

Article On Uniformly S-Multiplication Modules and Rings

Wei Qi * and Xiaolei Zhang

School of Mathematics and Statistics, Shandong University of Technology, Zibo 255049, China

* Correspondence: qwrghj@126.com

Abstract: In this article, we introduce and study the notions of uniformly *S*-multiplication modules and rings that are generalizations of multiplication modules and rings. Some examples are given to distinguish the new conceptions with the old classical ones.

Keywords: uniformly S-multiplication module; uniformly S-multiplication ring; idealization

MSC: 13A15

1. Introduction

Throughout this article, *R* is always a commutative ring with an identity. For a subset *U* of an *R*-module *M*, we denote by $\langle U \rangle$ the submodule of *M* generated by *U*. A subset *S* of *R* is said to be multiplicative if $1 \in S$ and $s_1s_2 \in S$ for any $s_1 \in S$, $s_2 \in S$. Let *N* be a submodule of *M*, and denote by $(N :_R M) = \{r \in R \mid rM \subseteq N\}$.

The notion of multiplication rings was introduced by Krull [1] early in 1925. A ring *R* is called a multiplication ring if, for every pair of ideals $J \subseteq K$ of *R*, there exists an ideal *I* of *R* such that J = IK. Note that an integral domain is a multiplication ring if and only if it is a Dedekind domain (see [2]). Some characterizations of multiplication rings were given by Mott [3]. In 1974, Mehdi [4] first introduced the notion of multiplication modules. An *R*-module *M* is said to be a multiplication module if, for every pair of submodules $L \subseteq N$ of *M*, there exists an ideal *I* of *R* such that L = IN. Latter in 1988, Barnard [5] alternatively called an *R*-module *M* a multiplication if each submodule *N* of *M* is of the form N = IM for some ideal *I* of *R*, or equivalently, $N = (N :_R M)M$. Some more studies on multiplication modules can be found in [5–7].

At the beginning of this century, Anderson et al. [8] introduced the notion of *S*-Noetherian rings, which are a generalization of classical Noetherian rings in terms of a multiplicative set *S*. Since then, some well-known notions of rings and modules have been investigated. In 2020, Anderson, Arabaci, Tekir, and Koç [9] introduced and studied the notion of *S*-multiplication modules. An *R*-module *M* is called an *S*-multiplication module if, for each submodule *N* of *M*, there exist $s \in S$ and an ideal *I* of *R* such that $sN \subseteq IM \subseteq N$. They generalized some known results on multiplication modules to *S*-multiplication modules and studied the notion of *S*-multiplication modules in terms of *S*-prime submodules. Recently, Chhiti and Moindze [10] studied the notion of *S*-multiplication type. They generalized some properties of multiplication rings to *S*-multiplication rings and then studied the transfer of *S*-multiplication rings to trivial ring extensions and amalgamated algebras.

In 2021, the second author of this paper first introduced and studied the uniformly *S*-torsion theory in [11]. Recently, the first author et al. [12] considered the notions of uniformly *S*-Noetherian rings and modules, which can be seen as "uniform" versions of *S*-Noetherian rings and modules. The motivation of this article is to introduce and study the notions of uniformly *S*-multiplication modules and rings, which are "uniform" versions of the *S*-multiplication modules and rings given in [9,10]. This paper is arranged as follows. In Section 2, we introduce and study the notion of uniformly *S*-multiplication

Citation: Qi, W.; Zhang, X. On Uniformly S-Multiplication Modules and Rings. *Mathematics* **2023**, *11*, 2168. https://doi.org/10.3390/ math11092168

Academic Editors: Juan Ramón García Rozas, Luis Oyonarte Alcalá and Driss Bennis

Received: 8 March 2023 Revised: 27 April 2023 Accepted: 28 April 2023 Published: 5 May 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). modules. We transfer the uniformly *S*-multiplication modules to finite direct products, localizations, *u*-*S*-isomorphisms, and idealizations. In Section 3, we investigate uniformly *S*-multiplication rings. We also study uniformly *S*-multiplication rings under finite direct products, localizations, and idealizations. Furthermore, we connect and distinguish the notions of multiplication modules and rings, uniformly *S*-multiplication modules and rings, and *S*-multiplication modules and rings.

2. Uniformly S-Multiplication Modules

Recall from [5] that an *R*-module *M* is said to be a multiplication module if each submodule *N* of *M* is of the form N = IM for some ideal *I* of *R*, or equivalently, $N = (N :_R M)M$. Let *S* be a multiplicative subset of *R*. Recently, Anderson et al. [9] introduced the concept of *S*-multiplication modules; an *R*-module *M* is called an *S*-multiplication module if, for each submodule *N* of *M*, there exist $s \in S$ and an ideal *I* of *R* such that $sN \subseteq IM \subseteq N$. Note that the "*s*" in this definition is not uniform, i.e., it is decided by the submodule *N*. To keep it in "uniformity", we introduce the following notion.

Definition 1. Let M be an R-module and let S be a multiplicative subset of R. Then, M is called a u-S-multiplication (uniformly S-multiplication) module (with respect to s) if there exists an element $s \in S$ such that, for each submodule N of M, there is an ideal I of R satisfying $sN \subseteq IM \subseteq N$.

From the definition, one can easily verify that an *R*-module *M* is a *u*-*S*-multiplication if and only if there exists $s \in S$ such that, for each submodule *N* of *M*, we have $sN \subseteq (N :_R M)M \subseteq N$.

If *S* is composed of units, then an *R*-module is a *u*-*S*-multiplication if and only if it is an *S*-multiplication; if $0 \in S$, then every *R*-module is a *u*-*S*-multiplication. In general, we have the following implications.

multiplication module	\Longrightarrow	<i>u-S</i> -multiplication module	\Longrightarrow	S-multiplication module
-----------------------	-------------------	-----------------------------------	-------------------	-------------------------

Proposition 1. Let M_i be an R_i -module and let $S_i \subseteq R_i$ be a multiplicative subset (i = 1, 2). Set $R = R_1 \times R_2$, $S = S_1 \times S_2$, and $M = M_1 \times M_2$. Then, M is a u-S-multiplication module if and only if M_1 is a u-S₁-multiplication module and M_2 is a u-S₂-multiplication module.

Proof. For the "only if" part, suppose *M* is a *u*-*S*-multiplication module with respect to some $s = (s_1, s_2) \in S_1 \times S_2$. Then, $(s_1, s_2)(N_1 \times \{0\}) \subseteq [(N_1 \times \{0\}) : M]M$ for any R_1 -submodule N_1 of M_1 . Therefore, $s_1N_1 \subseteq (N_1 : M)M$. It follows that M_1 is a *u*-*S*-multiplication module with respect to some $s_1 \in S_1$. Similarly, M_2 is a *u*-*S*-multiplication module with respect to some $s_2 \in S_2$.

For the "if" part, suppose M_1 is a *u*-*S*-multiplication module with respect to some $s_1 \in S_1$ and M_2 is a *u*-*S*-multiplication module with respect to some $s_2 \in S_2$. Set $s = (s_1, s_2) \in S$. Let *N* be an *R*-module. Then, $N = N(R_1 \times R_2) \cong N_1 \times N_2$, where $N_i = NR_i$ (i = 1, 2). Therefore, $s_i N_i \subseteq (N_i : M_i)M_i$ for each i = 1, 2. Consequently, $(s_1, s_2)(N_1 \times N_2) \subseteq [(N_1 \times N_2) : (M_1 \times M_2)](M_1 \times M_2)$. It follows that $M = M_1 \times M_2$ is a *u*-*S*-multiplication module with respect to *s*.

Note that *u*-*S*-multiplication modules need not be a multiplication module. Indeed, let R_1 and R_2 be two commutative rings and let M_1 be a multiplication R_1 -module; however, M_2 is not a multiplication R_2 -module. Set $R = R_1 \times R_2$, $S = \{1\} \times \{0\}$ and $M = M_1 \times M_2$. Then. *M* is not a multiplication *R*-module, but it is a *u*-*S*-multiplication *R*-module by Proposition 1.

The following example shows that an *S*-multiplication module need not be a *u-S*-multiplication module.

Example 1 ([9], Example 3). Consider the \mathbb{Z} -module $E(p) = \{\gamma := \frac{r}{p^m} + \mathbb{Q} \in \mathbb{Q}/\mathbb{Z} \mid r \in \mathbb{Z}, m \ge 0\}$, where p is a prime number. Take the multiplicative closed subset $S = \{p^n : n \in \mathbb{N} \cup \{0\}\}$ of \mathbb{Z} . Then, the \mathbb{Z} -module E(p) is an S-multiplication module (see ([9], Example 3)).

We claim that E(p) is not a u-S-multiplication. Indeed, assume that E(p) is a u-S-multiplication with respect to $p^n \in S$ for some $n \ge 0$. All proper submodules of E(p) are of the form $G_t = \{\gamma := \frac{r}{p^t} + \mathbb{Z} \in \mathbb{Q}/\mathbb{Z} \mid \gamma \in \mathbb{Z}\}$ for every $t \in \mathbb{N} \cup \{0\}$. Assume that $t \ge n + 1$. Then, $(G_t :_{\mathbb{Z}} E(p)) = 0$. Therefore, $0 \ne p^n G_t \ne (G_t :_{\mathbb{Z}} E(p))E(p) = 0_{E(p)}$. Hence, E(p) is not a u-S-multiplication module.

Let *S* be a multiplicative subset of *R*. The saturation S^* of *S* is defined as $S^* = \{s \in R \mid s_1 = ss_2 \text{ for some } s_1, s_2 \in S\}$. A multiplicative subset *S* of *R* is called saturated if $S = S^*$. Note that S^* is always a saturated multiplicative subset containing *S*.

Proposition 2. Let *M* be an *R*-module. Then, the following statements hold.

- (1) If $S \subseteq T$ are multiplicative subsets of R and M is a u-S-multiplication module, then M is a u-T-multiplication module.
- (2) *M* is a *u*-*S*-multiplication module if and only if *M* is a *u*-*S*^{*}-multiplication module, where *S*^{*} is the saturation of *S*.

Proof. (1): Obvious. (2): Let *M* be a *u*-*S*-multiplication module. Since $S \subseteq S^*$, by (*i*), *M* is a *u*-*S**-multiplication module. For the converse, assume that *M* is an *S**-multiplication module with some $s \in S^*$. Then, $sN \subseteq (N :_R M)M$ for any submodule *N* of *M*. Suppose $s_1 = ss_2$ with some $s_1, s_2 \in S$. Then, $s_1N = ss_2N \subseteq s_2(N :_R M)M \subseteq (N :_R M)M$. Therefore, *M* is a *u*-*S*-multiplication module with respect to $s_1 \in S$. \Box

Let \mathfrak{p} be a prime ideal of R. We say an R-module E is a u- \mathfrak{p} -multiplication shortly provided that E is a u- $(R \setminus \mathfrak{p})$ -multiplication.

Theorem 1. Let *M* be an *R*-module. Then, the following statements are equivalent.

- (1) *M* is a multiplication module.
- (2) *M* is a *u*- \mathfrak{p} -multiplication module for each $\mathfrak{p} \in \operatorname{Spec}(R)$.
- (3) *M* is a *u*-m-multiplication module for each $\mathfrak{m} \in Max(R)$.
- (4) *M* is a *u*-m-multiplication module for each $\mathfrak{m} \in Max(R)$ with $M_{\mathfrak{m}} \neq 0_{\mathfrak{m}}$.

Proof. (1) \Rightarrow (2) : Follows by their definitions.

- $(2) \Rightarrow (3)$: This follows the assumption that every maximal ideal is a prime ideal.
- $(3) \Rightarrow (4)$: This is trivial.

 $(4) \Rightarrow (1)$: Suppose *M* is a *u*-m-multiplication module with respect to some $s_m \notin \mathfrak{m}$ for each $\mathfrak{m} \in \operatorname{Max}(R)$ with $M_{\mathfrak{m}} \neq 0_{\mathfrak{m}}$. Take a maximal ideal \mathfrak{m} of *R* with $M_{\mathfrak{m}} \neq 0_{\mathfrak{m}}$. Since *M* is a *u*-m-multiplication module with respect to $s_{\mathfrak{m}}$, we have $s_{\mathfrak{m}}N \subseteq (N :_R M)M$ for every submodule *N* of *M*. Then, $N_{\mathfrak{m}} = (s_{\mathfrak{m}}N)_{\mathfrak{m}} \subseteq ((N :_R M)M)_{\mathfrak{m}} \subseteq N_{\mathfrak{m}}$. If $M_{\mathfrak{m}} = 0_{\mathfrak{m}}$, certainly $N_{\mathfrak{m}} = ((N :_R M)M)_{\mathfrak{m}}$. Thus, we conclude that $N_{\mathfrak{m}} = ((N :_R M)M)_{\mathfrak{m}}$ for each maximal ideal \mathfrak{m} of *R*, and this yields $N = (N :_R M)M$. Therefore, *M* is a multiplication module. \Box

Recall from [11] that an *R*-sequence $M \xrightarrow{f} N \xrightarrow{g} L$ is called *u*-*S*-exact provided that there is an element $s \in S$ such that $s\text{Ker}(g) \subseteq \text{Im}(f)$ and $s\text{Im}(f) \subseteq \text{Ker}(g)$. An *R*-homomorphism $f: M \to N$ is a *u*-*S*-monomorphism (respectively, a *u*-*S*-epimorphism or an *S*-isomorphism) provided $0 \to M \xrightarrow{f} N$ (respectively, $M \xrightarrow{f} N \to 0$ or $0 \to M \xrightarrow{f} N \to 0$) is *u*-*S*-exact. It is easy to verify that an *R*-homomorphism $f: M \to N$ is a *u*-*S*-monomorphism (respectively, *u*-*S*-epimorphism) if and only if Ker(f) (respectively, Coker(f)) is a *u*-*S*-torsion module.

Proposition 3. Let M and M' be R-modules. Suppose M is u-S-isomorphic to M'. Then, M is a u-S-multiplication module if and only if M' is a u-S-multiplication module.

Proof. Let $f : M \to M'$ be a *u-S*-isomorphism. Then, there exists $s \in S$ such that $s\operatorname{Ker}(f) = s\operatorname{Coker}(f) = 0$ and *M* is a *u-S*-multiplication module with respect to *s*. Let *N* be a submodule of *M'*. Then, there is an ideal *I* of *R* such that $sf^{-1}(N) \subseteq IM \subseteq f^{-1}(N)$. Therefore, $f(sf^{-1}(N)) \subseteq f(IM) \subseteq f(f^{-1}(N))$, i.e., $sN \subseteq I\operatorname{Im}(f) \subseteq N$. Since $s\operatorname{Coker}(f) = sM'/\operatorname{Im}(f) = 0$, we have $sM' \subseteq \operatorname{Im}(f)$. Note that $s^2N \subseteq sI\operatorname{Im}(f) \subseteq sIM'$. Consequently, $s^2N \subseteq (sI)M' \subseteq N$. It follows that M' is a *u-S*-multiplication module with respect to s^2 . The converse follows by ([13], Proposition 1.1). \Box

Proposition 4. Let M and M' be R-modules. Suppose that S is a multiplicative subset of R and $f : M \rightarrow M'$ is a u-S-epimorphism. If M is a u-S-multiplication module, then M' is a u-S-multiplication module. Conversely, suppose that M' is an S-multiplication module and tKer(f) = 0 for some $t \in S$; then, M is a u-S-multiplication module.

Proof. By Proposition 3, we can assume that f is an epimorphism. Suppose M is a *u-S*-multiplication module with respect to some $s \in S$. Then, $sN \subseteq (N :_R M)M \subseteq N$ for any submodule N of M. Therefore, $f(sN) \subseteq f((N : M)M) \subseteq f(N)$. Let N' be a submodule of M'. Then, $N := f^{-1}(N')$ is a submodule of M. It follows that $sN' = sf(N) \subseteq (N : M)f(M) = (N : M)M' \subseteq N'$. Thus, $sN' \subseteq (N : M)M' \subseteq N'$ for any submodule N' of M'. Hence, M' is a *u-S*-multiplication module with respect to s.

On the other hand, suppose that M' = f(M) is a *u-S*-multiplication module with respect to *s*. Then, for any submodule *N* of *M*, there is an ideal *I* of *R* with $sf(N) \subseteq If(M) \subseteq f(N)$. Hence, $sN + \text{Ker}(f) \subseteq N + \text{Ker}(f)$. Since tKer(f) = 0, we have $(st)N \subseteq (tI)M \subseteq tN \subseteq N$. Consequently, *M* is a *u-S*-multiplication module with respect to *st*. \Box

Proposition 5. Let *R* be a commutative ring and let *S* and *T* be multiplicative subsets of *R*. Set $\tilde{S} = \{\frac{s}{1} \in T^{-1}R | s \in S\}$, a multiplicative subset of $T^{-1}R$. Suppose *M* is a *u*-*S*-multiplication *R*-module. Then, $T^{-1}M$ is a *u*- \tilde{S} -multiplication $T^{-1}R$ -module.

Proof. Suppose *M* is a *u-S*-multiplication *R*-module with respect to some $s \in S$. Then, for any submodule *N* of *M*, there is an ideal *I* of *R* such that $sN \subseteq IM \subseteq N$. Let *L* be an submodule of $T^{-1}M$. Then, $L = T^{-1}N'$ for some submodule *N'* of *M*. It follows that ${}^{\underline{s}}_{1}L = T^{-1}(sN') \subseteq (T^{-1}I)(T^{-1}M) \subseteq T^{-1}N' = L$. Therefore, $T^{-1}M$ is a *u-S*-multiplication $T^{-1}R$ -module with respect to ${}^{\underline{s}}_{1} \in \widetilde{S}$. \Box

A multiplicative subset *S* of *R* is said to satisfy the maximal multiple condition if there exists an $s \in S$ such that t|s for each $t \in S$. Both finite multiplicative subsets and the multiplicative subsets that consist of units satisfy the maximal multiple condition.

Proposition 6. Let *M* be an *R*-module and let *S* be a multiplicative subset of *R* satisfying the maximal multiple condition. Then, the following statements hold:

- (1) *M* is a *u*-*S*-multiplication module.
- (2) *M* is an S-multiplication module.
- (3) $S^{-1}M$ is a multiplication $S^{-1}R$ -module.

Proof. $(1) \Rightarrow (2)$: Trivial.

 $(2) \Rightarrow (3)$: It follows by ([9], Corollary 2).

 $(3) \Rightarrow (1)$: Assume that $S^{-1}M$ is a multiplication $S^{-1}R$ -module. Take a submodule N of M. We have $S^{-1}N = (S^{-1}I)(S^{-1}M) = S^{-1}(IM)$ for any submodule N of M. Choose $s \in S$ such that t|s for every $t \in S$. Note that for each $n \in N$, we have $\frac{n}{1} \in S^{-1}N = S^{-1}(IM)$, and so there exists $t \in S$ such that $tn \in IM$ and, hence, $sn \in IM$. Thus, $sN \subseteq IM$. Similarly, we have $sIM \subseteq N$. Therefore, we obtain $s^2N \subseteq (sI)M \subseteq N$. Hence, M is a u-S-multiplication module with respect to s^2 . \Box

Recall from [12] the conception of *u*-*S*-Noetherian modules. Let $\{M_j\}_{j\in\Gamma}$ be a family of *R*-modules and let N_j be a submodule of M_j generated by $\{m_{i,j}\}_{i\in\Lambda_i} \subseteq M_j$ for each $j\in\Gamma$.

A family of *R*-modules $\{M_j\}_{j\in\Gamma}$ is *u*-*S*-generated (with respective to *s*) by $\{\{m_{i,j}\}_{i\in\Lambda_j}\}_{j\in\Gamma}$ provided that there exists an element $s \in S$ such that $sM_j \subseteq N_j$ for each $j \in \Gamma$, where $N_j = \langle \{m_{i,j}\}_{i\in\Lambda_j} \rangle$. We say a family of *R*-modules $\{M_j\}_{j\in\Gamma}$ is *u*-*S*-finite (with respective to *s*) if the set $\{m_{i,j}\}_{i\in\Lambda_j}$ can be chosen as a finite set for each $j \in \Gamma$.

Definition 2 ([12]). Let *R* be a ring and let *S* be a multiplicative subset of *R*. An *R*-module *M* is called a *u*-*S*-Noetherian *R*-module provided the set of all submodules of *M* is *u*-*S*-finite. A ring *R* is called a *u*-*S*-Noetherian if *R* itself is a *u*-*S*-Noetherian *R*-module .

Let *R* be a ring, let *S* be a multiplicative subset of *R*, and let *M* be an *R*-module. Denote by M^{\bullet} an ascending chain $M_1 \subseteq M_2 \subseteq \cdots$ of submodules of *M*. An ascending chain M^{\bullet} is called *stationary with respective to s* if there exists $k \ge 1$ such that $sM_n \subseteq M_k$ for any $n \ge k$. Following ([12], Theorem 2.7), *M* is *u*-*S*-Noetherian if and only if there exists an element $s \in S$ such that any ascending chain of submodules of *M* is stationary with respective to *s*.

Proposition 7. *Let R be a u-S-Noetherian ring and let M be a u-S-multiplication R-module. Then, M is a u-S-Noetherian R-module.*

Proof. We may assume *R* is a *u*-*S*-Noetherian ring and *M* is a *u*-*S*-multiplication *R*-module with respect to $s \in S$. Let $M_1 \subseteq M_2 \subseteq \cdots$ be an ascending chain of submodules of *M*. Set $A_i = (M_i : M)$. Then, $A_1 \subseteq A_2 \subseteq \cdots$ is an ascending chain of ideals of *R*. Then there exists *n* such that $sA_k \subseteq A_n \subseteq A_k$ for any $k \ge n$. Since *M* is a *u*-*S*-multiplication, $sM_i \subseteq (M_i : M)M = A_iM$ for all *i*. Hence, $s^2M_k \subseteq sA_kM \subseteq A_nM \subseteq M_n$. It follows that *M* is a *u*-*S*-Noetherian *R*-module with respect to s^2 . \Box

Let *M* be an *R*-module. The idealization construction $R(+)M = R \oplus M$ of *M* is a commutative ring with componentwise additions and multiplications (a, m)(b, m') = (ab, am' + bm) for each $a, b \in R; m, m' \in M$ (see [14]). If *S* is a multiplicative subset of *R* and *N* is a submodule of *M*, then S(+)N is a multiplicative subset of R(+)M. Now, we transfer the uniformly *S*-multiplication properties to idealization constructions.

Theorem 2. Let *M* be an *R*-module, let *N* be a submodule of *M*, and let *S* be a multiplicative subset of *R*. Then, the following statements are equivalent.

- (1) N is a u-S-multiplication R-module.
- (2) 0(+)N is a u-S(+)0-multiplication ideal of R(+)M.
- (3) 0(+)N is a u-S(+)M-multiplication ideal of R(+)M.

Proof. (1) \Rightarrow (2) : Suppose *N* is a *u*-*S*-multiplication *R*-module with respect to some $s \in S$. Let *J* be an ideal of R(+)M contained in 0(+)N. Then, J = 0(+)N' for some submodule *N'* of *N*. Since *N* is a *u*-*S*-multiplication *R*-module with respect to *s*, there exists an ideal *I* of *R* such that $sN' \subseteq IN \subseteq N'$. Hence,

$$(s,0)J = (s,0)0(+)N = 0(+)sN' \subseteq 0(+)IN = I(+)M \cdot 0(+)N \subseteq 0(+)N' = J.$$

It follows that 0(+)N is a *u*-*S*(+)0-multiplication ideal of *R*(+)*M*.

 $(2) \Rightarrow (3)$: Since $S(+)0 \subseteq S(+)M$, (3) follows by Proposition 2.

 $(3) \Rightarrow (1)$: Suppose that 0(+)N is a u-S(+)M-multiplication ideal of R(+)M with respective to some $(s,m) \in S(+)M$. Let N' be a submodule of N. Then, 0(+)N' is an ideal of R(+)M with $0(+)N' \subseteq 0(+)N$. Since 0(+)N is a u-S(+)M-multiplication ideal of R(+)M with respect to (s,m), then there exists J' of R(+)M such that $(s,m)0(+)N' \subseteq J' \cdot 0(+)N \subseteq 0(+)N'$. Set J = J' + 0(+)M. Then, J = I(+)M for some ideal I of R. Note that

$$J' \cdot 0(+)N = J' \cdot 0(+)N + 0(+)M \cdot 0(+)N = (J' + 0(+)M) \cdot 0(+)N = J \cdot 0(+)N.$$

So $(s, m)0(+)N' \subseteq J \cdot 0(+)N \subseteq 0(+)N'$. This implies that $sN' \subseteq IN \subseteq N'$. So N is a *u-S*-multiplication *R*-module with respect to s. \Box

3. Uniformly S-Multiplication Rings

Let *R* be a ring and let *S* be a multiplicative subset of *R*. Recall from [10] that an ideal *I* of *R* is an *S*-multiplication ideal if *I* is an *S*-multiplication *R*-module, and a ring *R* is an *S*-multiplication ring if each ideal of *R* is an *S*-multiplication. Equivalently, for each pair of ideals $J \subseteq K$ of *R*, there exist $s \in S$ and an ideal *I* of *R* satisfying $sJ \subseteq IK \subseteq J$. Now, we introduce the notion of uniformly *S*-multiplication rings.

Definition 3. Let *R* be a ring and let *S* be a multiplicative subset of *R*. Then, *R* is called a *u*-*S*-multiplication (uniformly S-multiplication) ring (with respect to *s*) if there exists $s \in S$ such that each ideal of *R* is a *u*-*S*-multiplication with respect to *s*, equivalently, if there exists $s \in S$ such that, for each pair of ideals $J \subseteq K$ of *R*, there exists an ideal I of *R* satisfying $sJ \subseteq IK \subseteq J$.

If *S* is composed of units, then a ring *R* is a *u*-*S*-multiplication if and only if it is an *S*-multiplication; if $0 \in S$, then every ring *R* is a *u*-*S*-multiplication. In general, we have the following implications.

multiplication rin	$ \Rightarrow$	<i>u-S-</i> multiplication ring	\Longrightarrow	S-multiplication ring	
--------------------	-----------------	---------------------------------	-------------------	-----------------------	--

Proposition 8. Let $S \subseteq T$ be two multiplicative subsets of R and S^* the saturation of S. Then the following statements hold.

- (1) If *R* is a *u*-*S*-multiplication ring, then *R* is a *u*-*T*-multiplication ring.
- (2) *R* is a *u*-*S*-multiplication ring if and only if *R* is a *u*-*S**-multiplication ring.

Proof. (1) It immediately follows from the definition of *u*-*S*-multiplication rings.

(2) Suppose *R* is an *S*^{*}-multiplication ring with some $s \in S^*$. Then for any pair of ideals $J \subseteq K$, there exists ideal *I* of *R* such that $sJ \subseteq IK \subseteq J$. Suppose $s_1 = ss_2$ with some $s_1, s_2 \in S$. Then $s_1J \subseteq IK \subseteq J$. So *R* is a *u*-*S*-multiplication ring with respect to $s_1 \in S$. \Box

Corollary 1. *Every multiplication ring is a u-S-multiplication ring.*

Proof. Remark that a multiplication ring is exactly a u-{1}-multiplication ring. Therefore, the result follows by Proposition 8(1). \Box

The proof of following result is similar to that of Proposition 1, and so we omit it.

Proposition 9. Let $R = R_1 \times R_2$ and $S = S_1 \times S_2$. Then, R is a u-S-multiplication ring if and only if R_1 is a u-S₁-multiplication ring and R_2 is a u-S₂-multiplication ring.

The following example shows that *u-S*-multiplication rings are not necessary multiplication rings.

Example 2. Let R_1 be a multiplication ring and let R_2 be a non-multiplication ring. Set $R = R_1 \times R_2$ and $S = \{1\} \times \{0\}$. Then, R is not a multiplication ring but a u-S-multiplication ring by Proposition 9.

Trivially, every *u*-*S*-multiplication ring is an *S*-multiplication. Moreover, we have the following result.

Proposition 10. Let *S* be a multiplicative subset of *R* that satisfies the maximal multiple condition. *Then, R* is a *S*-multiplication ring if and only if *R* is a *u*-*S*-multiplication ring.

Proof. If *R* is a *u*-*S*-multiplication ring, *R* is trivially an *S*-multiplication. On the other hand, suppose *R* is an *S*-multiplication ring. Then, each ideal *I* of *R* is an *S*-multiplication. Therefore, for each pair of ideals $J \subseteq K$ of *R*, there exist $t \in S$ and an ideal *I* of *R* such that $tJ \subseteq IK \subseteq J$. Since *S* satisfies the maximal multiple condition, there exists $s \in S$ such that t|s. Thus, $sJ \subseteq tJ \subseteq IK \subseteq J$. It follows that *R* is a *u*-*S*-multiplication ring with respect to *s*.

Let *R* be a ring and let *S* be a multiplicative subset of *R*. For any $s \in S$, there is a multiplicative subset $S_s = \{1, s, s^2, ...\}$ of *S*. We denote by M_s the localization of *M* at S_s for an *R*-module *M*.

Proposition 11. Suppose *R* is a *u*-*S*-multiplication ring. Then, there is an $s \in S$ such that R_s is a multiplication ring.

Proof. Suppose *R* is a *u*-*S*-multiplication ring with respect to some $s \in S$. Let $J \subseteq K$ be a pair of ideals of R_s . Then, there are two ideals $J' \subseteq K'$ of *R* such that $J = J'_s$ and $K = K'_s$. There exists an ideal I' of *R* satisfying $sJ' \subseteq I'K' \subseteq J'$. By localizing at *s*, we have $J \subseteq IK \subseteq J$, where $I = I'_s$. It follows that R_s is a multiplication ring. \Box

It follows from Proposition 9.13 in [2] that an integral domain is a multiplication ring if and only if it is a Dedekind domain. The following example shows that rings with each ideal *u-S*-multiplication are not necessary *u-S*-multiplication rings, and thus *S*-multiplication rings are *u-S*-multiplication rings in general.

Example 3. Let D be an integral domain such that D_s is not a Dedekind domain for any $0 \neq s \in D$ (e.g., $D = k[x_1, x_2, ...]$, the polynomial ring with infinite variables over a field k). Set $S = D - \{0\}$. Then D is not a u-S-multiplication ring by Proposition 11. However, every ideal of D is a u-S-multiplication, and thus, D is an S-multiplication ring. Indeed, let K be an ideal of R and let J be a sub-ideal of K. Suppose K = 0. Then, J = 0, and thus, $sJ \subseteq IK \subseteq J$ always holds. Otherwise, let $0 \neq s \in K$ and I = J. Then, we also have $sJ \subseteq IK \subseteq J$. It follows that K is a u-S-multiplication ideal of R.

Remark 1. Note that the converse of Proposition 11 is not true in general. Indeed, let D be a valuation domain with valuation group $\mathbb{Z} \times \mathbb{Z}$. It follows by ([15], Chapter II, Exercise 3.4) that the maximal ideal \mathfrak{m} of R is principally generated, say generated as $s \neq 0$. Let $S = D - \{0\}$. Then, D is not a u-S-multiplication ring by Example 3. However D_s is a discrete valuation domain, and hence, it is a multiplication ring.

Let \mathfrak{p} be a prime ideal of R. We say a ring R is a *u*- \mathfrak{p} -*multiplication* provided that R is a *u*- $(R \setminus \mathfrak{p})$ -multiplication.

Theorem 3. *Let R be a ring. Then, the following statements are equivalent:*

- (1) *R* is a multiplication ring.
- (2) *R* is a *u*-p-multiplication ring for each $p \in \text{Spec}(R)$.
- (3) *R* is a *u*-m-multiplication ring for each $m \in Max(R)$.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$: Trivial.

 $(3) \Rightarrow (1)$: Suppose *R* is a *u*-m-multiplication ring with respect to some $s_{\mathfrak{m}} \notin \mathfrak{m}$ for each $\mathfrak{m} \in \operatorname{Max}(R)$. Let $J \subseteq K$ be a pair of ideals of *R*. Then, there exists an ideal $I^{\mathfrak{m}}$ of *R* such that $s_{\mathfrak{m}}J \subseteq I^{\mathfrak{m}}K \subseteq J$. Since $\{s^{\mathfrak{m}} \mid \mathfrak{m} \in \operatorname{Max}(R)\}$ generates *R*, there exist finite elements $s^{\mathfrak{m}_1}, ..., s^{\mathfrak{m}_n}$ such that $J = \langle s^{\mathfrak{m}_1}, ..., s^{\mathfrak{m}_n} \rangle J \subseteq (\sum_{i=1}^n I^{\mathfrak{m}}) K \subseteq J$. Setting $I = \sum_{i=1}^n I^{\mathfrak{m}}$, we have IK = J. Consequently, *R* is a multiplication ring. \Box

Proposition 12. Let *R* be a ring, let *M* be an *R*-module, and let *S* be a multiplicative subset of *R*. Suppose R(+)M is a u-S(+)M-multiplication ring with respect to some $(s,m) \in S(+)M$. Then,

R is a *u*-*S*-multiplication ring with respect to *s*, and each submodule of *M* is a *u*-*S*-multiplication *R*-module with respect to *s*.

Proof. Let M' be a submodule of M and let N be a submodule of M'. Then, 0(+)N is a sub-ideal of 0(+)M'. Hence, there exists an ideal I' of R(+)M such that $(s, m)0(+)N \subseteq I'0(+)M' \subseteq 0(+)N$. Set $I = \{r \in R \mid \text{there exists } (r,m) \in I'\}$. Then, $sN \subseteq IM' \subseteq N$, and hence, M' is a *u*-*S*-multiplication *R*-module with respect to *s*.

Let $J \subseteq K$ be a pair of ideals of R. Then, $J(+)M \subseteq K(+)M$ is a pair of ideals of R(+)M. Hence, there exists an ideal L' of R(+)M such that $(s, m)J(+)M \subseteq L'K(+)M \subseteq J(+)M$. Set $L = \{r \in R \mid \text{there exists } (r, m) \in L'\}$. Then, $sJ \subseteq LK \subseteq J$. Hence, R is a *u*-*S*-multiplication ring with respect to s. \Box

Remark 2. We do not know whether the converse of Proposition 12 is true. That is, suppose R is a u-S-multiplication ring with respect to s and each submodule of M is a u-S-multiplication R-module with respect to s. Do we have R(+)M is a u-S(+)M-multiplication ring with respect to some $(s,m) \in S(+)M$?

Author Contributions: writing—review and editing, W.Q.; Conceptualization and methodology, X.Z. All authors have read and agreed to the published version of the manuscript.

Funding: The first author was supported by the National Natural Science Foundation of China (No. 12201361).

Data Availability Statement: no new data were created.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Krull, W. Multiplication rings. Sitzber Heidelb. Akad. Wiss. Abhand-Lungen 1925, 5, 13–18.
- 2. Larsen, M.D.; Mccarthy, P.J. Multiplicative Theory of Ideals; Academic Press Inc.: New York, NY, USA, 1972.
- 3. Mott, J.L. Equivalent conditions for a ring to be a multiplication ring. *Can. J. Math.* **1964**, *16*, 429–434. [CrossRef]
- 4. Mehdi, F. On multiplication modules. Math. Stud. Vol. 1974, 2, 149–153.
- 5. Bast, Z.A.; Smith, P.F. Multiplication modules. Commun. Algebra 1988, 16, 755–779. [CrossRef]
- 6. Naoum, A.G. Flat modules and multiplication modules. Period. Math. Hungar. 1990, 21, 309–317. [CrossRef]
- 7. Smith, P.F. Multiplication modules and projective modules. Period. Math. Hungar. 1994, 29, 163–168. [CrossRef]
- 8. Anderson, D.D.; Dumitrescu, T. S-Noetherian rings. Comm. Algebra 2002, 30, 4407–4416. [CrossRef]
- 9. Anderson, D.D.; Arabaci, T.; Tekir, U.; Koç, S. On S-multiplication modules. Comm. Algebra 2020, 48, 3398–3407. [CrossRef]
- 10. Chhiti, M.; Moindze, S. On S-multiplication rings. J. Korean Math. Soc. 2023, 60, 327–339.
- 11. Zhang, X.L. Characterizing S-flat modules and S-von Neumann regular rings by uniformity. Bull. Korean Math. Soc. 2022, 59, 643–657.
- 12. Qi, W.; Kim, H.; Wang, F.G.; Chen, M.Z.; Zhao, W. Uniformly S-Noetherian rings. arXiv 2022, arXiv:2201.07913.
- 13. Zhang, X.L. On uniformly *S*-absolutely pure modules. *arXiv* **2021**, arXiv:2108.06851.
- 14. Anderson, D.D.; Winders, M. Idealization of a module. J. Commut. Algebra 2009, 1, 3–56. [CrossRef]
- 15. Fuchs, L.; Salce, L. *Modules over Valuation Domains, Lecture Notes in Pure and Applied Mathematics* 97; Marcel Dekker Inc.: New York, NY, USA; Basel, Switzerland, 1985.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.