## Article

# On Uniformly S-Multiplication Modules and Rings 

Wei Qi * ${ }^{\text {(D) }}$ and Xiaolei Zhang<br>School of Mathematics and Statistics, Shandong University of Technology, Zibo 255049, China<br>* Correspondence: qwrghj@126.com

Citation: Qi, W.; Zhang, X. On
Uniformly S-Multiplication Modules and Rings. Mathematics 2023, 11, 2168 https://doi.org/10.3390/ math11092168

Academic Editors: Juan Ramón García Rozas, Luis Oyonarte Alcalá and Driss Bennis

Received: 8 March 2023
Revised: 27 April 2023
Accepted: 28 April 2023
Published: 5 May 2023


Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).


#### Abstract

In this article, we introduce and study the notions of uniformly $S$-multiplication modules and rings that are generalizations of multiplication modules and rings. Some examples are given to distinguish the new conceptions with the old classical ones.


Keywords: uniformly $S$-multiplication module; uniformly $S$-multiplication ring; idealization

MSC: 13A15

## 1. Introduction

Throughout this article, $R$ is always a commutative ring with an identity. For a subset $U$ of an $R$-module $M$, we denote by $\langle U\rangle$ the submodule of $M$ generated by $U$. A subset $S$ of $R$ is said to be multiplicative if $1 \in S$ and $s_{1} s_{2} \in S$ for any $s_{1} \in S, s_{2} \in S$. Let $N$ be a submodule of $M$, and denote by $\left(N:_{R} M\right)=\{r \in R \mid r M \subseteq N\}$.

The notion of multiplication rings was introduced by Krull [1] early in 1925. A ring $R$ is called a multiplication ring if, for every pair of ideals $J \subseteq K$ of $R$, there exists an ideal $I$ of $R$ such that $J=I K$. Note that an integral domain is a multiplication ring if and only if it is a Dedekind domain (see [2]). Some characterizations of multiplication rings were given by Mott [3]. In 1974, Mehdi [4] first introduced the notion of multiplication modules. An $R$-module $M$ is said to be a multiplication module if, for every pair of submodules $L \subseteq N$ of $M$, there exists an ideal $I$ of $R$ such that $L=I N$. Latter in 1988, Barnard [5] alternatively called an $R$-module $M$ a multiplication if each submodule $N$ of $M$ is of the form $N=I M$ for some ideal $I$ of $R$, or equivalently, $N=\left(N:_{R} M\right) M$. Some more studies on multiplication modules can be found in [5-7].

At the beginning of this century, Anderson et al. [8] introduced the notion of $S$ Noetherian rings, which are a generalization of classical Noetherian rings in terms of a multiplicative set $S$. Since then, some well-known notions of rings and modules have been investigated. In 2020, Anderson, Arabaci, Tekir, and Koç [9] introduced and studied the notion of $S$-multiplication modules. An $R$-module $M$ is called an $S$-multiplication module if, for each submodule $N$ of $M$, there exist $s \in S$ and an ideal $I$ of $R$ such that $s N \subseteq I M \subseteq$ $N$. They generalized some known results on multiplication modules to $S$-multiplication modules and studied $S$-multiplication modules in terms of $S$-prime submodules. Recently, Chhiti and Moindze [10] studied the notion of $S$-multiplication rings. A ring $R$ is called an $S$-multiplication ring if each ideal of $R$ is of the $S$-multiplication type. They generalized some properties of multiplication rings to $S$-multiplication rings and then studied the transfer of $S$-multiplication rings to trivial ring extensions and amalgamated algebras.

In 2021, the second author of this paper first introduced and studied the uniformly S-torsion theory in [11]. Recently, the first author et al. [12] considered the notions of uniformly $S$-Noetherian rings and modules, which can be seen as "uniform" versions of $S$-Noetherian rings and modules. The motivation of this article is to introduce and study the notions of uniformly $S$-multiplication modules and rings, which are "uniform" versions of the $S$-multiplication modules and rings given in [9,10]. This paper is arranged as follows. In Section 2, we introduce and study the notion of uniformly $S$-multiplication
modules. We transfer the uniformly $S$-multiplication modules to finite direct products, localizations, $u$-S-isomorphisms, and idealizations. In Section 3, we investigate uniformly S-multiplication rings. We also study uniformly $S$-multiplication rings under finite direct products, localizations, and idealizations. Furthermore, we connect and distinguish the notions of multiplication modules and rings, uniformly $S$-multiplication modules and rings, and $S$-multiplication modules and rings.

## 2. Uniformly S-Multiplication Modules

Recall from [5] that an $R$-module $M$ is said to be a multiplication module if each submodule $N$ of $M$ is of the form $N=I M$ for some ideal $I$ of $R$, or equivalently, $N=\left(N:_{R}\right.$ $M) M$. Let $S$ be a multiplicative subset of $R$. Recently, Anderson et al. [9] introduced the concept of $S$-multiplication modules; an $R$-module $M$ is called an $S$-multiplication module if, for each submodule $N$ of $M$, there exist $s \in S$ and an ideal $I$ of $R$ such that $s N \subseteq I M \subseteq N$. Note that the " $s$ " in this definition is not uniform, i.e., it is decided by the submodule $N$. To keep it in "uniformity", we introduce the following notion.

Definition 1. Let $M$ be an $R$-module and let $S$ be a multiplicative subset of $R$. Then, $M$ is called a $u$-S-multiplication (uniformly S-multiplication) module (with respect to s) if there exists an element $s \in S$ such that, for each submodule $N$ of $M$, there is an ideal I of $R$ satisfying $s N \subseteq I M \subseteq N$.

From the definition, one can easily verify that an $R$-module $M$ is a $u$ - $S$-multiplication if and only if there exists $s \in S$ such that, for each submodule $N$ of $M$, we have $s N \subseteq\left(N:_{R}\right.$ $M) M \subseteq N$.

If $S$ is composed of units, then an $R$-module is a $u$ - $S$-multiplication if and only if it is an $S$-multiplication; if $0 \in S$, then every $R$-module is a $u$ - $S$-multiplication. In general, we have the following implications.

$$
\text { multiplication module } \Longrightarrow u \text {-S-multiplication module } \Longrightarrow S \text {-multiplication module }
$$

Proposition 1. Let $M_{i}$ be an $R_{i}$-module and let $S_{i} \subseteq R_{i}$ be a multiplicative subset $(i=1,2)$. Set $R=R_{1} \times R_{2}, S=S_{1} \times S_{2}$, and $M=M_{1} \times M_{2}$. Then, $M$ is a u-S-multiplication module if and only if $M_{1}$ is a $u$ - $S_{1}$-multiplication module and $M_{2}$ is a $u-S_{2}$-multiplication module.

Proof. For the "only if" part, suppose $M$ is a $u$-S-multiplication module with respect to some $s=\left(s_{1}, s_{2}\right) \in S_{1} \times S_{2}$. Then, $\left(s_{1}, s_{2}\right)\left(N_{1} \times\{0\}\right) \subseteq\left[\left(N_{1} \times\{0\}\right): M\right] M$ for any $R_{1}$-submodule $N_{1}$ of $M_{1}$. Therefore, $s_{1} N_{1} \subseteq\left(N_{1}: M\right) M$. It follows that $M_{1}$ is a $u$-Smultiplication module with respect to some $s_{1} \in S_{1}$. Similarly, $M_{2}$ is a $u$-S-multiplication module with respect to some $s_{2} \in S_{2}$.

For the "if" part, suppose $M_{1}$ is a $u$-S-multiplication module with respect to some $s_{1} \in$ $S_{1}$ and $M_{2}$ is a $u$-S-multiplication module with respect to some $s_{2} \in S_{2}$. Set $s=\left(s_{1}, s_{2}\right) \in S$. Let $N$ be an $R$-module. Then, $N=N\left(R_{1} \times R_{2}\right) \cong N_{1} \times N_{2}$, where $N_{i}=N R_{i}(i=1,2)$. Therefore, $s_{i} N_{i} \subseteq\left(N_{i}: M_{i}\right) M_{i}$ for each $i=1,2$. Consequently, $\left(s_{1}, s_{2}\right)\left(N_{1} \times N_{2}\right) \subseteq$ $\left[\left(N_{1} \times N_{2}\right):\left(M_{1} \times M_{2}\right)\right]\left(M_{1} \times M_{2}\right)$. It follows that $M=M_{1} \times M_{2}$ is a $u$-S-multiplication module with respect to $s$.

Note that $u$-S-multiplication modules need not be a multiplication module. Indeed, let $R_{1}$ and $R_{2}$ be two commutative rings and let $M_{1}$ be a multiplication $R_{1}$-module; however, $M_{2}$ is not a multiplication $R_{2}$-module. Set $R=R_{1} \times R_{2}, S=\{1\} \times\{0\}$ and $M=M_{1} \times M_{2}$. Then. $M$ is not a multiplication $R$-module, but it is a $u$ - $S$-multiplication $R$-module by Proposition 1.

The following example shows that an $S$-multiplication module need not be a $u$-Smultiplication module.

Example 1 ([9], Example 3). Consider the $\mathbb{Z}$-module $E(p)=\left\{\gamma: \left.=\frac{r}{p^{m}}+\mathbb{Q} \in \mathbb{Q} / \mathbb{Z} \right\rvert\, r \in\right.$ $\mathbb{Z}, m \geq 0\}$, where $p$ is a prime number. Take the multiplicative closed subset $S=\left\{p^{n}: n \in\right.$ $\mathbb{N} \cup\{0\}\}$ of $\mathbb{Z}$. Then, the $\mathbb{Z}$-module $E(p)$ is an S-multiplication module (see ([9], Example 3)).

We claim that $E(p)$ is not a u-S-multiplication. Indeed, assume that $E(p)$ is a u-S-multiplication with respect to $p^{n} \in S$ for some $n \geq 0$. All proper submodules of $E(p)$ are of the form $G_{t}=\left\{\gamma: \left.=\frac{r}{p^{t}}+\mathbb{Z} \in \mathbb{Q} / \mathbb{Z} \right\rvert\, \gamma \in \mathbb{Z}\right\}$ for every $t \in \mathbb{N} \cup\{0\}$. Assume that $t \geq n+1$. Then, $\left(G_{t}:_{\mathbb{Z}} E(p)\right)=0$. Therefore, $0 \neq p^{n} G_{t} \neq\left(G_{t}: \mathbb{Z} E(p)\right) E(p)=0_{E(p)}$. Hence, $E(p)$ is not a u-S-multiplication module.

Let $S$ be a multiplicative subset of $R$. The saturation $S^{*}$ of $S$ is defined as $S^{*}=\{s \in R \mid$ $s_{1}=s s_{2}$ for some $\left.s_{1}, s_{2} \in S\right\}$. A multiplicative subset $S$ of $R$ is called saturated if $S=S^{*}$. Note that $S^{*}$ is always a saturated multiplicative subset containing $S$.

Proposition 2. Let $M$ be an R-module. Then, the following statements hold.
(1) If $S \subseteq T$ are multiplicative subsets of $R$ and $M$ is a $u$ - $S$-multiplication module, then $M$ is a $u$-T-multiplication module.
(2) $M$ is a $u$-S-multiplication module if and only if $M$ is a $u$ - $S^{*}$-multiplication module, where $S^{*}$ is the saturation of $S$.

Proof. (1): Obvious. (2): Let $M$ be a $u$-S-multiplication module. Since $S \subseteq S^{*}$, by (i), $M$ is a $u$ - $S^{*}$-multiplication module. For the converse, assume that $M$ is an $S^{*}$-multiplication module with some $s \in S^{*}$. Then, $s N \subseteq\left(N:_{R} M\right) M$ for any submodule $N$ of $M$. Suppose $s_{1}=s s_{2}$ with some $s_{1}, s_{2} \in S$. Then, $s_{1} N=s s_{2} N \subseteq s_{2}\left(N:_{R} M\right) M \subseteq\left(N:_{R} M\right) M$. Therefore, $M$ is a $u$-S-multiplication module with respect to $s_{1} \in S$.

Let $\mathfrak{p}$ be a prime ideal of $R$. We say an $R$-module $E$ is a $u$ - $\mathfrak{p}$-multiplication shortly provided that $E$ is a $u-(R \backslash \mathfrak{p})$-multiplication.

Theorem 1. Let $M$ be an $R$-module. Then, the following statements are equivalent.
(1) $M$ is a multiplication module.
(2) $M$ is a $u$-p-multiplication module for each $\mathfrak{p} \in \operatorname{Spec}(R)$.
(3) $\quad M$ is a $u$ - $\mathfrak{m}$-multiplication module for each $\mathfrak{m} \in \operatorname{Max}(R)$.
(4) $M$ is a $u$ - $\mathfrak{m}$-multiplication module for each $\mathfrak{m} \in \operatorname{Max}(R)$ with $M_{\mathfrak{m}} \neq 0_{\mathfrak{m}}$.

Proof. $(1) \Rightarrow(2)$ : Follows by their definitions.
$(2) \Rightarrow(3)$ : This follows the assumption that every maximal ideal is a prime ideal.
$(3) \Rightarrow(4):$ This is trivial.
$(4) \Rightarrow(1)$ : Suppose $M$ is a $u$ - $\mathfrak{m}$-multiplication module with respect to some $s_{\mathfrak{m}} \notin \mathfrak{m}$ for each $\mathfrak{m} \in \operatorname{Max}(R)$ with $M_{\mathfrak{m}} \neq 0_{\mathfrak{m}}$. Take a maximal ideal $\mathfrak{m}$ of $R$ with $M_{\mathfrak{m}} \neq 0_{\mathfrak{m}}$. Since $M$ is a $u$ - $\mathfrak{m}$-multiplication module with respect to $s_{\mathfrak{m}}$, we have $s_{\mathfrak{m}} N \subseteq\left(N:_{R} M\right) M$ for every submodule $N$ of $M$. Then, $N_{\mathfrak{m}}=\left(s_{\mathfrak{m}} N\right)_{\mathfrak{m}} \subseteq\left(\left(N:_{R} M\right) M\right)_{\mathfrak{m}} \subseteq N_{\mathfrak{m}}$. If $M_{\mathfrak{m}}=0_{\mathfrak{m}}$, certainly $N_{\mathfrak{m}}=\left(\left(N:_{R} M\right) M\right)_{\mathfrak{m}}$. Thus, we conclude that $N_{\mathfrak{m}}=\left(\left(N:_{R} M\right) M\right)_{\mathfrak{m}}$ for each maximal ideal $\mathfrak{m}$ of $R$, and this yields $N=\left(N:_{R} M\right) M$. Therefore, $M$ is a multiplication module.

Recall from [11] that an $R$-sequence $M \xrightarrow{f} N \xrightarrow{g}$ Lis called $u$-S-exact provided that there is an element $s \in S$ such that $s \operatorname{Ker}(g) \subseteq \operatorname{Im}(f)$ and $s \operatorname{Im}(f) \subseteq \operatorname{Ker}(g)$. An $R$-homomorphism $f: M \rightarrow N$ is a $u$-S-monomorphism (respectively, a $u$-S-epimorphism or an S-isomorphism) provided $0 \rightarrow M \xrightarrow{f} N$ (respectively, $M \xrightarrow{f} N \rightarrow 0$ or $0 \rightarrow M \xrightarrow{f} N \rightarrow 0$ ) is $u$-S-exact. It is easy to verify that an $R$-homomorphism $f: M \rightarrow N$ is a $u$-S-monomorphism (respectively, $u$-S-epimorphism) if and only if $\operatorname{Ker}(f)$ (respectively, $\operatorname{Coker}(f)$ ) is a $u$-S-torsion module.

Proposition 3. Let $M$ and $M^{\prime}$ be $R$-modules. Suppose $M$ is $u$-S-isomorphic to $M^{\prime}$. Then, $M$ is a $u$-S-multiplication module if and only if $M^{\prime}$ is a $u$-S-multiplication module.

Proof. Let $f: M \rightarrow M^{\prime}$ be a $u$-S-isomorphism. Then, there exists $s \in S$ such that $s \operatorname{Ker}(f)=s \operatorname{Coker}(f)=0$ and $M$ is a $u$-S-multiplication module with respect to $s$. Let $N$ be a submodule of $M^{\prime}$. Then, there is an ideal $I$ of $R$ such that $s f^{-1}(N) \subseteq I M \subseteq f^{-1}(N)$. Therefore, $f\left(s f^{-1}(N)\right) \subseteq f(I M) \subseteq f\left(f^{-1}(N)\right)$, i.e., $s N \subseteq \operatorname{Im}(f) \subseteq N$. Since $s C o k e r(f)=$ $s M^{\prime} / \operatorname{Im}(f)=0$, we have $s M^{\prime} \subseteq \operatorname{Im}(f)$. Note that $s^{2} N \subseteq s I \operatorname{Im}(f) \subseteq s I M^{\prime}$. Consequently, $s^{2} N \subseteq(s I) M^{\prime} \subseteq N$. It follows that $M^{\prime}$ is a $u$-S-multiplication module with respect to $s^{2}$. The converse follows by ([13], Proposition 1.1).

Proposition 4. Let $M$ and $M^{\prime}$ be R-modules. Suppose that $S$ is a multiplicative subset of $R$ and $f: M \rightarrow M^{\prime}$ is a $u$-S-epimorphism. If $M$ is a $u$-S-multiplication module, then $M^{\prime}$ is a $u$-Smultiplication module. Conversely, suppose that $M^{\prime}$ is an S-multiplication module and $t \operatorname{Ker}(f)=0$ for some $t \in S$; then, $M$ is a u-S-multiplication module.

Proof. By Proposition 3, we can assume that $f$ is an epimorphism. Suppose $M$ is a $u-S-$ multiplication module with respect to some $s \in S$. Then, $s N \subseteq\left(N:_{R} M\right) M \subseteq N$ for any submodule $N$ of $M$. Therefore, $f(s N) \subseteq f((N: M) M) \subseteq f(N)$. Let $N^{\prime}$ be a submodule of $M^{\prime}$. Then, $N:=f^{-1}\left(N^{\prime}\right)$ is a submodule of $M$. It follows that $s N^{\prime}=s f(N) \subseteq(N:$ M) $f(M)=(N: M) M^{\prime} \subseteq N^{\prime}$. Thus, $s N^{\prime} \subseteq(N: M) M^{\prime} \subseteq N^{\prime}$ for any submodule $N^{\prime}$ of $M^{\prime}$. Hence, $M^{\prime}$ is a $u$-S-multiplication module with respect to $s$.

On the other hand, suppose that $M^{\prime}=f(M)$ is a $u$ - $S$-multiplication module with respect to $s$. Then, for any submodule $N$ of $M$, there is an ideal $I$ of $R$ with $s f(N) \subseteq$ $I f(M) \subseteq f(N)$. Hence, $s N+\operatorname{Ker}(f) \subseteq N+\operatorname{Ker}(f)$. Since $t \operatorname{Ker}(f)=0$, we have $(s t) N \subseteq$ $(t I) M \subseteq t N \subseteq N$. Consequently, $M$ is a $u$-S-multiplication module with respect to st.

Proposition 5. Let $R$ be a commutative ring and let $S$ and $T$ be multiplicative subsets of $R$. Set $\widetilde{S}=\left\{\left.\frac{S}{1} \in T^{-1} R \right\rvert\, s \in S\right\}$, a multiplicative subset of $T^{-1} R$. Suppose $M$ is a u-S-multiplication $R$-module. Then, $T^{-1} M$ is a $u$ - $\widetilde{S}$-multiplication $T^{-1} R$-module.

Proof. Suppose $M$ is a $u$ - $S$-multiplication $R$-module with respect to some $s \in S$. Then, for any submodule $N$ of $M$, there is an ideal $I$ of $R$ such that $s N \subseteq I M \subseteq N$. Let $L$ be an submodule of $T^{-1} M$. Then, $L=T^{-1} N^{\prime}$ for some submodule $N^{\prime}$ of $M$. It follows that $\frac{s}{1} L=T^{-1}\left(s N^{\prime}\right) \subseteq\left(T^{-1} I\right)\left(T^{-1} M\right) \subseteq T^{-1} N^{\prime}=L$. Therefore, $T^{-1} M$ is a $u$ - $\widetilde{S}$-multiplication $T^{-1} R$-module with respect to $\frac{s}{1} \in \widetilde{S}$.

A multiplicative subset $S$ of $R$ is said to satisfy the maximal multiple condition if there exists an $s \in S$ such that $t \mid s$ for each $t \in S$. Both finite multiplicative subsets and the multiplicative subsets that consist of units satisfy the maximal multiple condition.

Proposition 6. Let $M$ be an $R$-module and let $S$ be a multiplicative subset of $R$ satisfying the maximal multiple condition. Then, the following statements hold:
(1) $M$ is a $u$-S-multiplication module.
(2) $M$ is an S-multiplication module.
(3) $S^{-1} M$ is a multiplication $S^{-1} R$-module.

Proof. $(1) \Rightarrow(2)$ : Trivial.
$(2) \Rightarrow(3)$ : It follows by ([9], Corollary 2).
$(3) \Rightarrow(1)$ : Assume that $S^{-1} M$ is a multiplication $S^{-1} R$-module. Take a submodule $N$ of $M$. We have $S^{-1} N=\left(S^{-1} I\right)\left(S^{-1} M\right)=S^{-1}(I M)$ for any submodule $N$ of $M$. Choose $s \in S$ such that $t \mid s$ for every $t \in S$. Note that for each $n \in N$, we have $\frac{n}{1} \in S^{-1} N=S^{-1}(I M)$, and so there exists $t \in S$ such that $t n \in I M$ and, hence, $s n \in I M$. Thus, $s N \subseteq I M$. Similarly, we have $s I M \subseteq N$. Therefore, we obtain $s^{2} N \subseteq(s I) M \subseteq N$. Hence, $M$ is a $u$-S-multiplication module with respect to $s^{2}$.

Recall from [12] the conception of $u$-S-Noetherian modules. Let $\left\{M_{j}\right\}_{j \in \Gamma}$ be a family of $R$-modules and let $N_{j}$ be a submodule of $M_{j}$ generated by $\left\{m_{i, j}\right\}_{i \in \Lambda_{j}} \subseteq M_{j}$ for each $j \in \Gamma$.

A family of $R$-modules $\left\{M_{j}\right\}_{j \in \Gamma}$ is $u$-S-generated (with respective to $s$ ) by $\left\{\left\{m_{i, j}\right\}_{i \in \Lambda_{j}}\right\}_{j \in \Gamma}$ provided that there exists an element $s \in S$ such that $s M_{j} \subseteq N_{j}$ for each $j \in \Gamma$, where $N_{j}=\left\langle\left\{m_{i, j}\right\}_{i \in \Lambda_{j}}\right\rangle$. We say a family of $R$-modules $\left\{M_{j}\right\}_{j \in \Gamma}$ is $u$-S-finite (with respective to $s$ ) if the set $\left\{m_{i, j}\right\}_{i \in \Lambda_{j}}$ can be chosen as a finite set for each $j \in \Gamma$.

Definition 2 ([12]). Let $R$ be a ring and let $S$ be a multiplicative subset of $R$. An $R$-module $M$ is called a $u$-S-Noetherian $R$-module provided the set of all submodules of $M$ is $u$-S-finite. A ring $R$ is called a $u$-S-Noetherian if $R$ itself is a $u$-S-Noetherian $R$-module.

Let $R$ be a ring, let $S$ be a multiplicative subset of $R$, and let $M$ be an $R$-module. Denote by $M^{\bullet}$ an ascending chain $M_{1} \subseteq M_{2} \subseteq \cdots$ of submodules of $M$. An ascending chain $M^{\bullet}$ is called stationary with respective to $s$ if there exists $k \geq 1$ such that $s M_{n} \subseteq M_{k}$ for any $n \geq k$. Following ([12], Theorem 2.7), $M$ is $u$-S-Noetherian if and only if there exists an element $s \in S$ such that any ascending chain of submodules of $M$ is stationary with respective to $s$.

Proposition 7. Let $R$ be a $u$-S-Noetherian ring and let $M$ be a $u$ - $S$-multiplication $R$-module. Then, $M$ is a u-S-Noetherian R-module.

Proof. We may assume $R$ is a $u$-S-Noetherian ring and $M$ is a $u$ - $S$-multiplication $R$-module with respect to $s \in S$. Let $M_{1} \subseteq M_{2} \subseteq \cdots$ be an ascending chain of submodules of $M$. Set $A_{i}=\left(M_{i}: M\right)$. Then, $A_{1} \subseteq A_{2} \subseteq \cdots$ is an ascending chain of ideals of $R$. Then there exists $n$ such that $s A_{k} \subseteq A_{n} \subseteq A_{k}$ for any $k \geq n$. Since $M$ is a $u$-S-multiplication, $s M_{i} \subseteq\left(M_{i}: M\right) M=A_{i} M$ for all $i$. Hence, $s^{2} M_{k} \subseteq s A_{k} M \subseteq A_{n} M \subseteq M_{n}$. It follows that $M$ is a $u$-S-Noetherian $R$-module with respect to $s^{2}$.

Let $M$ be an $R$-module. The idealization construction $R(+) M=R \oplus M$ of $M$ is a commutative ring with componentwise additions and multiplications $(a, m)\left(b, m^{\prime}\right)=$ $\left(a b, a m^{\prime}+b m\right)$ for each $a, b \in R ; m, m^{\prime} \in M$ (see [14]). If $S$ is a multiplicative subset of $R$ and $N$ is a submodule of $M$, then $S(+) N$ is a multiplicative subset of $R(+) M$. Now, we transfer the uniformly $S$-multiplication properties to idealization constructions.

Theorem 2. Let $M$ be an $R$-module, let $N$ be a submodule of $M$, and let $S$ be a multiplicative subset of $R$. Then, the following statements are equivalent.
(1) $N$ is a $u$-S-multiplication $R$-module.
(2) $0(+) N$ is a $u-S(+) 0$-multiplication ideal of $R(+) M$.
(3) $0(+) N$ is a $u-S(+) M$-multiplication ideal of $R(+) M$.

Proof. $(1) \Rightarrow(2)$ : Suppose $N$ is a $u$-S-multiplication $R$-module with respect to some $s \in S$. Let $J$ be an ideal of $R(+) M$ contained in $0(+) N$. Then, $J=0(+) N^{\prime}$ for some submodule $N^{\prime}$ of $N$. Since $N$ is a $u$ - $S$-multiplication $R$-module with respect to $s$, there exists an ideal $I$ of $R$ such that $s N^{\prime} \subseteq I N \subseteq N^{\prime}$. Hence,

$$
(s, 0) J=(s, 0) 0(+) N=0(+) s N^{\prime} \subseteq 0(+) I N=I(+) M \cdot 0(+) N \subseteq 0(+) N^{\prime}=J
$$

It follows that $0(+) N$ is a $u-S(+) 0$-multiplication ideal of $R(+) M$.
(2) $\Rightarrow$ (3) : Since $S(+) 0 \subseteq S(+) M$, (3) follows by Proposition 2.
$(3) \Rightarrow(1)$ : Suppose that $0(+) N$ is a $u$ - $S(+) M$-multiplication ideal of $R(+) M$ with respective to some $(s, m) \in S(+) M$. Let $N^{\prime}$ be a submodule of $N$. Then, $0(+) N^{\prime}$ is an ideal of $R(+) M$ with $0(+) N^{\prime} \subseteq 0(+) N$. Since $0(+) N$ is a $u-S(+) M$-multiplication ideal of $R(+) M$ with respect to $(s, m)$, then there exists $J^{\prime}$ of $R(+) M$ such that $(s, m) 0(+) N^{\prime} \subseteq$ $J^{\prime} \cdot 0(+) N \subseteq 0(+) N^{\prime}$. Set $J=J^{\prime}+0(+) M$. Then, $J=I(+) M$ for some ideal $I$ of $R$. Note that

$$
J^{\prime} \cdot 0(+) N=J^{\prime} \cdot 0(+) N+0(+) M \cdot 0(+) N=\left(J^{\prime}+0(+) M\right) \cdot 0(+) N=J \cdot 0(+) N
$$

So $(s, m) 0(+) N^{\prime} \subseteq J \cdot 0(+) N \subseteq 0(+) N^{\prime}$. This implies that $s N^{\prime} \subseteq I N \subseteq N^{\prime}$. So $N$ is a $u$-S-multiplication $R$-module with respect to $s$.

## 3. Uniformly $S$-Multiplication Rings

Let $R$ be a ring and let $S$ be a multiplicative subset of $R$. Recall from [10] that an ideal $I$ of $R$ is an $S$-multiplication ideal if $I$ is an $S$-multiplication $R$-module, and a ring $R$ is an $S$-multiplication ring if each ideal of $R$ is an $S$-multiplication. Equivalently, for each pair of ideals $J \subseteq K$ of $R$, there exist $s \in S$ and an ideal $I$ of $R$ satisfying $s J \subseteq I K \subseteq J$. Now, we introduce the notion of uniformly $S$-multiplication rings.

Definition 3. Let $R$ be a ring and let $S$ be a multiplicative subset of $R$. Then, $R$ is called a $u-S$ multiplication (uniformly S-multiplication) ring (with respect to $s$ ) if there exists $s \in S$ such that each ideal of $R$ is a $u$-S-multiplication with respect to $s$, equivalently, if there exists $s \in S$ such that, for each pair of ideals $J \subseteq K$ of $R$, there exists an ideal $I$ of $R$ satisfying $s J \subseteq I K \subseteq J$.

If $S$ is composed of units, then a ring $R$ is a $u$ - $S$-multiplication if and only if it is an $S$-multiplication; if $0 \in S$, then every ring $R$ is a $u$-S-multiplication. In general, we have the following implications.

$$
\text { multiplication ring } \Longrightarrow u \text {-S-multiplication ring } \Longrightarrow \text { S-multiplication ring }
$$

Proposition 8. Let $S \subseteq T$ be two multiplicative subsets of $R$ and $S^{*}$ the saturation of $S$. Then the following statements hold.
(1) If $R$ is a $u$-S-multiplication ring, then $R$ is a $u$ - $T$-multiplication ring.
(2) $R$ is a $u$-S-multiplication ring if and only if $R$ is a $u$ - $S^{*}$-multiplication ring.

Proof. (1) It immediately follows from the definition of $u$-S-multiplication rings.
(2) Suppose $R$ is an $S^{*}$-multiplication ring with some $s \in S^{*}$. Then for any pair of ideals $J \subseteq K$, there exists ideal $I$ of $R$ such that $s J \subseteq I K \subseteq J$. Suppose $s_{1}=s s_{2}$ with some $s_{1}, s_{2} \in S$. Then $s_{1} J \subseteq I K \subseteq J$. So $R$ is a $u$-S-multiplication ring with respect to $s_{1} \in S$.

Corollary 1. Every multiplication ring is a u-S-multiplication ring.
Proof. Remark that a multiplication ring is exactly a $u-\{1\}$-multiplication ring. Therefore, the result follows by Proposition 8(1).

The proof of following result is similar to that of Proposition 1, and so we omit it.
Proposition 9. Let $R=R_{1} \times R_{2}$ and $S=S_{1} \times S_{2}$. Then, $R$ is a u-S-multiplication ring if and only if $R_{1}$ is a $u$ - $S_{1}$-multiplication ring and $R_{2}$ is a $u$ - $S_{2}$-multiplication ring.

The following example shows that $u$-S-multiplication rings are not necessary multiplication rings.

Example 2. Let $R_{1}$ be a multiplication ring and let $R_{2}$ be a non-multiplication ring. Set $R=$ $R_{1} \times R_{2}$ and $S=\{1\} \times\{0\}$. Then, $R$ is not a multiplication ring but a u-S-multiplication ring by Proposition 9.

Trivially, every $u$-S-multiplication ring is an S-multiplication. Moreover, we have the following result.

Proposition 10. Let $S$ be a multiplicative subset of $R$ that satisfies the maximal multiple condition. Then, $R$ is a $S$-multiplication ring if and only if $R$ is a $u$ - $S$-multiplication ring.

Proof. If $R$ is a $u$-S-multiplication ring, $R$ is trivially an $S$-multiplication. On the other hand, suppose $R$ is an $S$-multiplication ring. Then, each ideal $I$ of $R$ is an $S$-multiplication. Therefore, for each pair of ideals $J \subseteq K$ of $R$, there exist $t \in S$ and an ideal $I$ of $R$ such that $t J \subseteq I K \subseteq J$. Since $S$ satisfies the maximal multiple condition, there exists $s \in S$ such that $t \mid s$. Thus, $s J \subseteq t J \subseteq I K \subseteq J$. It follows that $R$ is a $u$ - $S$-multiplication ring with respect to $s$.

Let $R$ be a ring and let $S$ be a multiplicative subset of $R$. For any $s \in S$, there is a multiplicative subset $S_{s}=\left\{1, s, s^{2}, \ldots\right\}$ of $S$. We denote by $M_{s}$ the localization of $M$ at $S_{s}$ for an $R$-module $M$.

Proposition 11. Suppose $R$ is a $u$-S-multiplication ring. Then, there is an $s \in S$ such that $R_{s}$ is a multiplication ring.

Proof. Suppose $R$ is a $u$-S-multiplication ring with respect to some $s \in S$. Let $J \subseteq K$ be a pair of ideals of $R_{s}$. Then, there are two ideals $J^{\prime} \subseteq K^{\prime}$ of $R$ such that $J=J_{s}^{\prime}$ and $K=K_{s}^{\prime}$. There exists an ideal $I^{\prime}$ of $R$ satisfying $s J^{\prime} \subseteq I^{\prime} K^{\prime} \subseteq J^{\prime}$. By localizing at $s$, we have $J \subseteq I K \subseteq J$, where $I=I_{s}^{\prime}$. It follows that $R_{s}$ is a multiplication ring.

It follows from Proposition 9.13 in [2] that an integral domain is a multiplication ring if and only if it is a Dedekind domain. The following example shows that rings with each ideal $u$-S-multiplication are not necessary $u$-S-multiplication rings, and thus $S$-multiplication rings are $u$-S-multiplication rings in general.

Example 3. Let $D$ be an integral domain such that $D_{s}$ is not a Dedekind domain for any $0 \neq s \in D$ (e.g., $D=k\left[x_{1}, x_{2}, \ldots\right]$, the polynomial ring with infinite variables over a field $k$ ). Set $S=D-\{0\}$. Then $D$ is not a $u$-S-multiplication ring by Proposition 11. However, every ideal of $D$ is a $u$-Smultiplication, and thus, $D$ is an $S$-multiplication ring. Indeed, let $K$ be an ideal of $R$ and let $J$ be a sub-ideal of $K$. Suppose $K=0$. Then, $J=0$, and thus, $s J \subseteq I K \subseteq J$ always holds. Otherwise, let $0 \neq s \in K$ and $I=J$. Then, we also have $s \subseteq I K \subseteq J$. It follows that $K$ is a u-S-multiplication ideal of $R$.

Remark 1. Note that the converse of Proposition 11 is not true in general. Indeed, let $D$ be a valuation domain with valuation group $\mathbb{Z} \times \mathbb{Z}$. It follows by ([15], Chapter II, Exercise 3.4) that the maximal ideal $\mathfrak{m}$ of $R$ is principally generated, say generated as $s \neq 0$. Let $S=D-\{0\}$. Then, $D$ is not a u-S-multiplication ring by Example 3. However $D_{s}$ is a discrete valuation domain, and hence, it is a multiplication ring.

Let $\mathfrak{p}$ be a prime ideal of $R$. We say a ring $R$ is a $u$ - $\mathfrak{p}$-multiplication provided that $R$ is a $u-(R \backslash \mathfrak{p})$-multiplication.

Theorem 3. Let $R$ be a ring. Then, the following statements are equivalent:
(1) $R$ is a multiplication ring.
(2) $R$ is a $u$ - $\mathfrak{p}$-multiplication ring for each $\mathfrak{p} \in \operatorname{Spec}(R)$.
(3) $\quad R$ is a $u$ - $\mathfrak{m}$-multiplication ring for each $\mathfrak{m} \in \operatorname{Max}(R)$.

Proof. $(1) \Rightarrow(2) \Rightarrow(3)$ : Trivial.
$(3) \Rightarrow(1)$ : Suppose $R$ is a $u$-m -multiplication ring with respect to some $s_{\mathfrak{m}} \notin \mathfrak{m}$ for each $\mathfrak{m} \in \operatorname{Max}(R)$. Let $J \subseteq K$ be a pair of ideals of $R$. Then, there exists an ideal $I^{\mathfrak{m}}$ of $R$ such that $s_{\mathfrak{m}} J \subseteq I^{\mathfrak{m}} K \subseteq J$. Since $\left\{s^{\mathfrak{m}} \mid \mathfrak{m} \in \operatorname{Max}(R)\right\}$ generates $R$, there exist finite elements $s^{\mathfrak{m}_{1}}, \ldots, s^{\mathfrak{m}_{n}}$ such that $J=\left\langle s^{\mathfrak{m}_{1}}, \ldots, s^{\mathfrak{m}_{n}}\right\rangle J \subseteq\left(\sum_{i=1}^{n} I^{\mathfrak{m}}\right) K \subseteq J$. Setting $I=\sum_{i=1}^{n} I^{\mathfrak{m}}$, we have $I K=J$. Consequently, $R$ is a multiplication ring.

Proposition 12. Let $R$ be a ring, let $M$ be an $R$-module, and let $S$ be a multiplicative subset of $R$. Suppose $R(+) M$ is a $u-S(+) M$-multiplication ring with respect to some $(s, m) \in S(+) M$. Then,
$R$ is a $u$-S-multiplication ring with respect to $s$, and each submodule of $M$ is a u-S-multiplication $R$-module with respect to $s$.

Proof. Let $M^{\prime}$ be a submodule of $M$ and let $N$ be a submodule of $M^{\prime}$. Then, $0(+) N$ is a sub-ideal of $0(+) M^{\prime}$. Hence, there exists an ideal $I^{\prime}$ of $R(+) M$ such that $(s, m) 0(+) N \subseteq$ $I^{\prime} 0(+) M^{\prime} \subseteq 0(+) N$. Set $I=\left\{r \in R \mid\right.$ there exists $\left.(r, m) \in I^{\prime}\right\}$. Then, $s N \subseteq I M^{\prime} \subseteq N$, and hence, $M^{\prime}$ is a $u$-S-multiplication $R$-module with respect to $s$.

Let $J \subseteq K$ be a pair of ideals of $R$. Then, $J(+) M \subseteq K(+) M$ is a pair of ideals of $R(+) M$. Hence, there exists an ideal $L^{\prime}$ of $R(+) M$ such that $(s, m) J(+) M \subseteq L^{\prime} K(+) M \subseteq J(+) M$. Set $L=\left\{r \in R \mid\right.$ there exists $\left.(r, m) \in L^{\prime}\right\}$. Then, $s J \subseteq L K \subseteq J$. Hence, $R$ is a $u$-S-multiplication ring with respect to $s$.

Remark 2. We do not know whether the converse of Proposition 12 is true. That is, suppose $R$ is a u-S-multiplication ring with respect to s and each submodule of $M$ is a u-S-multiplication $R$-module with respect to $s$. Do we have $R(+) M$ is a $u-S(+) M$-multiplication ring with respect to some $(s, m) \in S(+) M$ ?

Author Contributions: writing-review and editing, W.Q.; Conceptualization and methodology, X.Z. All authors have read and agreed to the published version of the manuscript.

Funding: The first author was supported by the National Natural Science Foundation of China (No. 12201361).

Data Availability Statement: no new data were created.
Conflicts of Interest: The authors declare no conflict of interest.

## References

1. Krull, W. Multiplication rings. Sitzber Heidelb. Akad. Wiss. Abhand-Lungen 1925, 5, 13-18.

Larsen, M.D.; Mccarthy, P.J. Multiplicative Theory of Ideals; Academic Press Inc.: New York, NY, USA, 1972.
Mott, J.L. Equivalent conditions for a ring to be a multiplication ring. Can. J. Math. 1964, 16, 429-434. [CrossRef]
Mehdi, F. On multiplication modules. Math. Stud. Vol. 1974, 2, 149-153.
Bast, Z.A.; Smith, P.F. Multiplication modules. Commun. Algebra 1988, 16, 755-779. [CrossRef]
Naoum, A.G. Flat modules and multiplication modules. Period. Math. Hungar. 1990, 21, 309-317. [CrossRef]
Smith, P.F. Multiplication modules and projective modules. Period. Math. Hungar. 1994, 29, 163-168. [CrossRef]
Anderson, D.D.; Dumitrescu, T. S-Noetherian rings. Comm. Algebra 2002, 30, 4407-4416. [CrossRef]
Anderson, D.D.; Arabaci, T.; Tekir, U.; Koç, S. On S-multiplication modules. Comm. Algebra 2020, 48, 3398-3407. [CrossRef]
0. Chhiti, M.; Moindze, S. On S-multiplication rings. J. Korean Math. Soc. 2023, 60, 327-339.
11. Zhang, X.L. Characterizing S-flat modules and S-von Neumann regular rings by uniformity. Bull. Korean Math. Soc. 2022, 59, 643-657.
12. Qi, W.; Kim, H.; Wang, F.G.; Chen, M.Z.; Zhao, W. Uniformly S-Noetherian rings. arXiv 2022, arXiv:2201.07913.
13. Zhang, X.L. On uniformly $S$-absolutely pure modules. arXiv 2021, arXiv:2108.06851.
14. Anderson, D.D.; Winders, M. Idealization of a module. J. Commut. Algebra 2009, 1, 3-56. [CrossRef]
15. Fuchs, L.; Salce, L. Modules over Valuation Domains, Lecture Notes in Pure and Applied Mathematics 97; Marcel Dekker Inc.: New York, NY, USA; Basel, Switzerland, 1985.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

