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Abstract: Dunkl operators are a family of commuting differential–difference operators associated
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1. Introduction

Dunkl operators were introduced by Dunkl [1,2]. These operators are first-order
differential–difference operators which generalize partial derivatives. Moreover, they
are commuting. Their most important property is invariant under reflections. Based
on Dunkl operators, people can construct Dunkl Laplace operators. The Dunkl Laplace
operator is the sum of a second-order differential operator, which is used to study models
of mechanics [3,4]. In fact, the study of the theory of Dunkl Laplacian operators is a very
difficult task. The main reason for this difficulty is that Dunkl Laplace is not invariant
under the whole orthogonal group. However, it is the intertwining operator that allows
interchange in the Dunkl derivatives with the usual partial derivatives. The property of
the operator allows us to establish the structure of the Lie algebra [5–8]. Based on the
Lie algebra structure, we study Dirichlet and Neumann boundary value problems via the
framework of Dunkl analysis in this paper.

The Dirichlet problem (see [9]) is a very important boundary value problem for
polyharmonic equations. The solutions of Dirichlet problem and its related problems
for polyharmonic equations are given via Green function. Furthermore, the solvability
conditions for these problems were also studied in past studies [10–13]. Neumann boundary
value problems, unlike Dirichlet problems, require more restrictions on the boundary
conditions and are more complicated [14]. The solutions of the Neumann problem for
polyharmonic equations are given via the well-known Almansi formula without invoking
the Green’s function [15]. It is the aim of the present paper to extend this idea to study
Dirichlet and Neumann boundary value problems related to Dunkl polyhamonic equations
in a different way.

In this paper, we begin with an introduction to Dunkl operators and Dunkl Laplace
operators. In the next section, we construct solutions for inhomogeneous Dunkl poly-
harmonic equations based on the solutions of Dunkl–Possion equation [16]. In Section 4,
we investigate Dirichlet problems for Dunkl biharmonic equations. Moreover, we study
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Dirichlet problems for Dunkl polyharmonic equations in Section 5. In Section 6, we consider
solutions of Neumann problem for a non-homogeneous Dunkl polyharmonic equation.

2. Preliminaries

The purpose of this section is to introduce Dunkl and Dunkl Laplace operators. For
these details, readers can refer to [1–3,5–8].

Let Rm be the Euclidean space. Let {e1, e2, · · · em} be the standard basis of Rm. Let
R0,m be the associated real Clifford algebra in which eiej + ejei = −2δi,j. In fact, δi,j = 0, if
i 6= j; thus, δi,j = 1, if i = j. The vector space R0,m is generated via eA = el1 el2 · · · elk , where
1 ≤ l1 < l2 · · · < lk ≤ m, e0 = 1. Each a ∈ R0,m can be written as a = ∑

A
aAeA, where

aA ∈ R. Let x = (x1, · · · , xm) ∈ Rm. Thus, we have x =
m
∑

i=1
xiei. Furthermore, it is easy to

obtain x2 = −|x|2.
For ξ ∈ Rm\{0}, the reflection σξ is defined through

σξ(x) = x− 2
〈x, ξ〉
|ξ|2

ξ, x ∈ Rm.

Let < be a finite subset of Rm. If σξ(<) = <, the set < is called a root system. Let
<+ be a hyperplane through the origin. Thus, we have < = <+ ∪ (−<+). The subgroup
W ⊂ O(m,<), generated via the reflections

{
σξ

∣∣ξ ∈ <}, is called the finite reflection group.
If a function κ : < → C is invariant under the group W, the function κ is called a

multiplicity function. Setting κξ := κ(ξ), for ξ ∈ <. We will denote γ = ∑
ξ∈<+

κξ .

For g(x) ∈ C1(Rm), the Dunkl operators Ti are given as

Tig(x) =
∂g(x)

∂xi
+ ∑

ξ∈<+

κξ
g(x)− g

(
σξ x
)

〈x, ξ〉 ξi,

where i = 1, . . . , m.
The Dunkl Laplace operator ∆h is given as

∆hg(x) =
m

∑
i=1

T2
i g(x) = ∆g(x) + 2 ∑

ξ∈R+

κξ

(
〈∇g(x), ξ〉
〈ξ, x〉 −

g(x)− g
(
σξ x
)

〈ξ, x〉2

)
,

where ∆ is the Laplace operator and ∇ is the gradient operator. For κξ = 0, the Dunkl
Laplace operator ∆h is the Laplace operator. Let g(x) ∈ C2(Rm). If the function g(x)
satisfies ∆hg(x) = 0, it is called a Dunkl harmonic function.

If we allow ∆h to act on x2, we have ∆hx2 = −∆h
∣∣x2
∣∣ = −(4m + 2γ) = −2µ, where

Reγ ≥ 0, and µ is considered as the Dunkl version of the dimension.

3. Solutions of Inhomogeneous Dunkl Polyharmonic Equations

Definition 1. Let Ω ⊂ Rm. Let E be the Euler operator. Therefore, the generalized Euler operator
Eλ is given as

Eλ = λ + E = λ +
m

∑
i=1

xi∂xi ,

where λ ∈ R. It allows us to obtain the property: if the function g(x) satisfies ∆hg(x) = 0, it can
be said that Eλg(x) also satisfies ∆hg(x) = 0. Morever, we have EPl(x) = lPl(x), where Pl(x) is
a homogeneous Clifford-valued polynomial of degree l.



Mathematics 2023, 11, 2185 3 of 15

Lemma 1. [5]. The operators x2, ∆h, Eµ generate the lie algebra

E µ
2

x2 − x2E µ
2
= 2x2,E µ

2
∆h − ∆hE µ

2
= 2∆h,x2∆h − ∆hx2 = 4E µ

2
.

Let Ω∗ be a star domain. Let f (x) ∈ C∞(Ω∗)⊗ R0,m. Therefore, we study a solution of
the Dunkl–Possion equation via Clifford analysis

∆hg(x) = f (x). (1)

Theorem 1. [16]. Let f (x) ∈ C∞(Ω∗)⊗ R0,m. A solution of Equation (1) can be found in the form

g(x) =
∞

∑
s=0

(−1)sx2(s+1)

4s+1(s + 1)!s!

∫ 1

0
(1− α)sαµ+s−1∆s

h f (αx)dα. (2)

We assume all infinite series in this paper converge absolutely and uniformly in the
unit ball S = {x ∈ Rm : |x| < 1}.

In this section, we consider the inhomogeneous Dunkl polyharmonic equation

∆k
hg(x) = f (x) (3)

where f (x) ∈ C∞(S)⊗ R0,m.
Using Theorem 1, we obtain the following result.

Theorem 2. Let f (x) ∈ C∞(S)⊗ R0,m. Therefore,

g(x) =
x2k

2k−1(k− 1)!

∞

∑
s=0

(−1)sx2s

4s+k(s + k)!s!

∫ 1

0
(1− α)s+k−1αµ+s−1∆s

h f (αx)dα (4)

is a solution of the Equation (3).

Proof of Theorem 2. We prove via induction. For k = 1,

g(x) =
∞

∑
s=0

(−1)sx2(s+1)

4s+1(s + 1)!s!

∫ 1

0
(1− α)sαµ+s−1∆s

h f (αx)dα, (5)

which is a solution of Equation (3) for k = 1. We suppose that formula (4) holds for k = p.
Therefore, for k = p + 1, we will prove that this formula is also valid.

Let ∆p
h g(x) = u(x). Next, using (3), we have ∆hu(x) = f (x). Through applying

Theorem 1, we have

u(x) =
∞

∑
s=0

(−1)sx2(s+1)

4s+1(s + 1)!s!

∫ 1

0
(1− α)sαµ+s−1∆s

h f (αx)dα. (6)

In addition, using the inductive assumption, g(x) can be written as

g(x) =
x2p

2p−1(p− 1)!

∞

∑
s=0

(−1)sx2s

4s+p(s + p)!s!

∫ 1

0
(1− α)s+p−1αµ+s−1∆s

hu(αx)dα. (7)

Using ∆s
hu(x) = ∆s−1

h f (x), from (7), we obtain the representation

g(x) = x2p

2p−1(p−1)!
1

4p p!

∫ 1
0 (1− α)p−1αµ−1u(αx)dα

+ x2p

2p−1(p−1)!

∞
∑

s=1

(−1)sx2s

4s+p(s+p)!s!

∫ 1
0 (1− α)s+p−1αµ+s−1∆s−1

h f (αx)dα.
(8)
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Let us transform the first integral in relation (8) with the use of the representation (6):

1
4p p!

∫ 1
0 (1− α)p−1αµ−1u(αx)dα

= 1
4p p!

∫ 1
0 (1− α)p−1αµ−1

∞
∑

s=0

(−1)s(αx)2(s+1)

4s+1(s+1)!s!

∫ 1
0 (1− β)sβµ+s−1∆s

h f (αβx)dβdα

= 1
4p p!

∞
∑

s=0

(−1)sx2(s+1)

4s+1(s+1)!s!

∫ 1
0

∫ 1
0 (1− α)p−1α2s+µ+1(1− β)sβµ+s−1∆s

h f (αβx)dβdα

= 1
4p p!

∞
∑

s=0

(−1)sx2(s+1)

4s+1(s+1)!s!

∫ 1
0

∫ 1
0 (1− α)p−1α(α− αβ)s(αβ)µ+s−1∆s

h f (αβx)d(αβ)dα.

Let αβ = t. Therefore, through changing the integration order, we have

1
4p p!

∫ 1
0 (1− α)p−1αµ−1u(αx)dα

= 1
4p p!

∞
∑

s=0

(−1)sx2(s+1)

4s+1(s+1)!s!

∫ 1
0

∫ α
0 (1− α)p−1α(α− t)stµ+s−1∆s

h f (tx)dtdα

=
1

4p p!

∞

∑
s=0

(−1)sx2(s+1)

4s+1(s + 1)!s!

∫ 1

0
tµ+s−1∆s

h f (tx)
∫ 1

t
(1− α)p−1α(α− t)sdαdt. (9)

Let α = t + (1− t)β. Therefore,∫ 1
t α(1− α)p−1(α− t)sdα

=
∫ 1

0 (1− β)p−1βs(1− t)p+s[t + (1− t)β]dβ

= (1− t)p+st
∫ 1

0 (1− β)p−1βsdβ + (1− t)p+s+1∫ 1
0 (1− β)p−1βs+1dβ.

We note that ∫ 1

0
(1− α)k−1αs−1dα =

(s− 1)!(k− 1)!
(s + k− 1)!

. (10)

Therefore ∫ 1
t (1− α)p−1α(α− t)sdα

= (p−1)!s!
(p+s)! t(1− t)p+s + (s+1)!(p−1)!

(p+s+1)! (1− t)p+s+1

= (p−1)!s!(1−t)p+s

(p+s)!

(
(s+1)(1−t)

s+p+1 + t
)

= (p−1)!s!(s+1+pt)
(p+s+1)! (1− t)p+s.

Through substituting the value of the integral into (9), and through making the change
in variables t→ α, we reduce relation (9) to the form

1
4p p!

∫ 1
0 (1− α)k−1αµ−1u(αx)dα

= 1
4p p!

∞
∑

s=0

(−1)sx2(s+1)

4s+1(s+1)!s!

∫ 1
0 αµ+s−1(1− α)p+s (p−1)!s!(s+1+pα)

(p+s+1)! ∆s
h f (αx)dα

= 1
4p

∞
∑

s=0

(−1)sx2(s+1)

4s+1(s+1)!s!

∫ 1
0 αµ+s−1(1− α)p+s s!(s+1+pα)

p(p+s+1)! ∆s
h f (αx)dα.

(11)

Now, we consider Formula (8) and transform the second integral through replacing
p→ p + 1 :

∞
∑

s=1

(−1)sx2s

4s+p(s+p)!s!

∫ 1
0 (1− α)s+p−1αµ+s−1∆s−1

h f (αx)dα

=
∞
∑

s=0

(−1)sx2(s+1)

4s+p+1(s+p+1)!(s+1)!

∫ 1
0 (1− α)s+pαµ+s∆s

h f (αx)dα

= 1
4p

∞
∑

s=0

(−1)sx2(s+1)

4s+1(s+1)!s!

∫ 1
0 (1− α)s+pαµ+s−1

(
s!(−α)

(p+s+1)!

)
∆s

h f (αx)dα.

(12)



Mathematics 2023, 11, 2185 5 of 15

Through applying the sum of the resulting expressions in (11) and (12), we rewrite
formula (8) in the form

1
4p

∞
∑

s=0

(−1)sx2(s+1)

4s+1(s+1)!s!

∫ 1
0 αµ+s−1(1− α)p+s s!(s+1+pα)

p(p+s+1)! ∆s
h f (αx)dα

+ 1
4p

∞
∑

s=0

(−1)sx2(s+1)

4s+1(s+1)!s!

∫ 1
0 αµ+s−1(1− α)s+p

(
s!(−α)

(p+s+1)!

)
∆s

h f (αx)dα

= 1
4p

∞
∑

s=0

(−1)sx2(s+1)

4s+1(s+1)!s!

∫ 1
0 αµ+s−1(1− α)s+p

(
s!(s+1+pα)
p(p+s+1)! +

s!(−α)
(p+s+1)!

)
∆s

h f (αx)dα

= 1
4p

∞
∑

s=0

(−1)sx2(s+1)

4s+1(s+1)!s!

∫ 1
0 αµ+s−1(1− α)p+s (s+1)!

p(p+s+1)! ∆
s
h f (αx)dα

= 1
4p p

∞
∑

s=0

(−1)sx2(s+1)

4s+1(p+s+1)!s!

∫ 1
0 αµ+s−1(1− α)p+s∆s

h f (αx)dα,

which implies formula (4) holds for k = p + 1. The proof is complete. �

Corollary 1. Let Pl(x) be as stated in Definition 1. Therefore, the solution to the equation
∆k

hg(x) = Pl(x) can be represented in the form

g(x) =
x2k

2k−1(k− 1)!

[ l
2 ]

∑
s=0

(−1)sx2s∆s
hPl(x)

4s+k(s + k)s!(l + µ− s) · · · (l + µ + k− 1)
, (13)

where
[

l
2

]
is the integer part of l

2 .

Proof of Corollary 1. Using Definition 1, we obtain ∆k
hPl(αx) = αl−2k∆k

hPl(x). Therefore,
(4) can be transformed into

g(x) = x2k

2k−1(k−1)!

[ l
2 ]

∑
s=0

(−1)sx2s

4s+k(s+k)!s!

∫ 1
0 (1− α)s+k−1αµ+s−1∆s

hPl(αx)dα

= x2k

2k−1(k−1)!

[ l
2 ]

∑
s=0

(−1)sx2s∆s
hPl(x)

4s+k(s+k)!s!

∫ 1
0 (1− α)s+k−1αl+µ−2s+s−1dα.

Using formula (10), we have

g(x) =
x2k

2k−1(k− 1)!

[ l
2 ]

∑
s=0

(−1)sx2s∆s
hPl(x)Γ(s + k)Γ(l + µ− s)

4s+k(s + k)!s!Γ(l + µ + k)
.

Using Γ(s) = (s− 1)!, we find that

g(x) =
x2k

2k−1(k− 1)!

[ l
2 ]

∑
s=0

(−1)sx2s∆s
hPl(x)Γ(l + µ− s)

4s+k(s + k)s!Γ(l + µ + k)
.

It follows that

g(x) =
x2k

2k−1(k− 1)!

[ l
2 ]

∑
s=0

(−1)sx2s∆s
hPl(x)

4s+k(s + k)s!(l + µ− s) · · · (l + µ + k− 1)
,

which completes the proof. �

Lemma 2. [16]. Let f (x) be as stated in Theorem 1. If Re µ ≥ 0, we can state that

∆h

[
x2k f (x)

]
= x2k∆h f (x) + 4kx2k−2Eµ+k−1 f (x). (14)
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Corollary 2. Let Pl(x) be as stated in Definition 1. Thus, the function

g(x) =
x2k+2iPl(x)
2k−1(k− 1)!

i

∑
s=0

(−1)s(2i− 2s + 2, 2)s(2l + 2µ + 2i− 2s, 2)s
4s+k(s + k)s!(l + µ + 2i + k− 1)!

,

is a solution of the equation ∆k
hg(x) = x2iPl(x). For s = 0, (c, d)0 = 1. For s = 1, 2, · · · , (c, d)s =

c(c + d) · · · (c + sd− d).

Proof of Corollary 2. Let f (x) = x2iPl(x). We calculate this solution using Formula (4)
to obtain

g(x) =
x2k

2k−1(k− 1)!

∞

∑
s=0

(−1)sx2s

4s+k(s + k)!s!

∫ 1

0
(1− α)s+k−1αµ+s−1∆s

h

[
(αx)2iPl(αx)

]
dα.

Let us derive an expression for ∆s
h
[
x2iPl(x)

]
. Using Lemma 2, we have

∆h

[
x2iPl(x)

]
= 4ix2i−2(l + µ + i− 1)Pl(x).

Therefore, for 2s ≤ 2i, we have

∆s
h
[
x2iPl(x)

]
= 2i(2i− 2) · · · (2i− 2s + 2)(2l + 2µ + 2i− 2) · · · (2l + 2µ + 2i− 2s)x2i−2sPl(x)
= (2i− 2s + 2, 2)s(2l + 2µ + 2i− 2s, 2)sx2i−2sPl(x).

Thus, as Pl(αx) = αl Pl(x), we have∫ 1
0 (1− α)s+k−1αµ+s−1∆s

h

[
(αx)2iPl(αx)

]
dα

=
∫ 1

0 (1− α)s+k−1αµ+s−1α2i−2s(2i + 2− 2s, 2)s(2l + 2i + 2µ− 2s, 2)sx2i−2sPl(αx)dα

= x2i−2sPl(x)(2i− 2s + 2, 2)s(2l + 2µ + 2i− 2s, 2)s
∫ 1

0 (1− α)s+k−1αµ+2i+l−s−1dα

= x2i−2sPl(x)(2i− 2s + 2, 2)s(2l + 2µ + 2i− 2s, 2)s
(s+k−1)!(µ+2i+l−s−1)!

(µ+2i+k+l−1)! .

Thus, g(x) is transformed into

g(x) = x2k

2k−1(k−1)!

i
∑

s=0

(−1)sx2s

4s+k(s+k)!s!

∫ 1
0 (1− α)s+k−1αµ+s−1∆s

h

[
(αx)2iPl(αx)

]
dα

= x2k Pl(x)
2k−1(k−1)!

i
∑

s=0

(−1)sx2sx2i−2s(2i+2−2s, 2)s(2l+2i−2s+2µ,2)s
4s+k(s+k)!s!(µ+2i+k+l−1)!

= x2k+2i Pl(x)
2k−1(k−1)!

i
∑

s=0

(−1)s(2i−2s+2, 2)s(2l+2µ+2i−2s,2)s
4s+k(s+k)s!(µ+2i+k+l−1)!

.

Thus, we complete the proof. �

4. Dirichlet Boundary Value Problems for Dunkl Biharmonic Equations
4.1. Homogeneous Dirichlet Problems for Inhomogeneous Dunkl Biharmonic Equations

In this section, we study the homogeneous Dirichlet problem for the inhomogeneous
Dunkl biharmonic equation in S: find a function u(x), such that{

∆2
hu(x) = f (x),

u|∂S = 0, ∂u
∂n

∣∣∣
∂s
= 0, (15)

with a polynomial function f (x). Here, n is the unit outward normal to the vector.
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Lemma 3. [16]. Let fl(x) be a homogeneous Clifford-valued polynomial of degree l. Thus,

fl(x) = Rl(x) + x2Rl−2(x) + · · ·+ x2iRl−2i(x),

where Rl−2i(x), we find homogeneous Dunkl harmonic polynomials and

Rl−2i(x) =
(2l − 4i + 2µ− 2)

(2, 2)i

∞

∑
s=0

(−1)sx2s∆s+i
h fl(x)

(2, 2)s(2l − 4i− 2s + 2µ− 2, 2)s+i+1
(16)

where (c, d)s is as stated in Corollary 2.

Theorem 3. Let f (x) be as stated in Problem (15). Thus, the function

g(x) =
(

x2 + 1
4

)2∫ 1

0

∞

∑
k=0

(1− α)k+1

(k + 2)!k!

(
1 + αx2

4

)k

∆k
h f (αx)αµ−1dα (17)

is a solution of Problem (15).

Proof of Theorem 3. Step 1: Firstly, we study the homogeneous Dirichlet problem to find a
function for the Dunkl biharmonic equation satisfying{

∆2
hu(x) = x2iRl−2i(x),
u|∂S = 0, ∂u

∂n

∣∣∣
∂s
= 0.

(18)

Using Corollary 1, we have

x2i+4Rl−2i(x)
(2i + 4)(2i + 2)(2l − 2i + 2µ + 2)(2l − 2i + 2µ)

as a solution to the equation ∆2
hu(x) = x2iRl−2i(x), while we also have

ui(x) =

[
x2i+4 + (−1)i(i + 1) + (−1)i(i + 2)x2

]
Rl−2i(x)

(2i + 4)(2i + 2)(2l − 2i + 2µ + 2)(2l − 2i + 2µ)
. (19)

as a solution of the Dirichlet problem (18).
Note that Rl−2i(x) are the homogenous Dunkl harmonic polynomials and x2 = −|x|2.

It is easy to check if Formula (19) is correct. We expand the polynomial fl(x) with the use
of the Almansi Formula (19) into terms of the form x2iRl−2i(x),

fl(x) = Rl(x) + x2Rl−2(x) + · · ·+ x2iRl−2i(x), l − 2i ≥ 0.

Let us apply Formula (13) to both sides. Thus, using Lemma 3, the solution of the
equation ∆2

hu(x) = x2iRl−2i(x) has the form

x2i+4Rl−2i(x)
2

i

∑
s=0

(−1)s(2i− 2s + 2, 2)s(2l + 2µ− 2i− 2s, 2)s
4s+2(s + 2)s!(µ + l + 1)!

,

where the homogeneous polynomials Rl−2i(x) have the form

Rl−2i(x) =
(2l − 4i + 2µ− 2)

(2, 2)i

∞

∑
s=0

(−1)sx2s∆s+i
h fl(x)

(2, 2)s(2l − 4i− 2s + 2µ− 2, 2)s+i+1
.
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Considering the Dirichlet problem (17), we have the solution[
x2i+4 + (i + 1)− (i + 2)x2]Rl−2i(x)

2

i

∑
s=0

(−1)s(2i− 2s + 2, 2)s(2l + 2µ− 2i− 2s, 2)s
4s+2(s + 2)s!(µ + l + 1)!

.

Secondly, we consider the following homogeneous boundary value problem for the
inhomogeneous polyharmonic equation in S:{

∆2
hu(x) = fl(x),

u|∂S = 0, ∂u
∂n

∣∣∣
∂s
= 0,

where fl(x) is a Clifford-valued polynomial of degree l, and n is the unit outward normal
to the unit sphere ∂s.

Using Formula (19), we have

ul(x) =
[ l

2 ]

∑
i=0

ui(x)

=
[ l

2 ]

∑
i=0

[
x2i+4+(−1)i(i+1)+(−1)i(i+2)x2

]
Rl−2i(x)

(2i+4)(2i+2)(2l−2i+2µ+2)(2l−2i+2µ)

=
∞
∑

i=0

(−1)i(i+1)x2i+4∆i
h fl(x)

(2,2)i+2(2l−2i+2µ, 2)i+2
+

[ l
2 ]

∑
i=0

[
(−1)i(i+1)+(−1)i(i+2)x2

]
Rl−2i(x)

(2i+4)(2i+2)(2l−2i+2µ+2)(2l−2i+2µ)

=
∞
∑

i=0

(−1)i(i+1)x2i+4∆i
h fl(x)

(2,2)i+2(2l−2i+2µ, 2)i+2

+
[ l

2 ]

∑
i=0

[
(−1)i(i+1)+(−1)i(i+2)x2

]
(2,2)i+2

∞
∑

2i+2j≤l

(−1)j(2l+µ−4i−2)x2j∆i+j
h fl(x)

(2,2)j(2l+µ−4i−2j−2, 2)i+j+3
.

Let i + j = k. Therefore, the last equality becomes

∞
∑

i=0
(−1)i (i+1)x2i+4∆i

h fl(x)
4i+2(i+2)!(l+µ−i)···(l+µ+1)

+
∞
∑

k=0

∆k
h fl(x)
4k+2

k
∑

i=0

(−1)i(l+µ−2k+2i−1)[(k−i+1)(x2i−x2i+2)](2l+µ−4i−2)
(l+µ−2k+2i−1)!i!(l+µ−2k+i−1)···(l+µ−k+i+1)

=
∞
∑

k=0

∆k
h fl(x)
4k+2

k+2
∑

i=0

(−1)ix2i i(l+µ−2k+2i−3)(l+µ−k+i+1)
i!(k−i+2)!(l+µ−2k+i−2)···(l+µ−k+i+1)

+
∞
∑

k=0

∆k
h fl(x)
4k+2

k+2
∑

i=0

(−1)ix2i(k−i+1)(l+µ−2k+2i−1)(l+µ−2k+i−2)
i!(k−i+2)!(l+µ−2k+i−2)···(l+µ−k+i+1)

=
(

x2 + 1
)2 ∞

∑
k=0

(k+1)∆k
h fl(x)

4k+2(k+2)!

k
∑

i=0

(−1)ik(k−1)···(k−i+1)x2i

i!(l+µ−2k+i)···(l+µ−k+i+1) .

Applying Formula (10), we have

1
(l + µ− 2k + i) · · · (l + µ− k + i + 1)

=
1

(k + 1)!

∫ 1

0
(1− α)k+1αl+µ+i−2k−1dα.

Thus, ∫ 1
0 (1− α)k+1αl+µ−2k−1

k
∑

i=0

k(k−1)···(k−i+1)αix2i

i!(l+µ−2k+i)···(l+µ−k+i+1)dα

=
∫ 1

0 (1− α)k+1(1 + αx2)k
αl+µ−2k−1dα.

Therefore, we have

ul(x) =
(
x2 + 1

)2

42

∫ 1

0

∞

∑
k=0

(
1 + αx2)k

(1− α)k+1

4k(k + 2)!k!
∆k

h fl(αx)αµ−1dα.
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Thirdly, we consider the boundary value problem (15).
Since u(x) is an arbitrary polynomial, let u(x) = ∑

l
ul(x). and let ul(x) denote the

polynomial solution of Dirichlet problem (15). Thus,

u(x) = ∑
l

ul(x) =
(
x2 + 1

)2

42

∞

∑
k=0

∫ 1

0

(
1 + αx2)k

(1− α)k+1

4k(k + 2)!k!
∆k

h f (αx)αµ−1dα.

We complete the proof. �

4.2. Inhomogeneous Dirichlet Problems for Homogeneous Dunkl Biharmonic Equations

In this section, we investigate the inhomogeneous Dirichlet problem for the homoge-
neous Dunkl biharmonic equation to find a function u(x), such that{

∆2
hu(x) = 0,

u|∂S = f1(x), ∂u
∂n

∣∣∣
∂s
= 0, (20)

with a Clifford-valued polynomial right-hand side f1(x) for m ≥ 2. Here, n is the unit
outward normal to the unit sphere ∂S.

Theorem 4. If u(x) ∈ C2(S)⊗ R0,m, it is true that

u(x) = f1(x) + 1+x2

2 E f1(x)

+
(x2+1)

2

2

∫ 1
0

∞
∑

k=0

(1+αx2)
k
(1−α)k

4k+1(k+1)!k!
∆k+1

h

(
E f1 − 1−α

2k+4 ∆h f1

)
(αx)αµ−1dα.

is a solution of Problem (20).

Proof of Theorem 4. With the help of Formula (17), we will find the function

g(x) =
(
x2 + 1

)2

42

∫ 1

0

∞

∑
k=0

(
1 + αx2)k

(1− α)k+1

4k(k + 2)!k!
∆k+2

h f1(αx)αµ−1dα

as the solution to the following problem{
∆2

hg(x) = ∆2
h f1(x), x ∈ Ω,

g|∂S = 0, ∂g
∂n

∣∣∣
∂s
= 0. (21)

Let the Dunkl harmonic polynomial h(x) satisfies the condition h(x)|∂S = E f1(x)|∂S.
Therefore, the function u(x) = f1(x) + 1+x2

2 h(x) − g(x). We can check if that the
function satisfies the equation ∆2

hu(x) = ∆2
h f1(x) − ∆2

hg(x) = 0. Through applying the
properties of the operator E, we have u|∂S = f1(x) and

∂u
∂n

∣∣∣∣
∂s
= E

(
f1(x) +

1 + x2

2
h(x)

)∣∣∣∣
∂S

= (E f1(x)− h(x))|∂S = 0.

The polynomial h(x) is written as

h(x) = E f1(x)− x2 + 1
42

∫ 1

0

∞

∑
k=0

(
1 + αx2)k

(1− α)k+1

4k(k + 2)!k!
∆k+2

h f1(αx)αµ−1dα.
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Thus, the solution u(x) is written as

u(x) = f1(x) + 1+x2

2 E f1(x)

+
(x2+1)

2

2

∫ 1
0

∞
∑

k=0

(1+αx2)
k
(1−α)k

4k+1(k+1)!k!
∆k+1

h

(
E f1 − 1−α

2k+4 ∆h f1

)
(αx)αµ−1dα.

�

4.3. Inhomogeneous Dirichlet Problems for Homogeneous Dunkl Biharmonic Equations

In this section, we consider the inhomogeneous Dirichlet problem for the homoge-
neous Dunkl biharmonic equation to find a function u(x), such that{

∆2
hu(x) = 0,

u|∂S = 0, ∂u
∂n

∣∣∣
∂s
= f2(x), (22)

with a right-hand side Clifford-valued polynomial f2(x) for m ≥ 2. Here, n is the unit
outward normal to the unit sphere ∂S.

Theorem 5. If u(x) ∈ C2(S)⊗ R0,m, it is also true that

u(x) = 1+x2

2 f2(x)− (x2+1)
2

2

∫ 1
0

∞
∑

k=0

(1+αx2)
k
(1−α)k

4k+1(k+1)!k!
∆k+1

h f2(αx)αµ−1dα

is a solution to Problem (22).

Proof of Theorem 5. Supposing that g(x) satisfies the condition g(x)|∂S = f2(x)|∂S. Let
u(x) = 1+x2

2 g(x). Thus, the function u(x) satisfies u(x)|∂S = 0, and

∂u(x)
∂n

∣∣∣∣
∂s
= Eu|∂S =

(
g(x)E

(
x2 + 1

2

)
+

x2 + 1
2

Eg(x)
)∣∣∣∣

∂S
= f2(x)|∂S.

The function g(x) can be written as

g(x) = f2(x)− x2 + 1
42

∫ 1

0

∞

∑
k=0

(
1 + αx2)k

(1− α)k+1

4k(k + 2)!k!
∆k+1

h f2(αx)αµ−1dα.

Therefore, we have

u(x) = 1+x2

2 f2(x)

− (x2+1)
2

2

∫ 1
0

∞
∑

k=0

(1+αx2)
k
(1−α)k

4k+1(k+1)!k!
∆k+1

h f2(αx)αµ−1dα.

�

4.4. Inhomogeneous Dirichlet Problems for Inhomogeneous Dunkl Biharmonic Equations

In this section, we study another mathematical problem. Assuming that f (x), f1(x),
and f2(x) are Clifford-valued polynomial functions, we find a function u(x), such that{

∆2
hu(x) = f (x),

u|∂S = f1(x), ∂u
∂n

∣∣∣
∂s
= f2(x). (23)
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Theorem 6. If u(x) ∈ C2(S)⊗ R0,m, it is also true that

u(x) = f1(x) + 1+x2

2 [ f1(x)− E f2(x)]

+ 1+x2

2

∫ 1
0

∞
∑

k=0

(1+αx2)
k
(1−α)k+1

4k(k+1)!k!
∆k

h

[
∆h(E f1 − f2) +

1−α
2k+4

(
f − ∆2

h f1
)]
(αx)dα

is a solution of Dirichlet problem (23).

Proof of Theorem 6. Problem (23) is a combination of three problems: Equations (15), (20),
and (22). Applying Theorems 3, 4, and 5, we find the result. �

5. Dirichlet Boundary Value Problems for Dunkl Polyharmonic Equations
5.1. Homogeneous Dirichlet Problems for Inhomogeneous Dunkl Polyharmonic Equations

In this section, we consider the homogeneous Dirichlet problem in the unit ball. We
aim to find a function u(x), such that{

∆k
hu(x) = f (x),

u|∂S = 0, ∂iu
∂ni

∣∣∣
∂s
= 0, i = 1, · · · k− 1,

(24)

with a right-hand side Clifford-valued polynomial f (x) for m ≥ 2.
Next, we give the important property of the Euler operator E as follows.

Lemma 4. [12]. Let Ω ⊂ Rm. Then

∂ku
∂nk

∣∣∣∣∣
∂Ω

= E[k]u
∣∣∣
∂Ω

,

where the factorial power operator E[k] = E(E− 1) · · · (E− k + 1).

Theorem 7. The solution of Dirichlet problem (24) can be written as

G(x) =
(

x2 + 1
)k

2(2k− 2)!!

∫ 1

0

∞

∑
s=0

(
1 + αx2)s

(1− α)s+k−1αµ+s−1

(2s + 2k)!!(2s)!!
∆s

h f (αx)dα, (25)

where s ≤
[
deg f (x)

2

]
.

Proof of Theorem 7. Using Theorem 2, we obtain the solution to the equation ∆k
hu(x) =

f (x). Let fl(x) be a homogeneous polynomial of degree l. Using Lemmas 2 and 3, we have
the solution of the equation ∆k

hu(x) = fl(x), given as

ul(x) =
[ l

2 ]

∑
i=0

x2i+2k fl−2i(x)
(2i + 2, 2)k(2l − 2i + 2µ, 2)k

.

Step 1: we consider the following homogeneous boundary value problem for inhomo-
geneous polyharmonic equations in the unit ball S = {x ∈ Rm : |x| < 1}{

∆k
hu(x) = x2i fl−2i(x),

u|∂S = 0, ∂iu
∂ni

∣∣∣
∂s
= 0, i = 1, · · · , k− 1.

(26)



Mathematics 2023, 11, 2185 12 of 15

The solution of the homogeneous Dirichlet problem (26) is given as

ui(x) =
(

x2 + 1
)k fl−2i(x)

(2i + 2, 2)k(2l − 2i + 2µ, 2)k

i

∑
j=0

(i + k)(i + k− 1) · · · (i− j + 1)
(j + k)!

(
x2 + 1

)j
.

Step 2: we consider the following homogeneous boundary value problem for inhomo-
geneous polyharmonic equations in the unit ball S = {x ∈ Rm : |x| < 1}{

∆k
hu(x) = fl(x),

u|∂S = 0, ∂iu
∂ni

∣∣∣
∂s
= 0, i = 1, · · · , k− 1.

(27)

The solution of the homogeneous Dirichlet problem (27) is given as

ul(x) =
[ l

2 ]

∑
i=0

ui(x) =
[ l

2 ]

∑
i=0

(
x2 + 1

)k fl−2i(x)
(2i + 2, 2)k(2l − 2i + 2µ, 2)k

i

∑
j=0

(i + k) · · · (i− j + 1)
(j + k)!

(
x2 + 1

)j
.

Let (c)s = c(c + 1) · · · (c + s− 1). Thus, we obtain

ul(x) =
(

x2 + 1
)k [

l
2 ]

∑
i=0

Ck−1
i+k−1

∆i fl(x)
4i+k(i + k)!

i

∑
j=0

Cj
i

x2j

(l − 2i + j− µ)i+k
.

Applying the properties of the Euler gamma and beta functions, we have

1
(l − 2i + j− µ)i+k

=
1

(i + k− 1)!

∫ 1

0
(1− α)i+k−1αl−2i+j−µ−1dα.

Thus, we have

1
i!

∫ 1

0
(1− α)i+k−1αl−2i+j−µ−1

i

∑
j=0

Cj
i x2jdα =

1
i!

∫ 1

0
(1− α)i+j−1

(
1 + αx2

)i
αl−2i−µ−1dα.

Therefore, we have

ul(x) =
(
x2 + 1

)k

2(2k− 2)!!

∫ 1

0

[ l
2 ]

∑
s=0

(
1 + αx2)s

(1− α)s+k−1

(2s + 2k)!!(2s)!!
∆s

h f (αx)αµ+s−1dα.

where the sum over s is finite, and the upper summation index is
[

l
2

]
.

Step 3: we consider the problem (24). We note that the function f (x) can be written as
f (x) = ∑

l
fl(x). Therefore, the solution to problem (24) is given as u(x) = ∑

l
ul(x), where

ul(x) is a solution of Dirichlet problem (27). It follows from Theorem 3 that

u(x) = (x2+1)
k

2(2k−2)!!

∫ 1
0

∞
∑

s=0

(1+αx2)
s
(1−α)s+k−1αµ+s−1

(2s+2k)!!(2s)!! ∆s
h∑

l
fl(αx)dα

=
(x2+1)

k

2(2k−2)!!

∫ 1
0

∞
∑

s=0

(1+αx2)
s
(1−α)s+k−1αµ+s−1

(2s+2k)!!(2s)!! ∆s
h f (αx)dα.

�



Mathematics 2023, 11, 2185 13 of 15

5.2. Inhomogeneous Dirichlet Problems for Homogeneous Dunkl Polyharmonic Equations

In this section, we consider the inhomogeneous Dirichlet problems for the homoge-
neous Dunkl polyharmonic equation in S.{

∆k
hu(x) = 0,

u|∂S = f0(x), ∂iu
∂ni

∣∣∣
∂s
= fi(x), i = 1, · · · k− 1,

(28)

where n is the outward normal to ∂S, and fi(x) are Clifford-valued polynomials.

Theorem 8. The solution of Dirichlet problem (28) is given as

u(x) =
k−1
∑

l=0

(
x2 + 1

)l 1
(2l)!!

l
∑

j=0

1
j!

j
∑

i=0
(−1)iE · · · (E− 2(i− 1)) fi(x)

−
k−i
∑

i=0

(x2+1)
i

2(2(k−i)−2)!!

∫ 1
0

∞
∑

s=0

(1+αx2)
s
(1−α)s+k−i−1αµ−1

(2s+2(k−i))!!(2s)!! ∆s+k−1
h fi(αx)dα.

Proof of Theorem 8. Using Lemma 4, we can check out this result directly. �

5.3. Inhomogeneous Dirichlet Problem for a Inhomogeneous Dunkl Polyharmonic Equation

In this section, we construct a solution to the inhomogeneous Dirichlet problem for
the inhomogeneous Dunkl polyharmonic equation in S. That is, finding a function u(x)
satisfying {

∆k
hu(x) = f (x),

u|∂S = f0(x), ∂iu
∂ni

∣∣∣
∂s
= fi(x), i = 1, · · · k− 1,

(29)

where n is the outward normal to ∂S, and f (x), fi(x) are Clifford-valued polynomial
boundary data.

Theorem 9. If u(x) ∈ Ck(S)⊗ R0,m, then the function

u(x) =
k−1
∑

i=0

(
x2 + 1

)i 1
(2i)!!

i
∑

j=0

1
j!

j
∑

s=0

1
s! (−1)sE · · · (E− 2(s− 1)) fs(x)

−
k−i
∑

i=0

(x2+1)
i

2(2(k−i)−2)!!

∫ 1
0

∞
∑

s=0

(1+αx2)
s
(1−α)s+k−i−1αµ−1

(2s+2(k−i))!!(2s)!! ∆s+k−1
h fi(αx)dα

+
(x2+1)

k

2(2k−2)!!

∫ 1
0

∞
∑

s=0

(1+αx2)
s
(1−α)s+k−1αµ−1

(2s+2k)!!(2s)!! ∆s
h f (αx)dα.

is a solution of Problem (29).

Proof of Theorem 9. This result follows directly from Theorems 7 and 8. �

6. Neumann Problem for a Nonhomogeneous Dunkl Polyharmonic Equation

Consider the Neumann problem for a non-homogeneous Dunkl polyharmonic equa-
tion in S : {

∆k
hu(x) = Q(x),

∂iu
∂ni

∣∣∣
∂s
= fi(s), s ∈ ∂S, i = 1, · · · k.

(30)

where n is the outward normal to ∂S, and Q(x), fi(x) are Clifford-valued polynomial
boundary data.
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Theorem 10. A solution to the Neumann problem (30) can be written as

u(x) =
∫ 1

0
g(tx)tµ−1dt,

where Re µ > 0 and g(x) the solution to the Dirichlet problem{
∆k

hg(x) =
(
Eµ + 2k

)
Q(x), x ∈ S,

g|∂S = f1(s),
∂i g
∂ni

∣∣∣
∂s
= i fi(s) + fi+1(s), s ∈ ∂S, i = 2, · · · k− 1.

(31)

Proof of Theorem 10. Using Lemma 1, we have

∆k
hEµu(x) = ∆k−1

h Eµ∆hu(x) + 2∆k
hu(x)

= ∆k−2
h Eµ∆2

hu(x) + 4∆k
hu(x) = · · · = (Eµ∆k

h + 2k∆k
h)u(x).

If we apply Eµ + 2k to both sides of the equation ∆k
hu(x) = Q(x), then(

Eµ + 2k
)
∆k

hu(x) = ∆k
hEµu(x) =

(
Eµ + 2k

)
Q(x).

which implies that g(x) = Eµu(x) satisfies the equation ∆k
hg(x) =

(
Eµ + 2k

)
Q(x).

For i = 1,
∂u
∂n

∣∣∣∣
∂s
= Eµ u(x)|∂S = g(x)|∂s = f1(s).

Using Lemma 4, we have

∂iu
∂ni

∣∣∣∣
∂s
= E[i] u|∂S = (E− 1) · · · (E− i + 1) f |∂S = fi(s), i = 2, · · · , k.

Noting that

(E− 1) · · · (E− i + 1) = E(E− 1) · · · (E− i + 2)− (i− 1)(E− 1) · · · (E− i + 2).

Therefore
∂ig
∂ni

∣∣∣∣
∂s
− (i− 1)

∂i−1u
∂ni−1

∣∣∣∣
∂s
= fi(s), i = 2, · · · , k.

It follows that the function g(x) satisfies the boundary condition of problem (31)

∂ig
∂ni

∣∣∣∣
∂s
= i fi(s) + fi+1(s), s ∈ ∂S, i = 2, · · · k− 1.

Supposing that

u(x) =
∫ 1

0
g(tx)tµ−1dt.

Therefore

g(x) =
∫ 1

0
d
dt
[
g(tx)tµ−1]dt =

∫ 1
0

[
µtµ−1g(tx) + tµ−1Eg(tx)

]
dt

=
∫ 1

0 Eµg(tx) tµ−1dt = Eµu(x).

Since g(x) is a solution of the Dirichlet problem, it follows that u(x) is a solution of
the Neumann problem (30). �
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