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1. Introduction

The aim of this paper is to study the stability of traveling waves for the Lotka–Volterra
competition system with three species as follows:

ũt = ũxx + ũ(1− ũ− b12ṽ− b13w̃),
ṽt = d1ṽxx + αṽ(1− b21ũ− ṽ),
w̃t = d2w̃xx + βw̃(1− b31ũ− w̃).

(1)

To proceed, we first transform the variables so that ũ = u, ṽ = 1− v, w̃ = 1− w and the
system (1) is converted into the following cooperative system:

ut = uxx + u(1− u− b12 + b12v− b13 + b13w),
vt = d1vxx + α(1− v)(b21u− v),
wt = d2wxx + β(1− w)(b31u− w),

(2)

with the initial value u(x, 0) = u0(x), v(x, 0) = v0(x) and w(x, 0) = w0(x) for x ∈ R. In this
system, u, v and w are the population densities of three species, respectively; di(i = 1, 2) is
the diffusion coefficient of species i; b1j and bj1(j = 2, 3) denote the competition coefficients
between the other two species j and the first species; and α and β stand for the growth
rates of the two species of v, w, respectively. All the coefficients are positive. Further, we
can understand that there are three species u, v and w living together, and species u is a
predator, while species v, w are both prey. However, v, w do not directly affect each other,
and the predator u acts as a mediator for v and w.

The Lotka–Volterra model is well-known for better describing changes in biological
populations, and many mathematicians are interested in its dynamics. In particular, many
studies on the existence, stability, and invasion speed of traveling wave solutions have been
generated on the two species competitive model, see [1–9]. For the three-species competition
model, the studies on the dynamical behaviors are also receiving increased attention. The
existence of traveling wave solutions for the three-species system has been extensively

Mathematics 2023, 11, 2189. https://doi.org/10.3390/math11092189 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11092189
https://doi.org/10.3390/math11092189
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2964-7249
https://doi.org/10.3390/math11092189
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11092189?type=check_update&version=1


Mathematics 2023, 11, 2189 2 of 14

studied in [10–14]. In addition, many scholars [15–18] investigated the speed selection, and
for more studies on other aspects of the three-species system, please see [19–21]. Among
them, Pan et al. [15] converted the competitive system into a cooperative system and
investigated the determinism of the invasion velocity by the upper and lower solution
method. We shall directly employ some results in [15] for this study.

For a competitive system, understanding the conditions under which a species sur-
vives or dies is always an important and interesting topic in dynamics, and traveling wave
solutions can be used to help us answer this question. By a simple calculation, we can find
that (2) admits at least five equilibrium points in the range {(u, v, w)|0 ≤ u ≤ 1, 0 ≤ v ≤
1, 0 ≤ w ≤ 1}, i.e., (0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1) and (1, 1, 1). Then, this paper focuses
on the traveling waves connecting the equilibrium points e0 = (0, 0, 0) and e1 = (1, 1, 1) in
the form

(u, v, w)(x, t) = (Ū, V̄, W̄)(z), z = x− ct, (3)

where c is called the wave speed and (Ū, V̄, W̄) is called the wave profile. For the conve-
nience of discussion, we always assume that

1
2
< b12 + b13 < 1, b21 > 1, b31 > 1. (4)

A Similar assumption has been made in other papers studying the three-species model,
such as [15,17,22], and the assumption is essential for stability properties in this paper. This
condition means that v, w are weak competitors of u and it makes the point (0, 0, 0) unstable
and the point (1, 1, 1) is stable. By substituting (3) into (2), we have

Ūzz + cŪz + Ū(1− b12 − b13 − Ū + b12V̄ + b13W) = 0,
d1V̄zz + cV̄z + α(1− V̄)(b21Ū − V̄) = 0,
d2W̄zz + cW̄z + β(1− W̄)(b31Ū − W̄) = 0,
(Ū, V̄, W̄)(−∞) = e1, (Ū, V̄, W̄)(+∞) = e0.

(5)

The existence of the traveling wave has been given in other related literature. Pan et al. [15]
gave the existence of the traveling wave when c ≥ c∗ and the minimal wave speed is linearly
determined for c∗ = c0 = 2

√
1− b12 − b13. Apart from that, the asymptotic behavior of

(Ū, V̄, W̄) near the equilibrium point (0, 0, 0) is also given in [15], see the following lemma.

Lemma 1. For any c > c0 and constants C1 > 0, C3 > 0, C4 > 0, or C1 = 0 with C2 > 0, C3 >
0, C4 > 0, when z→ ∞, (Ū, V̄, W̄) has the following asymptotic behavior:

 Ū(z)
V̄(z)
W̄(z)

 ∼ C1

 1
− αb21

Γ1(µ1)

− βb31
Γ2(µ1)

e−µ1z + C2

 1
− αb21

Γ1(µ2)

− βb31
Γ2(µ2)

e−µ2z

+C3

 0
1
0

e−µ3z + C4

 0
0
1

e−µ4z,

(6)

where Γ1(µ) = d1µ2 − cµ− α, Γ2(µ) = d2µ2 − cµ− β and

µ1(c) = 1
2 [c−

√
c2 − 4(1− b12 − b13)],

µ2(c) = 1
2 [c +

√
c2 − 4(1− b12 − b13)],

µ3(c) = 1
2d1

(c +
√

c2 + 4d1α),
µ4(c) = 1

2d2
(c +

√
c2 + 4d2β).

(7)

Throughout this article, for better determining the weight function later, we always
assume that µ1 is the minimum between µi(i = 1, 2, 3, 4). To make the assumption true, we
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summarize the required parameter conditions and we can find that restrictions are only
proposed for c and di(i = 1, 2). It is not contrary with other assumptions in our paper.

In order to study the stability of the traveling wave, we need to determine the solution
with (u0(x), v0(x), w0(x)) as the initial value whether converges to (Ū, V̄, W̄). Hence, a
change of variables (u, v, w)(x, t) = (U, V, W)(z, t) further transforms (2) into a partial
differential model

Ut = Uzz + cUz + U(1− b12 − b13 −U + b12V + b13W),
Vt = d1Vzz + cVz + α(1−V)(b21U −V),
Wt = d2Wzz + cWz + β(1−W)(b31U −W),
U(z, 0) = u0(z), V(z, 0) = v0(z), W(z, 0) = w0(z), ∀z ∈ R.

(8)

We know that (Ū, V̄, W̄) is the steady-state to the above new system. We need to add the
following extra assumption about the steady-state in order to obtain global stability:

Ū ≥ max
{

b12V̄ + b13W̄,
1

b21
V̄,

1
b31

W̄
}

. (9)

It is not difficult to find that we can demonstrate that the condition (9) is not empty by using
the linear selection condition in Theorem 4.1 in [15]. By choosing V̄ = b21Ū, W̄ = b31Ū and
combining the condition (4), we have b12V̄ + b13W̄ = (b12b21 + b13b31)Ū ≤ Ū because of
the linear selection condition −2(1− b12 − b13) + b12b21 + b13b31 ≤ 0.

The attention, which focused on the stability of traveling waves, has increased and
various methods have been shed light on, where the weighted energy method and the
spectral analysis were widely used. In terms of local stability, Hou and Li [23] demonstrated
the local stability of traveling waves of nonlinear reaction-diffusion equations in different
weighted Banach spaces by employing a new method to analyze the location of the spectra.
To investigate the stability of the traveling wave solutions with non-critical wave speeds,
Leung et al. [24] similarly analyzed the spectrum of the linearization operator in the
exponentially weighted Banach space. In terms of global stability, Wu and Xing [25] proved
that traveling front solutions with critical speeds are globally exponentially stable in some
exponentially weighted spaces. By using a combination of the weighted energy method
and the Green’s function technique, the global stability of monostable traveling waves
for nonlocal time-delayed reaction-diffusion equations was given in [26]. For additional
research on stability by using the weighted energy method, see also [27–30].

More specifically, in recent years, there have been numerous investigations on the
stability of the Lotka–Volterra diffusion model. Chen et al. [31] applied the weighted energy
method to study the nonlinear stability of a discrete three-species Lotka–Volterra competi-
tive diffusion system with monostable traveling wavefronts. The global asymptotic stability
of a diffuse multispecies Lotka–Volterra interaction model for the non-homogeneous coexis-
tence equilibrium state was established by using the Lyapunov function method in [32]. Ma
and Guo [33] combined the monotonic dynamical systems theory, the sub-super solutions
method, master spectrum theory to study the global asymptotic stability of the coexisting
steady state of a competitive Lotka–Volterra reaction-diffusion model with an advection
term arising. Alhasanat and Ou [2] showed the global stability of the traveling waves of the
Lotka–Volterra diffusion model by using the upper–lower solution method together with
the squeezing technique. Further reading on the stability of the Lotka–Volterra diffusion
model may be found at [28,34–38].

Research on the existence of traveling waves and the choice of linear and nonlin-
ear minimal wave speeds for the three-species competition model has been successful.
However, the stability of traveling waves has received less attention. In light of this,
we investigate both the local and global stability of the steady-state (Ū, V̄, W̄) under the
weighted functional space in this research.
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Theorem 1. For any c > c∗ and the weight function w(z)

w(z) =
{

ea(z−z0), z > z0,
1, z ≤ z0

(10)

with some constants z0, a ∈ (µ1, min{µ2, µ3, µ4}), the traveling wave solution (Ū, V̄, W̄)(z) is
locally stable in the weighted functional space Lp

w, which is defined in Definition 1.

Theorem 2. Suppose c > c∗, conditions (4)–(9) hold true and the initial data of the solution
(U, V, W)(z, t) to (8) are

U0(z) = U(z, 0), V0(z) = V(z, 0), W0(z) = W(z, 0), (11)

which satisfy
(0, 0, 0) ≤ (U0, V0, W0)(z) ≤ (1, 1, 1), ∀z ∈ R,

lim inf
z→−∞

(U0, V0, W0)(z) > (0, 0, 0) (12)

and
|U0(z)− Ū(z)| ∈ L∞

w (R),
|V0(z)− V̄(z)| ∈ L∞

w (R),∣∣W0(z)− W̄(z)
∣∣ ∈ L∞

w (R),
(13)

then the traveling wave solution exists globally with

(0, 0, 0) ≤ (U, V, W)(z, t) ≤ (1, 1, 1), ∀(z, t) ∈ R×R+, (14)

and for positive constants k and η, there are

supz∈R |U(z, t)− Ū(z)| ≤ ke−ηt, t > 0,
supz∈R |V(z, t)− V̄(z)| ≤ ke−ηt, t > 0,
supz∈R |W(z, t)− W̄(z)| ≤ ke−ηt, t > 0,

(15)

i.e., any solution satisfying the conditions converges exponentially to the equilibrium solution
(Ū, V̄, W̄)(z).

Despite the fact that the local stability of the Lotka–Volterra competition system
with three species has been demonstrated in [28], we refer to its methodology for the
verification of global stability before introducing a new weighted functional space to
prove our Theorem 1. The spectral problem is explored in the weighted functional space
to determine the sign of the real part of the eigenvalues and further obtain the result of
local stability. For global stability, to prove our Theorem 2, we construct the upper solution
based on the assumptions (4)–(9), and then the comparison principle is utilized for global
stability.

The rest of this paper is organized as follows. In Section 2, we linearize the model
and perform a spectral analysis on it in the suitable weighted functional space, which led
to the conclusion of local stability. Then, also under the weighted functional space, the
global stability is proved by combining the upper-lower solution method and the squeezing
theorem in Section 3. Conclusions are shown in Section 4.

2. The Local Stability

We first introduce a weighted functional space Lp
w different from [28] before studying

the local stability for the subsequent proof of global stability.

Definition 1. Lp(R) is the well-known Lebesgue space of integrable functions. Define a weighted
functional space Lp

w as follows:

Lp
w = { f (z) : w(z) f (z) ∈ Lp(R), p ≥ 1, z ∈ R}. (16)
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The norm is

‖ f (z)‖Lp
w
=

(∫ ∞

−∞
w(z)| f (z)|pdz

)1/p
, (17)

and the weight function is

w(z) =
(

1
w1(z)

,
1

w2(z)
,

1
w3(z)

)
, (18)

where

w1(z) =
{

e− p̄(z−z0), z > z0,
1, z ≤ z0,

w2(z) =
{

e−q̄(z−z0), z > z0,
1, z ≤ z0,

w3(z) =
{

e−r̄(z−z0), z > z0,
1, z ≤ z0,

(19)

with some constants z0, p̄, q̄ and r̄, where p̄, q̄, r̄ are positive.

In this paper, we study the local stability in the presence of perturbations. By analyzing
the behavior of the traveling waves under this small perturbation over a long period of time,
the solution can be considered as locally stable if it converges to the steady-state solution.

Let
U(z, t) = Ū(z) + δφ1(z)eλt,

V(z, t) = V̄(z) + δφ2(z)eλt,

W(z, t) = W̄(z) + δφ3(z)eλt,

(20)

where δ� 1, φ1(z), φ2(z), φ3(z) are real functions and λ is a parameter.
Let Φ = (φ1, φ2, φ3)

T and in order to facilitate the exploration of the spectrum of the
operator L on the space Lp

w, we write Φ in the following form:

Φ =

φ1
φ2
φ3

 =

w1ψ1
w2ψ2
w3ψ3

, (21)

where ψi(i = 1, 2, 3) belong to Lp.
By substituting (20) into (8) and linearizing it at (Ū, V̄, W̄), we can obtain the following

spectral problem:
λΦ = L Φ := DΦ′′ + cΦ′ + J(z)Φ, (22)

where

D =

1 0 0
0 d1 0
0 0 d2

, (23)

J(z) =

1− b12 − b13 − 2Ū + b12V̄ + b13W̄ b12Ū b13Ū
αb21(1− V̄) α(−1− b21Ū + 2V̄) 0
βb31(1− W̄) 0 β(−1− b31Ū + 2W̄)

. (24)

By examining the maximum real part sign of the spectrum λ of the operator L , we can
now evaluate the local stability of the traveling wave solution.

Combine (19) and substitute (21) into (22) to obtain

λΨ = LwΨ := DΨ′′ + M(z)Ψ′ + N(z)Ψ, (25)
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where Ψ = (ψ1, ψ2, ψ3)
T ,

M(z) =


c + 2 w′1

w1
0 0

0 c + 2d1
w′2
w2

0

0 0 c + 2d2
w′3
w3

, (26)

and

N(z) =


w′′1
w1

+ c w′1
w1

0 0

0 d1
w′′2
w2

+ c w′2
w2

0

0 0 d2
w′′3
w3

+ c w′3
w3


+

1− b12 − b13 − 2Ū + b12V̄ + b13W̄ b12Ū w2
w1

b13Ū w3
w1

αb21(1− V̄)w1
w2

α(−1− b21Ū + 2V̄) 0
βb31(1− W̄)w1

w3
0 β(−1− b31Ū + 2W̄)

.

(27)

Then, we can use the following details from Theorem A.2 in [39] to determine the
essential spectrum of the operator Lw. After choosing the weight function to compel the
essential spectrum to locate in the left-half complex plane, we may determine the sign of
the maximum real part of the point spectrum in the weighted space. We choose

p̄ ∈ (µ1, µ2), q̄ ∈ (0, µ3), r̄ ∈ (0, µ4) (28)

such that
p̄− µ1 < q̄ ≤ p̄,

p̄− µ1 < r̄ ≤ p̄,
(29)

where µi(i = 1, 2, 3, 4) are defined in (7). M(z) and N(z) are bound by the preconditions
mentioned above. Therefore, we define

lim
z→±∞

M(z) = M±, lim
z→±∞

N(z) = N±, (30)

and an algebraic curves S±,

S± := {λ | det(−τ2D + iτM± + N± − λI) = 0,−∞ < τ < ∞}. (31)

The union of areas within or on the curves S+ and S− contains the essential spectrum of
the operator Lw. If we prove that max(Re(λ)) < 0 for z→ ±∞, respectively, then S± are
on the left-half complex plane, which implies that the essential spectrum of Lw lies on the
left-half complex plane, for further details, see [28].

Because µ1 is the smallest parameter, we choose p̄ = q̄ = r̄ = a, where a is a constant
and a ∈ (µ1, min{µ2, µ3, µ4}). Then, the weight function is as follows:

w(z) =
{

ea(z−z0), z > z0,
1, z ≤ z0,

(32)

where z0 is defined in (19).
In order to obtain the local stability for (22), we next determine the sign of the major

eigenvalue in the point spectrum.

Lemma 2. For Φ ∈ Lp
w, the real part of the eigenvalue λ of (22) is all negative.

Proof. Consider an associated linear partial differential system

ft = D fzz + c fz + J(z) f , (33)
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where f (z, t) = ( f1(z, t), f2(z, t), f3(z, t)). By comparing with (22), we know that eλtΦ is a
solution of the above system with the same λ and Φ as in (22). According to the well-known
Krein–Rutman theorem in [40], a compact linear operator which is strongly positive has
a simple principal eigenvalue with a strongly positive eigenvector. For each given initial
data set φ ∈ Lp, let Rt = f (t, z, φ) indicate the solution semiflow of (33) and we can find
that Rt satisfies the requirements of the theorem. So, we have

|eλt| < eλmaxt, (34)

where λmax is the simple principal eigenvalue. To proceed, we can prove λ < 0 by
contradiction for two cases.

Case 1. λ = 0.
For any c > c∗, obviously we have Ū(z) ∼ C1e−µ1z, C1 > 0, as z→ ∞ and V̄(z), W̄(z)

are the same asymptotic behaviors as Ū(z). So, the operator L defined in (22) has an
eigenvalue λ = 0 with the one-sign eigenvector (−Ū′,−V̄′,−W̄ ′)(z), which is strongly
positive. Because of (32) and a > µ1, we can check that (−Ū′,−V̄′,−W̄ ′)(z) is not inside
the weighted functional space Lp

w.
Case 2. λ > 0.
For z→ +∞ and Φ ∈ Lp

w, there is obviously that Φ̄(z) = (−Ū′,−V̄′,−W̄ ′)(z) > Φ(z)
except for sets of measure zero.

For z→ −∞, assume that the eigenfunction of (22) possesses the asymptotic behavior
as keµz for some positive constants k, µ. Thus, we can obtain the corresponding characteristic
equation as follows:∣∣∣∣∣∣

µ2 + cµ− 1− λ b12 b13
0 d1µ2 + cµ + α(1− b21)− λ 0
0 0 d2µ2 + cµ + β(1− b31)− λ

∣∣∣∣∣∣ = 0, (35)

which exist three positive roots,

µ̂1 =
−c +

√
c2 + 4(1 + λ)

2
,

µ̂2 =
−c +

√
c2 + 4d1(λ + α(b21 − 1))

2
,

µ̂3 =
−c +

√
c2 + 4d2(λ + β(b31 − 1))

2
.

(36)

These statements demonstrate that µ increases with λ, which also implies that Φ̄(z) > Φ(z).
Hence, we can choose a sufficiently large k̄ such that k̄Φ̄ ≥ |Φ|. Both Φ̄ and |Φ|eλt are

solutions of (33), so by using the comparison principle, we have k̄Φ̄ ≥ |Φ|eλt, which is not
correct for a sufficiently large t. Thus, we complete the proof.

3. The Global Stability

This section will analyze the global stability of the equilibrium solution (Ū, V̄, W̄)(z)
in the weighted functional space Lp

w with p = ∞, where the norm is defined as ‖ f ‖L∞
w =

esssupz∈R|w(z) f (z)| with a special weight function w(z). Based on Theorem 1, we choose
the weight function w(z), which is defined in (32), and let

a = µ1 + ε, (37)

where ε is a sufficiently small positive number.
First of all, assume the initial data of the solution of (8) as

U0(z) = U(z, 0), V0(z) = V(z, 0), W0(z) = W(z, 0), (38)
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which satisfy
(0, 0, 0) ≤ (U0, V0, W0)(z) ≤ (1, 1, 1), ∀z ∈ R,

lim inf
z→−∞

(U0, V0, W0)(z) > (0, 0, 0) (39)

and
|U0(z)− Ū(z)| ∈ L∞

w (R),
|V0(z)− V̄(z)| ∈ L∞

w (R),∣∣W0(z)− W̄(z)
∣∣ ∈ L∞

w (R).
(40)

Based on the above conditions, for z ∈ R, we define

U+
0 (z) = max{U0(z), Ū(z)}, U−0 (z) = min{U0(z), Ū(z)},

V+
0 (z) = max{V0(z), V̄(z)}, V−0 (z) = min{V0(z), V̄(z)},

W+
0 (z) = max

{
W0(z), W̄(z)

}
, W−0 (z) = min

{
W0(z), W̄(z)

} (41)

which can be viewed as the initial value of the solutions (U+, V+, W+) and (U−, V−, W−)
for (8). That is to say that (U+, V+, W+) and (U−, V−, W−) satisfy

U±t = U±zz + cU±z + U±(1− b12 − b13 −U± + b12V± + b13W±),
V±t = d1V±zz + cV±z + α(1−V±)(b21U± −V±),
W±t = d2W±zz + cW±z + β(1−W±)(b31U± −W±),
(U±0 , V±0 , W±0 )(z) = (U±, V±, W±)(z, 0).

(42)

By using the comparison principle, we have

(0, 0, 0) ≤ (U−, V−, W−)(z, t) ≤ (U, V, W)(z, t)

≤ (U+, V+, W+)(z, t) ≤ (1, 1, 1), ∀(z, t) ∈ R×R+,

(0, 0, 0) ≤ (U−, V−, W−)(z, t) ≤ (Ū, V̄, W̄)(z)

≤ (U+, V+, W+)(z, t) ≤ (1, 1, 1), ∀(z, t) ∈ R×R+.

(43)

Next, we need to demonstrate the convergence of (U±, V±, W±)(z, t) to the wavefront
(Ū, V̄, W̄)(z) in the subsequent lemmas, respectively.

Lemma 3. Under the conditions (38)–(42), (U+, V+, W+)(z, t) converges to (Ū, V̄, W̄)(z).

Proof. We define
F(z, t) = U+(z, t)− Ū(z),
G(z, t) = V+(z, t)− V̄(z),
H(z, t) = W+(z, t)− W̄(z),

(44)

with the initial value
F(z, 0) = U+

0 (z)− Ū(z),
G(z, 0) = V+

0 (z)− V̄(z),
H(z, 0) = W+

0 (z)− W̄(z).
(45)

It is simple to see from inequality (43) that

(0, 0, 0) ≤ (F, G, H)(z, t) ≤ (1, 1, 1), ∀z ∈ R, (46)

for t ≥ 0. Afterwards, by combining (5) and (42) and performing some transformations,
we obtain

Ft = Fzz + cFz + (1− b12 − b13)F + (F + Ū)(−F + b12G + b13H) + (−Ū + b12V̄ + b13W̄)F,
Gt = d1Gzz + cGz + α(b21F− G) + α(G + V̄)(−b21F + G) + α(−b21Ū + V̄)G,
Ht = d2Hzz + cHz + β(b31F− H) + β(H + W̄)(−b31F + H) + β(−b31Ū + W̄)H.

(47)
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Let  F
G
H

(z, t) = e−a(z−z0)

 F̄
Ḡ
H̄

(z, t), ∀(z, t) ∈ (R,R+), (48)

where F̄, Ḡ, H̄ ∈ L∞(R) and z0 is defined in (32). We will then demonstrate this lemma in
two scenarios.

Case 1. Assume z ∈ [z0,+∞) for any fixed z0.
Substituting (48) into (47), we have F̄

Ḡ
H̄


t

= D

 F̄
Ḡ
H̄


zz

+ Q

 F̄
Ḡ
H̄


z

+ A(a)

 F̄
Ḡ
H̄

+

(−Ū + b12V̄ + b13W̄)F̄
α(−b21Ū + V̄)Ḡ
β(−b31Ū + W̄)H̄


+

(e−a(z−z0) F̄ + Ū)(−F̄ + b12Ḡ + b13H̄)

α(e−a(z−z0)Ḡ + V̄)(−b21 F̄ + Ḡ)

β(e−a(z−z0)H̄ + W̄)(−b31 F̄ + H̄)


:=

L1(F̄, Ḡ, H̄)
L2(F̄, Ḡ, H̄)
L3(F̄, Ḡ, H̄)

,

(49)

where D is defined in (23),

Q =

c− 2a 0 0
0 c− 2d1a 0
0 0 c− 2d2a

 (50)

and

A(a) =

Γ3(a) 0 0
αb21 Γ1(a) 0
βb31 0 Γ2(a)

, (51)

where Γ3(a) = a2 − ca + 1 − b12 − b13 and Γ1, Γ2 are given in Lemma 1. Assume that
(ξ1, ξ2, ξ3) = (ξ1(a), ξ2(a), ξ3(a)) is the eigenvector of the matrix A(a) at eigenvalue a2 −
ca + 1− b12 − b13 and a direct calculation gives

ξ1 = Γ3(a)− Γ1(a) = (1− d1)(µ
2
1 + ε) + 1− b12 − b13 + α,

ξ2 = αb21,

ξ3 =
βb31(Γ3(a)− Γ1(a))

Γ3(a)− Γ2(a)
=

βb31[(1− d1)(µ
2
1 + ε) + 1− b12 − b13 + α]

(1− d2)(µ
2
1 + ε) + 1− b12 − b13 + β

.

(52)

Then, we also define

F̄1(z, t) = k1ξ1e−η1t,

Ḡ1(z, t) = k1ξ2e−η1t,

H̄1(z, t) = k1ξ3e−η1t, ∀(z, t) ∈ (R,R+),

(53)

where k1, η1 are positive. Since F̄(z, 0), Ḡ(z, 0), H̄(z, 0) ∈ L∞
w , thus we can choose

k1 ≥ maxz∈R{
F̄(z, 0)

ξ1
,

Ḡ(z, 0)
ξ2

,
H̄(z, 0)

ξ3
}. (54)
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For z→ +∞, by using (9), substituting (54) into the right side of (49) and performing
the calculation, we find

L1(F̄1, Ḡ1, H̄1) < 0,

L2(F̄1, Ḡ1, H̄1) < 0,

L3(F̄1, Ḡ1, H̄1) < 0.

(55)

This means that we can find a suitable η1 such that the inequality F̄1
Ḡ1
H̄1


t

= −η1k1

ξ1
ξ2
ξ2

e−η1t ≥

L1(F̄1, Ḡ1, H̄1)
L2(F̄1, Ḡ1, H̄1)
L3(F̄1, Ḡ1, H̄1)

 (56)

holds.
Hence, (F̄1, Ḡ1, H̄1) is equivalent to an upper solution. Then, by using the comparison

principle on an unbounded domain, see [41], we have

(F, G, H)(z, t) = (F̄, Ḡ, H̄)e−a(z−z0)

≤ (F̄1, Ḡ1, H̄1)e−a(z−z0)

= k1(ξ1, ξ2, ξ3)e−a(z−z0)−η1t, ∀(z, t) ∈ (z0,+∞]×R+.

(57)

Now, we also need to verify the convergence of (F, G, H) to (0,0,0) at z ∈ (−∞, z0].
Case 2. Assume z ∈ (−∞, z0] for any fixed z0.
System (47) can be represented in another form: F

G
H


t

= D

 F
G
H


zz

+ c

 F
G
H


z

+ J(z)

 F
G
H

+

(−F + b12G + b13H)F
α(−b21F + G)G
β(−b31F + H)H

 (58)

where J(z) is defined in (24) and we write J(z) as J(z) = (Jij)3×3. Now, we present a new
3× 3 matrix Bε1 ,

Bε1 =

−1 + ε1 b12 + ε1 b13 + ε1
ε1 α(1− b21) + ε1 0
ε1 0 β(1− b31) + ε1

 = (Bij)3×3, (59)

for some given small ε1 > 0. When z ∈ (−∞, z0], due to the fact that (Ū, V̄, W̄) is nearing
(1, 1, 1) for any z in this range, the inequality Jij < Bij(i, j = 1, 2, 3) holds.

If we build an autonomous system related to Bε1 with (F̂, Ĝ, Ĥ)(t) as the solution: F̂
Ĝ
Ĥ


t

= B

 F̂
Ĝ
Ĥ

+

(−F̂ + b12Ĝ + b13Ĥ)F̂
α(−b21 F̂ + Ĝ)Ĝ
β(−b31 F̂ + Ĥ)Ĥ

, (60)

and the initial value satisfies

F̂(0) ≥ F̄(z, 0),

Ĝ(0) ≥ Ḡ(z, 0),

Ĥ(0) ≥ H̄(z, 0), ∀z ∈ R,

(61)

then we can verify that (F̂, Ĝ, Ĥ)(t) is an upper solution to the system (58).
We must now determine if (F̂, Ĝ, Ĥ)(t) converges to (0, 0, 0) as t → ∞. We can

use the Jacobi matrix J(0, 0, 0) to examine the behavior close to (0, 0, 0), which is one
of its fixed points. By using (60), the equation J(0, 0, 0) = Bε1 has three eigenvalues
denoted as λ̂3 < λ̂2 < λ̂1 < 0. As a result, the point at (0, 0, 0) is stable, meaning that
the flow in the F̂ĜĤ-space converges to the origin for every (F̂, Ĝ, Ĥ)(0) in the range
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[0, 1]× [0, δ1]× [0, δ2] with 0 < δi ≤ 1(i = 1, 2). The maximum possible value of δi(i = 1, 2)
depends on the position of the nonconstant fixed point to the system (3.24) near or inside
the box [0, 1]× [0, 1]× [0, 1]. If the point is far away from the box, then δi(i = 1, 2) can be
1; If the point is near the boundary of the box, then the maximum possible value of δ1 in
(b21 − 1− ε1

α , 1) and δ2 in (b31 − 1− ε1
β , 1); if the point is inside the box, then δ1 is close to

b21 − 1− ε1
α and δ2 is close to b31 − 1− ε1

β . Thus, we find that

(F̂, Ĝ, Ĥ) = k̂1(Ĉ1, Ĉ2, Ĉ3)eλ̂1t, t→ ∞. (62)

Here, k̂1 > 0 and (Ĉ1, Ĉ2, Ĉ3) is the eigenvector of Bε1 with the eigenvalue λ̂1.
Finally, we have

(F, G, H)(z0, t) ≤ k1(ξ1, ξ2, ξ3)e−η1t ≤ k̂1(ξ1, ξ2, ξ3)e−λ̄1t (63)

at z = z0 by choosing a large enough k̂1 and λ̄1 = min{η1,−λ̂1}. And by comparison on
the domain(−∞, z0]× [0, ∞), see [42], we find that

(F, G, H)(z, t) ≤ k̂1(ξ1, ξ2, ξ3)e−λ̄1t, ∀(z, t) ∈ (−∞, z0]×R+. (64)

Up to here, the proof is complete.

Lemma 4. Under the above conditions (38)–(42), (U−, V−, W−)(z, t) converges to (Ū, V̄, W̄)(z).

Proof. We define
I(z, t) = Ū(z)−U−(z, t),
K(z, t) = V̄(z)−V−(z, t),
S(z, t) = W̄(z)−W−(z, t),

(65)

with the initial value
I(z, 0) = Ū(z)−U−0 (z),
K(z, 0) = V̄(z)−V−0 (z),
S(z, 0) = V̄(z)−W−0 (z).

(66)

By inequalities (43), it is easy to see that

(0, 0, 0) ≤ (I, K, S)(z, t) ≤ (1, 1, 1), ∀z ∈ R, t ≥ 0. (67)

Then, repeat the steps above, and I, K and S satisfy the system I
K
S


t

= D

 I
K
S


zz

+ c

 I
K
S


z

+ J(z)

 I
K
S

−
(−I + b12K + b13S)I

α(−b21 I + K)K
β(−b31 I + S)S

, (68)

where J(z) is defined in (24). Similarly, we analyze it in two cases.
Case 1. Let (z, t) ∈ (z0,+∞]×R+.
By using an approach similar to the proof of Lemma 3 with (9) and the facts I <

Ū, K < V̄, S < W̄. There exist η2 > 0 and

k2 ≥ ea(z−z0)maxz∈R{
I(z, 0)

ξ1
,

K(z, 0)
ξ2

,
S(z, 0)

ξ3
} (69)

such that
(I, K, S)(z, t) ≤ k2(ξ1, ξ2, ξ3)e−η2t, ∀(z, t) ∈ (z0,+∞]×R+. (70)

Case 2. Let (z, t) ∈ (−∞, z0]×R+.



Mathematics 2023, 11, 2189 12 of 14

Now, we need to introduce w(z) defined in (32) with a = µ1 + ε to study the stability
under the weighted functional space Lp

w. Defined Î
K̂
Ŝ


t

= Bε1

 Î
K̂
Ŝ

− 1
w(z)

(− Î + b12K̂ + b13Ŝ) Î
α(−b21 Î + K̂)K̂
β(−b31 Î + Ŝ)Ŝ

, (71)

and the initial date satisfies

Î(0) ≥ I(z, 0),

K̂(0) ≥ K(z, 0),

Ŝ(0) ≥ S(z, 0), ∀z ∈ R.

(72)

We can check that ( Î, K̂, Ŝ)(t) is an upper solution to the system (68). As in Lemma 3,
( Î, K̂, Ŝ) also converges to (0, 0, 0) when all initial value on the space [0, 1]× [0, 1]× [0, 1]
except (1, 1, 1) by analyzing the phase plane. Finally, for some k̂2, λ̄2 > 0, we have

(I, K, S)(z, t) ≤ k̂2(ξ1, ξ2, ξ3)e−λ̄2t, ∀(z, t) ∈ (−∞, z0]×R+. (73)

This completes the proof.

In the end, we can prove Theorem 2 on the global stability.

Proof of Theorem 2. From (43), we have

|I(z, t)| ≤ |U(z, t)− Ū(z)| ≤ |F(z, t)|,
|K(z, t)| ≤ |V(z, t)− V̄(z)| ≤ |G(z, t)|,
|S(z, t)| ≤ |W(z, t)− W̄(z)| ≤ |H(z, t)|,

(74)

for ∀(z, t) ∈ R×R+. Combining Lemmas 3 and 4 and the squeezing theorem, it is easy to
find that, for all (z, t) ∈ R×R+,

|U(z, t)− Ū(z)| ≤ ke−ηt, t > 0,
|V(z, t)− V̄(z)| ≤ ke−ηt, t > 0,
|W(z, t)− W̄(z)| ≤ ke−ηt, t > 0,

(75)

where k, η > 0. Hence, the proof is done.

4. Conclusions

We examined if traveling waves in the Lotka–Volterra competition model with three
species (2) display both local and global stability under the condition (4). Theorem 1
demonstrates, utilizing linearization and the crucial spectrum analysis, that the traveling
wave solution is locally stable in a weighted functional space. Additionally, Theorem 2
demonstrates that all solutions converge to the wavefront solution using the upper-and-
lower solution method and the squeezing theorem under the added constraint (9).
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