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Abstract: In this work, the effect of vibro-impact nonlinear, forced, and damped oscillator on the
dynamics of the electromagnetic actuation (EA) near primary resonance is studied. The vibro-impact
regime is given by the presence of the Hertzian contact. The EA is supplied by a constant current
generating a static force and by an actuation generating a fast alternative force. The deformations
between the solids in contact are supposed to be elastic and the contact is maintained. In this study,
a single degree of freedom nonlinear damped oscillator under a static normal load is considered.
An analytical approximate solution of this problem is obtained using the Optimal Auxiliary Functions
Method (OAFM). By means of some auxiliary functions and introducing so-called convergence-
control parameters, a very accurate approximate solution of the governing equation can be obtained.
We need only the first iteration for this technique, applying a rigorous mathematical procedure in
finding the optimal values of the convergence-control parameters. Local stability by means of the
Routh-Hurwitz criteria and global stability using the Lyapunov function are also studied. It should
be emphasized that the amplitude of AC excitation voltage is not considered much lower than bias
voltage (in contrast to other studies). Also, the Hertzian contact coupled with EA is analytically
studied for the first time in the present work. The approximate analytical solution is determined with
a high accuracy on two domains. Local stability is established in five cases with some cases depending
on the trace of the Jacobian matrix and of the discriminant of the characteristic equation. In the study
of global stability, the estimate parameters which are components of the Lyapunov function are given
in a closed form and a graphical form and therefore the Lyapunov function is well-determined.

Keywords: vibro-impact; electromagnetic actuation; resonance; optimal auxiliary functions method;
stability

MSC: 34C15

1. Introduction

In the last decades, analysis of the Hertzian contact and electromagnetic actuation
(EA) has been caried out in several studies since these are present in various engineering
systems such as railway wheel contact [1], the automotive sector [2], gear drive [3], energy
dissipation in mechanical systems, and in mechanisms transforming movements of rota-
tions or translations [4]. EA are used in some engineering applications such as hydraulic
valves, small heart pumps, electric door, power relays, etc.

Some studies are devoted to the problem of resonances (principal, subharmonic, or su-
perharmonic). Mann et al. [5] investigated the dynamic behavior of a pendulum with finite
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time impact events that is modeled by Hertz’s contact law. Periodic, subharmonic, quasi-
periodic, and chaotic behavior are experimentally and numerically explored. Ma et al. [6]
explored Hertzian contact problem of a dynamic response for a spherical plane contact
interface with contact loss. The clearance-type nonlinearity is given by the contact loss
with harmonic balance approximation. Liaudet and Sabot [7] considered the principal,
subharmonic, and superharmonic resonances for the case of a loaded sphere-plane Hertzian
contact. Also, the classical contact problem of normal contact between a rigid sphere and
elastic half-space is examined by Popov [8]. An exact solution of this problem in the
framework of the half-space approximation is obtained and the deformations in an elastic
half-space are given by the stress activity upon its surface.

The Hertzian distribution was assumed by Axinte [9] for the normal surface contact
load over a circular contact area. The rail-wheel contact problems have been analyzed by
means of the three-dimensional finite element models. The bodies of the contact problem are
the standard rail UIC60 and the standard wheel UICORE. Liaudet and Rigaud [10] proposed
a numerical procedure based on shooting method and multiple scale method and then
experimental technique in the study of superharmonic resonance for an impacting Hertzian
oscillator. The practical way for controlling the vibroimpact dynamics of a Hertzian contact
forced oscillator is the introduction of a fast harmonic base displacement, as showed by
Bichri et al. [11], which is generally around some microns. Different aspects of vibroimpact
dynamics in a forced Hertzian contact oscillator such as the effect of time delay, control
of a forced impact Hertzian contact near resonances [12], contact stiffness modulation
in contact-mode atomic force microscopy [13], and the effect of EA on contact loss in
a Hertzian contact oscillator [14] are intensively investigated.

Belhaq et al. [15] considered the effect of EAs on the dynamics of a periodically excited
cantilever beam, numerically by means of finite element method, analytically based on
a perturbation analysis and experimentally using a test rig. The force induced by the EA
lead to a softening behavior into the system. The role of a high frequency AC of an EA and
the dynamics of an excited cantilever beam is explored by Bichri et al. [16] by means of
analytical and numerical procedures near the primary resonance. Pereira et al. [17] applied
EA to a rotating machine on the learning position, and a proportional derivative controller
is used for deriving the desired control laws. The Timoshenko beam theory and finite
elements method are considered.

To enhance the actuation performance controlled by a harmonic input signal, Zhang et al. [18]
proposed a novel bistable nonlinear EA with elastic boundary. The bifurcation features
have been derived in terms of the inclined spring stiffness, the input signal frequency
and amplitude. The effect of nonlinear actuator dynamics and an aeroelastic simulation
model of a flexible wing with control surface are examined by Tang et al. [19]. Zhang and
Li [20] proposed a compound scheme based on an improved active disturbance controller
and nonlinear compensation for an electromechanical actuator system. The Lu Gre model
and hysteresis inverse model are used to compensate for the friction and backlash phe-
nomenon. Simulation and experiment are presented to validate the effectiveness of the
proposed method.

The multiple scale method with the force-deflection characteristic approximated by
a third order Taylor series expansion is proposed by Xiao et al. [21]. Then, harmonic
balance method is employed to determine the natural frequency for free vibrations of
an elastic body by interaction of a mass with a Hertzian contact stiffness. The Hertzian
contact given by a dry contact between a rigid flat surface and elastic cylinder is considered
by Ali [22]. The two-dimensional numerical simulation on the subsurface stress field
in Hertzian contact under pure sliding condition for different speeds and coefficients of
friction is studied applying normal load and angular speed for the cylinder. Quazi et al. [23]
proposed a strip-based local approach to extend the FASTSIM algorithm to non-elliptical
contact cases. Different settings for the traction bound are explored to determine their
influence on the contact stresses, creep forces, and the limits of the saturation zone in the
case of wheel-rail contact. The absolute error in the normalized creep forces is used as the
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quantity of interest and found to be consistent with other known results. Ciulli et al. [24]
compared the results obtained by theoretical and finite element analysis of the point contact
of non-conformal and conformal pairs made of spheres, caps, and spherical seats. The
displacement and force relation were investigated by varying the geometrical parameters,
the materials, the boundary conditions and the friction coefficient.

Constandinou et al. [25] established that in the case of multi-spherical approach, there
exist two sources for error directly affecting the normal contact forces. These are due to
the difference between the true particle shape and the multi-spherical approximation and
other arises from the contact model used in the Discrete Element Modelling simulations.
Wu et al. [26] analyzed the validity of the Hertz theory for large deformations by means
of nanoindentation tests and finite element method. They proved that the loading load-
displacement relation still holds for δ/R as large as 0.66 with a maximum principal strain
of 46.6%. Vouaillat et al. [27] studied the rolling contact fatigue in spur gears taking into
account the spur gear material geometry, the contact pressure fields and several parameters
such as friction, sliding coefficient, load variation and roughness. A fatigue criterion
based on rolling contact fatigue micro-cracks nucleation at grain boundaries is proposed.
Yousuf [28] examined the effect of contact load on the bending deflection considering
a system with spring stiffness and viscous damping to reduce the bending deflection on the
cam profile. The dynamic response has been obtained by means of Solid Works software
based on the contact parameters. Finite element analysis was used to calculate the bending
deflection of the cam profile numerically. A new impact-driving piezoelectric vibration
energy harvesting for low-frequency and broadband vibration harvesting is proposed by
Cao et al. [29]. The results of the numerical simulation and vibration test demonstrate
the advantages of the vibration energy harvesting for the lower resonance frequency and
the higher output power. Zhang et al. [30] proposed an enhanced vibro-impact energy
harvester using acoustic back holes for scavenging low-frequency vibration energy.

The present work is motivated by the need to add new results to this narrow field of
research. The first objective of this work is to find an approximate analytical solution for
the nonlinear differential equation of the vibro-impact oscillator under the influence of the
two symmetric EA force near the primary resonance. The vibro-impact regime is given by
the presence of the Hertzian contact supposing that the contact is elastic and is maintained.
The Optimal Auxiliary Functions Method (OAFM) is applied to determine an analytic
approximate solution of the problem. The main novelties of the proposed approach are
the presence of some auxiliary functions, the introduction of the convergence-control
parameters, the original construction of the initial and first iteration, and the freedom
to choose the procedure for determining the optimal values of the convergence-control
parameters. The proposed technique is proved to be very accurate, simple, effective, and
easy to be applied using only the first iteration.

The second objective of the paper is to perform an analysis of the stability of the
nonlinear model by means of the eigenvalues of the Jacobian matrix. The signs of the
eigenvalues determine stability, so that we will lease discussions of the borderline cases.
The global stability is studied by means of the Lyapunov function.

2. Mathematical Model

Henceforward we consider two symmetrical EA on the loss contact only on the
frequency response of the Hertzian contact oscillator near the primary resonance. The
model is depicted in Figure 1 and the governing equation can be written as [4,15,16]:

m
..
z + c

.
z + kz3/2 = N(1 + ∆ cos υ1t) + Fem, (1)

where the dot denotes differentiation with respect to time t and z(t) is the normal dis-
placement of the rigid mass m, c is the damping coefficient, k is the constant given by the
Hertzian theory, N is the static normal load, ∆ is the amplitude, and ν1 is the frequency of
the harmonic excitation load, and Fem is the electromagnetic force.
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Figure 1. Sketch of damped forced Hertzian oscillator with two symmetric EA.

Within Equation (1) we took into consideration that the deformation between the
solids in contact are elastic, the contact is maintained and the dry contact is equivalent with
the linear viscous damping.

The vibrating beam of mass m is placed on z-axis between two fixed electrodes. The
driving voltage Vbias + VACsinν2t is generated by the combined action of DC and AC
voltage and sources on the resonator electrode. The interaction between the driving voltage
and parallel plate causes the electromagnetic force

Fem =
1
2

C0

(d− z)2 (Vbias + VAC sinυ2t)2 − 1
2

C0

(d + z)2 V2
bias, (2)

in which C0 is the capacitance of the parallel-plate actuator, d is the initial gap width, and
ν2 is the frequency.

Using Equation (2), the Equation (1) can be rewritten in the dimensionless form as

x′′ + µx′ +
(

1 +
2x
3

)3/2
= 1 + ∆ cosωτ+ α

[
1(

1− 2x
3R
)2 −

1(
1 + 2x

3R
)2

]
+
β sin Ωτ(
1− 2x

3R
)2 +

γ(1− cos 2Ωτ)(
1− 2x

3R
)2 (3)

where the prime denotes differentiation with respect to τ and

zs =
(

N
k

)2/3
; ω2

0 =
3k
2m

z3/2
s ; z = zs

(
1 +

2x
3

)
; µ =

C
mω0

; τ = ω0t; d = zs(1 + R) ;

ω = υ1
ω0

; υ2t = Ωτ; Ω =
υ2

ω0
; α =

C0V2
bias

2kR2z5/2
s

; β =
C0VACVbias

kR2z5/2
s

; γ =
C0V2

AC

4kR2z5/2
s

(4)

The following approximations are used:

F1(x) =
(

1 +
2x
3R

)3/2
≈ 1 +

x
R
+

x2

6R2 −
x3

54R3 +
x4

432R4 +
x5

1296R5 = G1(x)

F2(x) =
1(

1− 2x
3R

)2 −
1(

1 +
2x
3R

)2 ≈
8x
3R

+
64x3

27R3 +
128x5

81R5 = G2(x)

F3(x) =
1(

1− 2x
3R

)2 ≈ 1 +
4x
3R

+
4x2

3R2 +
32x3

27R3 +
80x4

81R4 +
64x5

81R5 = G3(x)

(5)

Figures 2–4 depict the variations of Fi(x) and Gi(x), i = 1, 2, 3 for R = 1 on domain
[−0.5–0.5]. The maximum errors of the approximations (5) are, respectively:

ε1 = max
x∈D
|F1(x)− G1(x)| = 1.3 · 10−6 ; ε2 = max

x∈D
|F2(x)− G2(x)| = 1.6 · 10−6

ε3 = max
x∈D
|F3(x)− G3(x)| = 7.9 · 10−6

(6)
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Figure 2. Comparison between the functions F1 and G1 for R = 1.

Figure 3. Comparison between the functions F2 and G2 for R = 1.

Figure 4. Comparison between the functions F3 and G3 for R = 1.

In this way, Equation (3) can be rewritten in the form

x′′ + µx′ + a1x− γ + a2x2 + a3x3 + a4x4 + a5x5 = ∆ cosωτ+

+β

(
1 +

4x
3R

+
4x2

3R2 +
32x3

27R3 +
80x4

81R4 +
64x5

81R5

)
sin Ωτ− γ

(
1 +

4x
3R

+
4x2

3R2 +
32x3

27R3 +
80x4

81R4 +
64x5

81R5

)
cos 2Ωτ

(7)

where

a1 = 1− 8α

3R
− 4γ

3R ; a2 =
1
6
− 4γ

3R2 ; a3 = − 1
54
− 64α

27R3 ; a4 =
1

432
− 80γ

81R5 ; a5 =
1

1296
− 128α

81R5
− 64γ

81R5 (8)

It should be emphasized that in this paper no simplifying assumption is made as in
other papers. For example, the amplitude of AC excitation voltage is much lower than the
bias voltage [10,15,25]. In the present paper we consider only the primary resonance:

ω =
√

a1 + δε; ε << 1 (9)

in which δ is the detuning parameter from the primary resonance.
The initial conditions for the nonlinear differential Equation (7) are

x(0) = A; x′(0) = 0 (10)
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It is clear that the Equation (7) with initial conditions (10) is a second order nonlinear
differential equation with variable coefficients of the five order and therefore is very difficult
to find an exact solution. In the following, for Equations (7) and (10) the OAFM is applied
to study the nonlinear vibrations near the primary resonance.

3. Application of the OAFM

In order to apply OAFM [31–36], it is observed that the linear operator and the
nonlinear operator corresponding to Equations (7) and (10) are, respectively:

L[x(τ)] = x′′ + µx′ + a1x (11)

N[x(τ)] = −γ + a2x2 + a3x3 + a4x4 + a5x5 − ∆ cosωτ−

−β
(

1 +
4x
3R

+
4x2

3R2 +
32x3

27R3 +
80x4

81R4 +
64x5

81R5

)
sin Ωτ+ γ

(
1 +

4x
3R

+
4x2

3R2 +
32x3

27R3 +
80x4

81R4 +
64x5

81R5

)
cos 2Ωτ

(12)

For Equations (7) and (10), the approximate analytical solution can be written as:

x̃(τ) = x0(τ) + x1(τ, C1, C2, . . . , Cn) (13)

where Ci, i = 1, 2, . . . , n are n parameters unknown at this moment, and n is an arbitrary
positive integer fixed number. The initial approximation x0(τ) is determined from the
following linear differential equation:

L[x0(τ)] = γ, x0(0) = A, x′0(0) = 0 (14)

whose solution is

x0(τ) =
γ

a1
+

(
A− γ

a1

)
e−

µ
2 τ(cos pτ+

µ

2p
sin pτ) (15)

where p =
√
(ω− δε)2 − µ2/4. Inserting Equation (15) into Equation (12), after simple

manipulations we obtain:

N[x0(τ)] = γ + a2 A2 2p2 + µ2

4p2 e−µτ + a4 A4 3µ4 + 22µ2 p2 + 12p4

32p4 e−2µτ − ∆ cos ωτ+

+

[
a3 A3 3(4p2 + µ2)

16p2 e
−

3µ
2
τ
+ a5 A5

(
5
8
+

5µ2

16p2 +
5µ4

128p4

)
e
−

5µ
2
τ

 cos pτ+
[

a3 A3 3µ(16p2 − µ2)

32p3 e−µτ+

a5 A5
(

5µ
16p

+
5µ3

32p3 +
5µ5

256p5

)]
e
−

5µ
2
τ

sin pτ+
[

a2 A2 2p2 − µ2

4p2 e−µτ + a4 A 4 4p4 − µ4

8p4 e−2µτ

]
cos 2pτ+

+

[
a2 A2 µ

2p
e−µτ + a4 A4 µ(2p2 + µ2)

4p3 e−2µτ
]

sin 2pτ+

a3 A3 4p2 − 3µ2

16p2 e
−

3µ
2
τ
+ a5

(
5

16
− 5µ2

32p2−

− 15µ4

256p4

)
e
−

5µ
2
τ

 cos 3pτ+

a3 A3 µ(12p2 − µ2)

32p3 e
−

3µ
2
τ
+ a5 A5

(
15µ
32p

+
5µ3

64p3 −
5µ5

512p5

)]
e
−

5µ
2
τ

sin 3pτ+

+a4 A4

[
µ4 − 8µ2 p2 + 4p4

32p4 e−2µτ cos 4pτ+
µ(2p2 − µ2)

2p3 e−2µτ sin 4pτ
]
+

+a5 A5e
−

5µ
2
τ
[(

1
16

+
5µ2

32p2 +
5µ4

256p4

)
cos 5pτ+

(
5µ
32p
− 5µ3

64p3 +
µ5

512p5

)
sin 5pτ

]
+ (β sin Ωτ−

−γ cos 2Ωτ)

[
1 +

4A2(µ2 + 2p2)

12Ω2 p2
e−µτ +

5A4(3µ4 + 22µ2 p2 + 12p4)

162R4 p4 e−2µτ +

 4A
3Ω

e
−
µ

2
τ
+

2A3(4p2 + µ2)

9R5 p2 e
−

3µ
2
τ
+

+
A5(80p4 + 40p2µ2 + 5µ4)

162R5 p4 e
−

5µ
2
τ

 cos pτ+
(

2Aµ
3Rp

e
−
µ

2
τ
+

A3µ(16p2 + µ2)

9R3 p3 e
−

3µ
2
τ
+

(16)
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+
A5(80µp4 + 40µ3 p2 + 5µ5)

324R5 p5 e
−

5µ
2
τ

 sin pτ+
(

A2(2p2 − µ2)

3R2 p2 e−µτ +
10A4(4p4 − µ4)

81Ω4 p4
e−2µτ

)
cos 2pt+

+

(
2A2µ

3R2 p
e−µτ +

20A4(A3 − 2µp2)

81R4 p3 e−2µτ
)

sin 2pτ+
(

2A3(4p2 − 3µ2)

27R3 p3 e
−

3µ
2
τ
+

+
A5(240µp4 − 40µ2 p2 + 5µ4)

324R3 p4 e
−

5µ
2
τ

 cos 3pτ+
(

A3(12µp2 − µ3)

27R3 p3 e
−

3µ
2
τ
+

+
A5(240µp4 + 40µ3 p2 − 5µ2)

648R5 p5 e
−

5µ
2
τ

 sin 3pτ+
5A4(µ4 − 8µ2 p2 + 4p4)e−2µτ

162R4 p4 cos 4pτ+

+
40A4(2µp2 − µ3)e−2µτ

81R4 p3 sin 4pτ+
A5(16p4 + 4p2µ2 + 5µ4)e

−
5µ
2
τ

324R5 p4 cos 5pτ+

+
A5(80µp4 − 40µ3 p2 + µ3)e

−
5µ
2
τ

648R5 p5 sin 5pτ


To obtain the first approximation x1(τ,C1,C2, . . . ,Cn), we choose this function in

the form:

x1(τ, C1, C2, . . . , Cn) = x10(τ, C1, C2, . . . , Cn) + x20(τ, C1, C2, . . . , Cn) (17)

where x10(τ,Ci) can be obtained by using Equations (15) and (16) in the form:

L[x10(τ, Ci)] = Gj(ekµτ, cos pτ, sin pτ, cos 3pτ, sin 3pτ, . . .) (18)

in which Gj are combinations of the functions which appear into Equations (15) and (16).
These auxiliary functions Gj are not unique. For example, the auxiliary function Gj can be
of the form:

G1(ekµτ, cos pτ, sin pτ, cos 3pτ, sin 3pτ) = e−µτ(C1 cos pτ+ C2 sin pτ+ C3 cos 3pτ+ C4 sin 3pτ) (19)

or

G2(ekµτ, cos pτ, sin pτ, cos 3pτ, sin 3pτ) = e−
µ
2 τ(C1 cos pτ+ C2 sin pτ+ C3 sin 3pτ) (20)

or

G3(ekµτ, cos pτ, sin pτ, cos 3pτ, sin 3pτ) = e−
µ
3 τ(C1 cos pτ+ C2 sin pτ+ C3 cos 3pτ+ C4 cos 5pτ+

+C5 sin 3pτ+ C6 sin 3pτ)
(21)

and so on. The initial condition for the first iteration are obtained from Equations (10) and (14):

x1(0) = 0, x′1(0) = 0 (22)

Having in view only Equations (19) and (22), the function x10 can be obtained from
the linear differential equation:

L[x10(τ, Ci)] = e−µτ(C1 cos pτ+ C2 sin pτ+ C3 cos 3pτ+ C4 sin 3pτ), x1(0) = x′1(0) = 0 (23)

The solution of the last equation is

x10(τ, Ci) = M1(e−µτ sin pτ− e−
µτ
2 sin pτ) + M2

[
e−µt cos pτ+ e−

µτ
2 ( µ2p sin pτ− cos pτ)

]
+

+M3

[
e−µt cos 3pτ− e−

µτ
2 (cos pτ− µ

2p sin pτ)
]
+ M4

(
e−µt sin 3pτ− 3e−

µτ
2 sin pτ

) (24)
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where

M1 =
−µpC1 + (a1 − p2)C2

µ2 p2 + (a1 − p2)2
; M2 =

(a1 − p2)C1 − µpC2

µ2 p2 + (a1 − p2)2 ; M3 =
(a1 − 9p2)C3 − 3µpC4

9µ2 p2 + (a1 − 9p2)2

M4 =
−3µpC3 + (a1 − 9p2)C4

9µ2 p2 + (a1 − 9p2)2

(25)

We have a great freedom to choose the function x20 from Equation (17):

x20(τ, Ci) = M1(e
µτ
35 − e

µτ
30 ) sin pτ−M1(e−µt − e−

µτ
2 ) sin pτ (26)

or
x20(τ, Ci) = M4(e

µτ
35 − e

µτ
30 ) sin pτ−M4(e−µt sin pτ− 3e−

µτ
2 sin pτ) (27)

or
x20(τ, Ci) = M1(e

µτ
15 − e

µτ
10 ) sin pτ−M1(e−µt − e−

µτ
2 ) sin pτ (28)

and so on.
If we choose the expression (26) for the function x20(τ,Ci), then the first approximation

is obtained from Equations (17), (24) and (26):

x1(τ, C1, C2, C3, C4) = M1(e
µτ
35 sin pτ− e

µτ
30 sin pτ) + M2

[
e−µt cos pτ+ e−

µτ
2

(
µ
2p sin pτ− cos pτ

)]
+

+M3

[
e−µt cos 3pτ− e−

µτ
2 (cos pτ− µ

2p sin pτ)
]
+ M4(e−µt sin 3pτ− 3e−

µτ
2 sin pτ)

(29)

The approximate solution of clamped, forced oscillator can be obtained from Equations
(13), (15) and (29):

x̃(τ, C1, C2, C3, C4) =
γ
a1
+
(

A− γ
a1

)
e−

µτ
2 (cos pτ+ µ

2p sin pτ) + M1(e
µτ
35 sin pτ− e

µτ
30 sin pτ)+

+M2

[
e−µt cos pτ+ e−

µτ
2

(
µ
2p sin pτ− cos pτ

)]
+ M3e−µt

[
cos 3pτ− e−

µτ
2 (cos pτ− µ

2p sin pτ)
]
+

+M4(e−µt sin 3pτ− 3e−
µτ
2 sin pτ)

(30)

where the coefficients Mi, i = 1, 2, 3, 4 are given by Equation (25).
It is known that the damped solution (30) is valid on a certain domain D = [0,τ*]. For the

steady-state solution, valid for τ > τ*, the linear and nonlinear operators are, respectively:

L[x(τ)] = x′′ + a1x

N[x(τ)] = γ + a2x2 + a3x3 + a4x4 + a5x5 − ∆ cosωτ−

−β
(

1 +
4x
3R

+
4x2

3R2 +
32x3

27R3 +
80x4

81R4 +
64x5

81R5

)
sin Ωτ+ γ

(
1 +

4x
3R

+
4x2

3R2 +
32x3

27R3 +
80x4

81R4 +
64x5

81R5

)
cos 2Ωτ

(31)

The initial approximation is obtained from the linear differential equation:

L[x0(τ)] = 0, x0(τ*) = x̃(τ*), x′0(τ*) = x̃′(τ*) (32)

where x̃(τ*) and x̃′(τ*) are obtained from Equation (30), so as to ensure the continuity of
the solution.

The solution of Equation (32) is:

x0(τ) = x̃(τ*) cos p*(τ− τ*) + x̃′(τ*) sin p*(τ− τ*) (33)

The first approximation x1(τ) can be obtained similarly to Equation (23):

L[x1(τ)] = C5 sin 3p*(τ− τ*) + C6 sin 5p*(τ− τ*) + C7 sin 7p*(τ− τ*), x1(τ*) = x′1(τ*) = 0 (34)
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from which

x1(τ) = C5[3 sin p*(τ− τ*)− sin 3p*(τ− τ*)] + C6[5 sin p*(τ− τ*)− sin 5p*(τ− τ*)]+

+C7[7 sin p*(τ− τ*)− sin 7p*(τ− τ*)]
(35)

The steady-state solution of Equations (7) and (10) is obtained from Equations (13),
(33) and (35):

N[x(τ)] = γ + a2x2 + a3x3 + a4x4 + a5x5 − ∆ cosωτ−

−β
(

1 +
4x
3R

+
4x2

3R2 +
32x3

27R3 +
80x4

81R4 +
64x5

81R5

)
sin Ωτ+ γ

(
1 +

4x
3R

+
4x2

3R2 +
32x3

27R3 +
80x4

81R4 +
64x5

81R5

)
cos 2Ωτ

(36)

4. Numerical Example

The efficiency of our procedure can be proved considering the following particular
case, characterized by the following parameters:

A = 0.04, µ = 0.1, ∆ = 0.0007, α = 0.001, β = 0.0001, γ = 0.0002, δ = 0.02, ε = 0.01, R = 1.
From the above procedure, the optimal values of the convergence-control parameters

are determined by minimizing the residual of the governing equation:

C1= 0.030429, C2= 0.00073852, C3= −0.000338155, C4= 0.000342986, τ* = 50 (37)

The Figure 5 shows the comparison between approximate solution (30) of nonlinear
problem (7) and (10) and numerical solution obtained by means of a fourth-order Runge-
Kutta approach for τ = [0,50].

Figure 5. Comparison between the approximate solution (30) and numerical integration results for
τ = [0,50] _ _ _ _analytical results; ______ numerical results.

For the steady-state solution (t > 50) the optimal values of the convergence-control
parameters are

C5= −0.000003211, C6= 0.000016621, C7 = 0.0000563803, τ* = 50, p* = 0.988 (38)

and the comparison between the corresponding approximate solution and numerical
integration results is presented in Figure 6.
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Figure 6. Comparison between the approximate solution (36) and numerical integration results for
τ > 50: _ _ _ _ analytical results; ______ numerical results.

From Figure 7, it can be seen that the two solutions for τ < 50 and τ > 50 obtained
using the proposed technique are nearly identical with that obtained through numeri-
cal integration and this excellent agreement validates the proposed approach and the
obtained results.

Figure 7. Comparison between the approximate solution (7) and numerical integration results: _ _ _ _
analytical results; ______ numerical results.

5. Analysis of the Stability of Steady-State Motion for the Primary Resonance

In this section we use a perturbation method to investigate the stability of the steady-
state motion. For this aim we use the transformation [37]

ξ = ωτ; η = ετ; ω =
√

a1 + δε (39)

In order to substitute this transformation into Equation (7), we need expressions of the
first and second derivatives of variable x with respect to τ. We obtain

dx
dτ

=
∂x
∂ξ

dξ

dτ
+

∂x
∂η

dη
dτ

= ω
∂x
∂ξ

+ ε
∂x
∂η

= (
√

a1 + δε)
∂x
∂ξ

+ ε
∂x
∂η

d2x
dτ2 = ω2 ∂2x

∂ξ2 + 2ωε
∂2x

∂ξ∂η
+ ε2 ∂2x

∂η2 = (
√

a1 + δε)
2 ∂2x

∂ξ2 + 2(
√

a1 + δε)ε
∂2x

∂ξ∂η
+ ε2 ∂2x

∂η2

(40)

Expanding x in power series, one can get:

x(ξ,η) = X(ξ,η) + εX1(ξ,η) + . . . (41)

Substituting Equation (41) into Equation (7) it holds that
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X′′ + εX′′1 + µ(X′ + εX1) + a1(X + εX1)− γ + a2(X2 + 2εXX1 + ε
2X2) + a3(X3 + 3εXX2

1 + 3ε2XX2
1+

+ε3X3
1) + a4(X4 + 4εX3X1 + 6ε2X2X2

1 + 4ε3XX3
1 + ε

4X4) + a5(X5 + 5εX4X1 + 10ε2X3X2
1+

+10ε3X2X3
1 + 5ε4XX4

1 + ε
5X5)− ∆ cosωτ− (β sin Ωτ− γ cos 2Ωτ)

[
1 +

4(X + εX1)

3R
+

+
4(X2 + 2εXX1 + ε

2X2
1)

3R2 +
32(X3 + 3ε2X2X1 + 3ε2XX2

1 + ε
3X3

1)

27R3 +

+
80(X4 + 4εX3X1 + 6ε2X2X2

1 + 4ε3XX3
1 + ε

4X4
1)

81R4 +

+
64(X5 + 5εX4X1 + 10ε2X3X2

1 + 10ε3X2X3
1 + 5ε4XX4

1 + ε
5X5

1)

81R5

]
= 0

(42)

Averaging Equation (42) we obtain

X′′ + µX′ + a1X− γ + a2(X2 + ε2 < X2
1 >) + a3(X3 + 3ε2X < X2

1 >) + a4(X4 + 6ε2X2 < X2
1 > +

+ε4 < X4
1 > +a5(X5 + 10ε2X3 < X2

1 > +5ε4X < X4
1 >)− ∆ cosωτ = 0

(43)

Subtracting Equations (42) and (43) yields

εX′′1 + εµX′1 + εa1X1 + εa1X1 + a2[2εXX1 + ε2(X2
1− < X2

1 >) + a3(3εX2X1 + 3ε2X(X2
1− < X2

1 >)+

+ε3X3
1 ] + a4[4εX3X1 + 6ε2X22

(X2
1− < X2

1 >) + 4ε3XX3
1 + ε4(X4

1− < X4
1 >)] + a5[5εX4X1+

+10ε2X2(X2
1− < X2

1 >) + 10ε3X2X3
1 + 5ε4X(X4

1− < X4
1 >) + ε5X5

1 ]− (β sin Ωτ−

−γ cos 2Ωτ)
[

4(X + εX1)

3R
+

4(X2 + 2εXX1 + ε2X2
1)

3R2 +
32(X3 + 3ε2X2X1 + 3ε2XX2

1 + ε3X3
1)

27R3 +

+
80(X4 + 4εX3X1 + 6ε2X2X2

1 + 4ε3XX3
1 + ε4X4

1)

81R4 +

+
64(X5 + 5εX4X1 + 10ε2X3X2

1 + 10ε3X2X3
1 + 5ε4XX4

1 + ε5X5
1)

81R5

]
− (β sin Ωτ− γ cos 2Ωτ) = 0

(44)

Using the so-called inertial approximation [37], i.e., all terms of Equation (44) can be
ignored, except the first and the last terms, such that:

εX′′1 − (β sin Ωτ− γ cos Ωτ) = 0 (45)

from which we have:
εX1 = − β

Ω2 sin Ωτ+
γ

4Ω2 cos 2Ωτ (46)

Inserting Equation (46) into Equation (43) and taking into account the following identities:

< εX2
1 >=

1
Ω42π

2π/Ω∫
0

(β sin Ωτ− γ

4
cos 2Ωτ)dτ =

γ2 + 16β2

32Ω4 (47)

< ε4X4
1 >=

1
Ω82π

2π/Ω∫
0

(β sin Ωτ− γ

4
cos 2Ωτ)dτ =

3(4λ4 + γ2β2 + 4β4)

32Ω8 (48)

We find the approximate equation for the variable X in the form

X′′ + µX′ + A1X + A2X2 + A3X3 + A4X4 + A5X5 + Γ− ∆ cosωτ = 0 (49)

in which
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A1 = a1 +
3(γ2 + 16β2)

32Ω4 a3 +
15(4γ4 + γ2β2 + 4β2)

32Ω8 a5 ; A2 = a2 +
3(γ2 + 16β2)

16Ω4
a4;

A3 = a3 +
5(γ2 + 16β2)

16Ω4 a5; A4 = a4; A5 = a5; Γ = γ +
γ2 + 16β2

32Ω4 a2 +
3(4γ4 + γ2β2 + 4β4)

32Ω4 a4

(50)

Now, introducing a bookkeeping parameter ε and scaling µ = εµ, Ai = εAi, i =
1, 2, . . . , 5, with notation

X(ξ,µ) = u(ξ,µ) + εv(ξ,µ) (51)

and then taking into consideration Equation (40), Equation (49) can be rewritten as

(
√

a1 + δε)

(
∂2u
∂ξ2 + ε

∂2v
∂ξ2

)
+ 2(
√

a1 + δε)ε

(
∂2u

∂ξ∂η
+ ε

∂2v
∂ξ∂η

)
+ ε2

(
∂2u
∂ξ2 + ε

∂2v
∂η2

)
+

+

[
(
√

a1 + δε)

(
∂2u
∂ξ2 + ε

∂v
∂η

)
+ ε

(
∂u
∂ξ

+ ε
∂v
∂η

)]
+ εA1(u + εv) + εA2(u + εv)2 + εA3(u + εv)3+

+εA4(u + εv)4 + ε(u + εv)3 + Γ− ∆ cos ξ = 0

(52)

We seek a solution of Equation (52), equating the terms of same power of ε:

a1
∂2u
∂ξ2 + A1u + Γ = 0 (53)

a1
∂2v
∂ξ2 + A1v + 2

√
a1δ

∂2u
∂ξ2 + 2

√
a1

∂2u
∂ξ∂η

+ µ
√

a1
∂u
∂ξ

+ A1u2 + A3u3 + A4u4 + A5u5 − ∆ cos ξ = 0 (54)

The solution of Equation (53) is of the form:

u(ξ,η) = A(η) cos ξ + B(η) sin ξ − Γ
A1

(55)

Substituting Equation (55) into Equation (54) and avoiding secular terms, we obtain
after some manipulations:

2
dA
dη

+ µA + 2δB− 3A3√
a1

B(A2 + B2)− 5A5√
a1

B(A2 + B2)− B

(
2ΓA2

a1.5
1

+
3Γ2 A3

a2.5
1

+
4Γ3 A4

a3.5
1

+
5Γ4 A5

a4.5
1

)
= 0 (56)

2
dB
dη

+ µB− 2δA +
3A3√

a1
A(A2 + B2) +

5A5√
a1

A(A2 + B2) + A

(
2ΓA2

a1.5
1

+
3Γ2 A3

a2.5
1

+
4Γ3 A4

a3.5
1

+
5Γ4 A5

a4.5
1

)
=

∆√
a1

(57)

Equilibrium points of Equations (56) and (57), correspond to periodic motion such
that dA

dη = dB
dη = 0.

Using the notation:

θ =
2ΓA2

a1.5
1

+
3Γ2 A3

a2.5
1

+
4Γ3 A4

a3.5
1

+
5Γ4 A5

a4.5
1

(58)

from Equations (56) and (57) we obtain

µA + (2δ− θ)B− 3A3B(A2 + B2)√
a1

− 5a5B(A2 + B2)
2

√
a1

= 0 (59)

(θ− 2δ)A + µB +
3A3 A(A2 + B2)√

a1
+

5a5 A(A2 + B2)
2

√
a1

=
∆√
a1

(60)
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From algebraic Equations (59) and (60) one can get

A =
∆W

µ
√

a1(1 + W2)
, B =

∆W2

µ
√

a1(1 + W2)
(61)

where W is obtained from the following nonlinear equation:(
W2

1 + W2

)2

+
3a1 A3µ

2

5A5∆2
W2

1 + W2 +
(θ− 2δ)a2.5

1
5A5∆4 −

µ5a1.5
1

5A5∆4W
= 0 (62)

From Equation (62) it can be obtained W as a function of δ. In this way the values of
the equilibrium points A and B are known. For example, Figures 8–10 depict the function
W from (62) and the equilibrium points A and B from Equation (61) in the particular case
a1 = 1; a2 = 1/6; a3 = −1/54; a4 = 1/432; a5 = 1/1296; γ = 0.0002.

Figure 8. Illustration of W from Equation (62) for a1 = 1; a2 = 1/6; a3 = −1/54; a4 = 1/432; a5 = 1/1296;
γ = 0.0002.

Figure 9. Illustration of A from Equation (61) for a1 = 1; a2 = 1/6; a3 = −1/54; a4 = 1/432; a5 = 1/1296;
γ = 0.0002.

Figure 10. Illustration of B from Equation (61) for a1 = 1; a2 = 1/6; a3 = −1/54; a4 = 1/432; a5 = 1/1296;
γ = 0.0002.
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In Figures 8–22 it can be observed the influence of some key parameters on the system
stability. From Figures 12, 13, 15 and 16 it is observed that in the neighborhood of the origin,
the amplitudes of A and B decrease with the increases of the parameter a1. In the outside
of the neighborhood of the origin, the amplitudes of A and B are very little influenced
by the parameter a1. The same conclusions can be drawn concerning the influence of
the parameter γ: the amplitudes of A and B decrease with the increases of the parameter
γ in the neighborhood of the origin, but outside of the neighborhood of the origin, the
amplitudes of A and B are very little influenced by γ.

Figure 11. Illustration of W from Equation (62) for a1 = 0.75; a2 = 1/6; a3 = −1/54; a4 = 1/432;
a5 = 1/1296; γ = 0.0002.

Figure 12. Illustration of A from Equation (61) for a1 = 0.75; a2 = 1/6; a3 = −1/54; a4 = 1/432;
a5 = 1/1296; γ = 0.0002.

Figure 13. Illustration of B from Equation (61) for a1 = 0.75; a2 = 1/6; a3 = −1/54; a4 = 1/432;
a5 = 1/1296; γ = 0.0002.
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Figure 14. Illustration of W from Equation (62) for a1 = 2; a2 = 1/6; a3 = −1/54; a4 = 1/432;
a5 = 1/1296; γ = 0.0002.

Figure 15. Illustration of A from Equation (61) for a1 = 2; a2 = 1/6; a3 =−1/54; a4 = 1/432; a5 = 1/1296;
γ = 0.0002.

Figure 16. Illustration of B from Equation (61) for a1 = 2; a2 = 1/6; a3 = −1/54; a4 = 1/432; a5 = 1/1296;
γ = 0.0002.

Figure 17. Illustration of W from Equation (62) for a1 = 1; a2 = 1/6; a3 = −1/54; a4 = 1/432;
a5 = 1/1296; γ = 0.0005.
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Figure 18. Illustration of A from Equation (61) for a1 = 1; a2 = 1/6; a3 =−1/54; a4 = 1/432; a5 = 1/1296;
γ = 0.0005.

Figure 19. Illustration of B from Equation (61) for a1 = 1; a2 = 1/6; a3 = −1/54; a4 = 1/432; a5 = 1/1296;
γ = 0.0005.

Figure 20. Illustration of W from Equation (62) for a1 = 1; a2 = 1/6; a3 = −1/54; a4 = 1/432;
a5 = 1/1296; γ = 0.0001.

Figure 21. Illustration of A from Equation (61) for a1 = 1; a2 = 1/6; a3 =−1/54; a4 = 1/432; a5 = 1/1296;
γ = 0.0001.
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Figure 22. Illustration of B from Equation (61) for a1 = 1; a2 = 1/6; a3 = −1/54; a4 = 1/432; a5 = 1/1296;
γ = 0.0001.

In order to determine stability of the equilibria, we will construct the Jacobian matrix,
obtained from Equations (59), (61) and (62):

[J] =
[

a11 a12
a21 a22

]
(63)

where

a11 =
∂

∂A

(
dA
dη

)
; a12 =

∂

∂B

(
dA
dη

)
; a21 =

∂

∂A

(
dB
dη

)
; a22 =

∂

∂B

(
dB
dη

)
(64)

and therefore

[J] =


−µ

2
+

3A3∆2W3

a1.5
1 µ2(1 + W2)

+
10A5∆4W4

a1.5
1 µ2(1 + W2)3

θ

2
− δ+ 3A3∆2W2(1 + W2)

2a1.5
1 µ2(1 + W2)2 +

5A5∆4W4(1 + 5W2)

2a1.5
1 µ2(1 + W2)3

δ− θ
2
− 3A3∆2W2(1 + W2)

2a1.5
1 µ2(1 + W2)2 −

5A5∆4W4(5 + W2)

2a1.5
1 µ2(1 + W2)3 −µ

2
− 3A3∆2W3

a1.5
1 µ2(1 + W2)

− 10A5∆4W4

a1.5
1 µ2(1 + W2)3

 (65)

The sign of real parts of the eigenvalues of the Jacobian matrix are obtained from the
characteristic equation:

det([J]− λ[I2]) = 0 (66)

where [I2] is the unity matrix of the second order and λ is the eigenvalue of the Jacobian
matrix. From Equation (66) we have:

λ2 + (tr[J])λ + det[J] = 0 (67)

where the trace of [J] and the determinant of [J] are given by

(tr[J]) = µ (68)

det[J] =
µ2

4
−
[

3A3∆2W2

a1.5
1 µ2(1 + W2)

+
10A5∆4W4

a1.5
1 µ2(1 + W2)2

]2

+ (δ− θ
2
)

[
6A3∆2W2

a1.5
1 µ2(1 + W2)

+
15A5∆4W4

a1.5
1 µ2(1 + W2)2

]
+

+

[
3A3∆2W2(1 + 3W2)

2a1.5
1 µ2(1 + W2)2 +

5A5∆4W4(1 + 5W2)

2a1.5
1 µ2(1 + W2)2

][
3A3∆2W2(3 + W2)

2a1.5
1 µ2(1 + W2)2 +

5A5∆4W4(5 + W2)

2a1.5
1 µ2(1 + W2)3

] (69)

The discriminant of Equation (67) is

D = (tr[J])2 − 4det[J] (70)

where W is obtained from Equation (62).
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The quadratic Equation (67) has the solutions:

λ1,2 = −1
2

tr[J]± 1
2

√
D (71)

5.1. Possible Cases of Stability

The sign of eigenvalues λ1 and λ2 determines stability, so that we will leave discussion
on so-called “borderline” cases. There are possible the following cases.

5.1.1. Case 1

The discriminant D is positive. If det[J] > 0, then λ1 and λ2 are real with the same sign
and we have two subcases.

Subcase 1.a. If tr[J] > 0 then λ1 and λ2are negative and therefore the steady-state
motion corresponds to nodal points and the motion is stable.

Subcase 1.b. If tr[J] < 0, then λ1 and λ2are positive and the motion is unstable.

5.1.2. Case 2

The discriminant D is negative, then the eigenvalues are complex-conjugate and the
steady-state motions correspond to focal points (or focus). It follows three subcases.

Subcase 2.a. If tr[J] = 0, then the focal points are centers.
Subcase 2.b. If tr[J] > 0, then the focal points are stable.
Subcase 2.c. If tr[J] < 0, then the focal points are unstable.

5.1.3. Case 3

The discriminant D = 0 and therefore tr[J] = ±2
√

det[J]. The steady-state motion
corresponds to nodal points.

Subcase 3.a. If tr[J] > 0, then λ1 = λ2 are negative and nodes are stable.
Subcase 3.b. If tr[J] < 0, then λ1 = λ2 are positive and nodes are unstable.
Subcase 3.c. If tr[J] = 0, then λ1 = λ2 = 0, then there is no motion.
In the case of Hopf bifurcation λ1 = iΩ, λ2 = −iΩ, such that tr[J] = µ = 0 and det[J] > 0.

Based on the saddle-mode bifurcation theory, there is no zero eigenvalue of the Jacobian
matrix and this condition corresponds to det[J] = 0. From Equation (69), the detuning
parameter δ can be easily obtained.

5.2. Numerical Examples

In what follows we present some numerical examples based on particular cases
corresponding to the above section.

Subcase 1.a. For µ = 0.001, a1 = 0.98, A3 = 0.09, A5 = −0.05, θ − 2δ = 1.1355·10−5, we
obtain D = 1.921258·10−9, λ1 = −0.000378, λ2 = −0.000519 which confirm that the motion
is stable.

Subcase 1.b. For µ = −0.001, a1 = 0.98, A3 = 0.09, A5 = −0.05, θ − 2δ = 1.1355·10−5 it
follows that D = −1.921258·10−9,λ1 = 0.000519, λ2 = 0.000378 which proves that the motion
is unstable.

Subcase 2.a. For a1 = 0.98, A3 = 0.09, A5 = 0.05, θ − 2δ = −0.00020945, one can get for
µ = 0, D = −0.00146448·10−6, and therefore the focal points are centers.

Subcase 2.b.In conditions of Subcase 2.a and µ = 0.001 one retrieves D =−0.0014662566
and λ1 = λ2 = −0.0005 such that the focal points are stable.

Subcase 2.c. For µ = 0.001, in conditions from Subcase 2.a, we have λ1 = λ2 = 0.0005
and the focal points are unstable.

Subcase 3.a. For a1 = 0.98, A3 = 0.09, A5 = 0.05, θ − 2δ = −1.13774·10−5, we obtain,
D = 0, and λ1 = λ2 = −0.0005for µ = 0.001. The nodes are stable.

Subcase 3.b. For µ = −0.001 in conditions from Subcase 3.a, it holds that λ1 = λ2 =
−0.0005 and the nodes are unstable.

Subcase 3.c. For µ = 0 in conditions from Subcase 3.a, the motion does not exist.
We mention that for µ = 0, the expressions given by Equation (64) become
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a11 = −6A3 AB√
a1
− 10A3 − AB√

a1
; a12 = 2δ− 3A3(A2 + 3B2)√

a1
− 5A5(A2 + 3B2)√

a1
−
(

25A2

a1.5
1

+
3Γ2 A3

a2.5
1

+

+
4Γ3 A4

a3.5
1

+
5Γ4 A5

a4.5
1

)
; a21 = −2δ+

3A3(3A2 + B2)√
a1

+
5A5(3A2 + B2)√

a1
+

(
25A2

a1.5
1

+
3Γ2 A3

a2.5
1

+

+
4Γ3 A4

a3.5
1

+
5Γ4 A5

a4.5
1

)
; a22 =

6A3 AB√
a1

+
10A5 AB√

a1

(72)

6. Global Stability by Lyapunov Function

The governing Equation (7) of damped, forced oscillator on the dynamics of EA can
be written by adding control input U in the form:

x′1 = x2

x′2 = −µx2 − a1x1 + γ− a2x2
1 − a3x3

1 − a4x4
1 − a5x5

1 + ∆ cosωτ+ (β sin Ωτ−

−γ cos 2Ωτ)
(

1 + 4x1
3R +

4x2
1

3R2 +
32x3

1
27R3 +

80x4
1

81R4 +
64x5

1
81R5

)
+ U

(73)

One defines the tracking errors e1 and e2 as

e1 = x1 − x̃, e2 = x2 − x̃′ +ϕe1 (74)

where x̃ is the approximate analytical solution of Equations (7) and (10) above obtained by
means of the OAFM, ϕ is a positive parameter and the control U will be defined later.

If µ, a1, a2, a3, a4, a5, ∆,β are defined as estimated parameters, then the estimation
errors of parameters are defined as [25]:

µ̃ = µ− µ , ã1 = a1 − a1 , ã2 = a2 − a2 , ã3 = a3 − a3 ,
ã4 = a4 − a4 , ã5 = a5 − a5 , ∆̃ = ∆− ∆ , β̃ = β− β (75)

The Lyapunov function is chosen in the form:

V(e1, e2, µ̃, ãi, ∆̃, β̃) =
1
2
(λ1e2

1 + λ2e2
2 + λ3µ̃

2 + λ4 ã2
1 + λ5 ã2

2 + λ6 ã2
3 + λ7 ã2

4 + λ8 ã2
5 + λ9∆̃2 + λ10β̃

2
+ λ11λ̃2) (76)

where λj, j = 1, 2, . . . , 11 are positive parameters. The time derivative of Lyapunov function
can be written, taking into consideration Equations (74), (75) and (76) in the form

dV
dτ

= λ1e1(e2 −ϕe1) + λ2e2[−µx2 − a1x1 + γ− a2x2
1 − a3x3

1 − a4x4
1 − a5x5

1 + ∆ cosωτ+ (β sin Ωτ−

−γ cos 2Ωτ)
(

1 +
4x1

3R
+

4x2
1

3R2 +
32x3

1
27R3 +

80x4
1

81R4 +
64x5

1
81R5

)
− x̃′′ +ϕ(e2 −ϕe1)] + λ3µ̃µ̃

′ + λ4 ã1 ã′1 + λ5 ã2 ã′2+

+λ6 ã3 ã′3 + λ7 ã4 ã′4 + λ8 ã5 ã′5 + λ9∆̃∆̃′ + λ10β̃β̃
′
+ λ11γ̃γ̃′)

(77)

We define the input control U through Equation (77) as:

U = µx2 + a1x1 + a2x2
1 + a3x3

1 + a4x4
1 + a5x5

1 − ∆ cosωτ− (β sin Ωτ− γ cos 2Ωτ)
(

1 +
4x1

3R

+
4x2

1
3R2 +

32x3
1

27R3 +
80x4

1
81R4 +

64x5
1

81R5

)
+ x′′ −ϕe2 − γ

(78)

Then Equation (77) can be rewritten through Equation (75) in the form:
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dV
dτ

= λ1e1e2 − λ1ϕe2
1
+ λ2[µ̃x2 + ã1x1 − γ̃ + ã2x2

1 + ã3x3
1 + ã4x4

1 + ã5x5
1 − ∆̃ cosωτ− (β̃ sin Ωτ−

−γ̃ cos 2Ωτ)
(

1 +
4x1

3R
+

4x2
1

3R2 +
32x3

1
27R3 +

80x4
1

81R4 +
64x5

1
81R5

)]
e2 − λ2ϕ

2e1e2 + λ3µ̃µ̃
′ + λ4 ã1 ã′1 + λ5 ã2 ã′2+

+λ6 ã3 ã′3 + λ7 ã4 ã′4 + λ8 ã5 ã′5 + λ9∆̃∆̃′ + λ10β̃β̃
′
+ λ11γ̃γ̃′

(79)

After some manipulations, Equation (79) becomes:

dV
dτ

= (λ1 −ϕ2λ2)e1e2 − λ1ϕe2
1 + µ̃(λ2x2e2 + λ3µ̃

′) + ã1(λ2x1e2 + λ4 ã′) + ã2(λ2x2
1
e2 + λ5 ã′2)+

+ã3(λ2x3
1
e2 + λ6 ã′3) + ã4(λ2x4

1
e2 + λ7 ã′4) + ã5(λ2x5

1
e2 + λ8 ã′5) + ∆̃(λ9∆̃′ − λ2e2 cos ωτ)+

+β̃(λ10β̃
′ −
(

1 +
4x1

3R
+

4x2
1

3R2 +
32x3

1
27R3 +

80x4
1

81R4 +
64x5

1
81R5

)
λ2e2 sin Ωτ]− γ̃[λ2e2 −

(
1 +

4x1

3R
+

+
4x2

1
3R2 +

32x3
1

27R3 +
80x4

1
81R4 +

64x5
1

81R5

)
λ2e2 sin Ωτ

]
− γ̃[λ2e2 −

(
1 +

4x1

3R
+

4x2
1

3R2 +
32x3

1
27R3 +

80x4
1

81R4 +

+
64x5

1
81R5

)
λ2e2 cos 2Ωτ− λ11γ̃′]

(80)

The estimate parameters µ̃, ãi, β̃, γ̃, i = 1, 2, . . . , 5 which appear in the last equation are
defined as:

dµ̃
dτ

= −λ2

λ3
x2e2 ;

dã1

dτ
= −λ2

λ4
x1e2 ;

dã2

dτ
= −λ2

λ5
x2

1
e2 ;

dã3

dτ
= −λ2

λ6
x3

1
e2 ;

dã4

dτ
= −λ2

λ7
x4

1
e2

dã5

dτ
= −λ2

λ8
x5

1
e2 ;

d∆̃
dτ

= −λ2

λ9
e2 cos τ ;

dβ̃
dτ

=
λ2

λ10
e2

(
1 +

4x1

3R
+

4x2
1

3R2 +
32x3

1
27R3 +

80x4
1

81R4 +
64x5

1
81R5

)
sin Ωτ

dγ̃

dτ
=

λ2

λ11
e2

[
1−

(
1 +

4x1

3R
+

4x2
1

3R2 +
32x3

1
27R3 +

80x4
1

81R4 +
64x5

1
81R5

)
cos Ωτ

] (81)

or taking into account Equations (73) and (74):

dµ̃
dτ

= −λ2

λ3
x′[x′ − x̃′ +ϕ(x− x̃)];

dã1

dτ
= −λ2

λ4
x[x′ − x̃′ +ϕ(x− x̃)];

dã2

dτ
= −λ2

λ5
x2[x′ − x̃′ +ϕ(x− x̃)]

dã3

dτ
= −λ2

λ6
x3[x′ − x̃′ +ϕ(x− x̃)];

dã4

dτ
= −λ2

λ7
x4[x′ − x̃′ +ϕ(x− x̃)];

dã5

dτ
= −λ2

λ8
x5[x′ − x̃′ +ϕ(x− x̃)]

d∆̃
dτ

=
λ2

λ9
x3[x′ − x̃′ +ϕ(x− x̃)] cos Ωτ; dβ̃

dτ
=

λ2

λ10
[x′ − x̃′ +ϕ(x− x̃)]

(
1 +

4x1

3R
+

4x2
1

3R2 +
32x3

1
27R3 +

80x4
1

81R4 +

+
64x5

1
81R5;

)
dγ̃

dτ
=

λ2

λ11
[x′ − x̃′ +ϕ(x− x̃)]

[
1−

(
1 +

4x1

3R
+

4x2
1

3R2 +
32x3

1
27R3 +

80x4
1

81R4 +
64x5

1
81R5

)
cos 2Ωτ

]
(82)

In this way the Equation (80) becomes:

dV
dτ

= (λ1 −ϕ2λ2)e1e2 − λ1ϕe2
1 (83)

The positive parameter ϕ defined in Equation (74) is chosen as

ϕ =
√

λ1λ−1
2 (84)
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and therefore Equation (83) can be rewritten in the final form

dV
dτ

= −λ3/2
1 λ−1/2

2 e2
1 (85)

It is clear that dV
dτ < 0.

Using the Lyapunov function and La Salle’s invariance principle, the system studied in
the present work is globally asymptotically stable since the function V is a positive defined
function and dV/dτ is negative definite.

Figures 23 and 24 depict the tracking errors e1 and e2, respectively.

Figure 23. Tracking error e1.

Figure 24. Tracking error e2.

In Figures 25–28 are depicted only the variations of the parameters µ̃, ã1, ã2 and ∆̃. In
this way, it is clear that the Lyapunov function is well-defined.

Figure 25. Variation of parameter µ̃.
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Figure 26. Variation of parameter ã1.

Figure 27. Variation of parameter ã2.

Figure 28. Variation of parameter ∆̃.

The values of the errors e1 and e2 show that OAFM is a very efficient procedure and
the estimate parameters show that the Lyapunov function can be practically determined,
not only theoretically.

7. Conclusions

In the present work, the action of a vibro-impact nonlinear, damped, forced oscillator
on the DC and AC electromagnetic actuation near the primary resonance is analyzed. The
vibro-impact regime appears by the presence of Hertzian contact. This contact is supposed
to be elastic and is maintained. The governing equation of motion is a nonlinear differential
equation with variable coefficients. To find an approximate analytical solution of nonlinear
differential equation we used a very accurate, effective and simple procedure, namely the
Optimal Auxiliary Functions Method (OAFM). The governing equation is reduced to only
two linear differential equations. The main novelties of our technique are the presence of
so-called auxiliary functions, some convergence-control parameters, the construction of the
two iterations, and the freedom to choose the procedure to determine the optimal values of
the convergence-control parameters by applying rigorous mathematical procedures.
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Also, we analyzed the local stability using some notions as the transformation aver-
aging method, bookkeeping parameters, Jacobian matrix, or Routh-Hurwitz criteria. The
borderline cases are presented for different values of the parameters. Global stability is
studied by both Lyapunov function and La Salle’s invariance principle. These results lead
to the conclusion that it is possible to control the nonlinear characteristics of the response
near the primary resonance by tuning intensity of DC and AC electromagnetic actuation.
Moreover, the proposed technique can be useful in certain engineering applications where
the operating frequency range includes some critical frequencies that should be avoided.

Taking into account the proved performance of the OAFM technique, the proposed
approach could be easily extended to other real practical applications from other fields
of research, such as fluid dynamics, astronomy, mechanics, electrical machines, where
nonlinear dynamical systems are involved.
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