0.2 −0.6

]
, A3 =

[
−0.5 −0.2
−0.15 −0.4

]
,

B1 =

[
0.02
0.05

]
, B2 =

[
0.05
0.04

]
, B3 =

[
0.01
0.03

]
,

where xi(τ) = [xi1(τ), xi2(τ)]
> ∈ R2, i ∈ {1, 2, . . . , 10}. Random selection is used to choose

the starting states from the range [−10, 10]× [−10, 10]. Additionally, the nonlinearity is
provided just for illustrative purposes and may not apply to the actual system. Twenty
covert neurons with activation functions are used in each NNs approximator to estimate
the uncertain nonlinearity. The Markovian process δ jumps among modes {1, 2, 3}. Three
undirected graphs with the following Laplacian matrices are displayed in Figure 3, and the
highlighting network architecture Gδ(τ) alternates between them at random.
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(b)
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(c)

Figure 3. Possible interaction topologies between the ten agents. (a) G1. (b) G2. (c) G3.

Example 1. We create the distributed DETC (8) to achieve system (1) consensus. Let a1 = 0.1;
a2 = 0.9; a3 = 0.1; a4 = 0.9; b1 = 2; b2 = 2; d1 = 0.2; d2 = 0.1; ρ1 = 0.55; ρ2 = 0.5;
ρ3 = 0.5; ρ4 = 0.5; α = 3; β = 50; χd = 2 and use the LMI toolbox to solve the inequality (11).
We obtain θ = 1.1827. Moreover, κ = 18.8 and the sampling time of simulation is set at 0.001 s.
The simulation findings are shown in Figures 4–7. The uniformly bounded consensus control is
demonstrated by the state trajectories in Figure 4 and the error trajectories in Figure 5a, which
provide evidence that our control strategy is effective. Nevertheless, Figures 5b, 6a,b and 7a exhibit
the mode of Markovian switching, the control inputs ui, the NNs estimator, and the triggering
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instants of each agent under the DETC law (8), showing that the interval between two consecutive
triggering instants increase and the number of triggerings decrease, indicating the efficacy of our
DET method.

0 5 10 15 20 25 30

-0.2

0

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30

-0.4

-0.2

0

0.2

(a) (b)

Figure 4. (a) Trajectories of xi1 and xi2 by using (8) for Example 1; (b) Trajectories of xi by using (8)
for Example 1.
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Figure 5. (a) Trajectories of zi1 and zi2 by using (8) for Example 1; (b) Mode of Markovian switching
by using (8) for Example 1.
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Figure 6. (a) Trajectories of ui by using (3) for Example 1; (b) Trajectories of the NNs estimator by
using (4) for Example 1.
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Figure 7. (a) Triggering instants by using (8) for Example 1; (b) Triggering instants by using (26) for
Example 2.

Example 2. Figure 7b illustrates the triggering instants for each agent under the SETC methodol-
ogy (26), with the devised parameters selected as c1 = 0.01; c2 = 100; c3 = −0.02; c4 = 1000;
c5 = −0.02.

In Table 1, the triggering number of each agents are separately listed under the DETC
law (8) and the SETC law (26). It can be seen that the dynamic excitation times are far less
than the static excitation times. Thus, it can be established that the control approach in this
study needs fewer control updates to assure system performance than in [23], resulting in a
significant reduction in energy costs.

Table 1. Triggering number for Examples 1 and 2.

Agent 1 2 3 4 5 6 7 8 9 10

the DETC law (8) 30 22 22 20 10 12 22 20 14 12

the SETC law (26) 1458 1459 1368 1449 1333 1411 1399 1381 1412 1281

5. Conclusions

This study presents an adaptive neural network-based distributed DET consensus con-
trol technique for Markovian switching systems with unidentified nonlinearity. To address
the issue of nonlinearity, we propose unique adaptive DETC methods that reduce triggering
instants and ensure consistent performance. Unlike previous time-triggered consensus con-
trol approaches, the proposed technique minimizes computation and transmission while
achieving consensus control. Additionally, we demonstrate the existence of a compact
set, confirming the effectiveness of neural network approximation for hybrid dynamical
systems. However, there are still some issues remaining, such as further minimizing the
number of triggers and achieving finite-time control, which require further research.
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