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Abstract: In this paper, we derive the gradient estimates of semigroups in terms of the modified
curvature-dimension inequality CDE’ for unbounded Laplacians on complete graphs with non-
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1. Introduction

It is insightful that curvature-dimension inequality CD(n, K) with the dimension
parameter n and the lower bound of Ricci curvature K, from Bochner’s identity, can be
used as a substitute for the lower Ricci curvature bound on metric spaces, especially on
non-smooth spaces by Bakry and Emery [1]. The curvature-dimension inequality has been
extensively studied in the literature. See for example [2] in manifold settings and [3-5] in
discrete settings. The following gradient estimate of the semigroup

T(Pif) < e *PI(f) 1

is equivalent to the curvature-dimension inequality CD (oo, K) for diffusion Laplacians on
metric measure spaces (see [6]). On graphs, such a result has been proven by [3,7] in the
case of finite graphs and for bounded Laplacians as well as [8,9] for unbounded Laplacians.
Furthermore, a version of the strong gradient estimate

T(Pf) < e 2Kip /T (f) (2)

had been proven by the following strong curvature inequality

[(T(g)) < 4T(g)[I2(8) — KT(g)], ®)

when the Laplacian generates a diffusion; see [6]. The strong gradient estimate (2) is the
key to deriving the Log—Sobolev inequality of the semigroup. Unfortunately, this strong
curvature inequality can never be satisfied on a graph. The strong curvature inequality (3)
fails, e.g., for g = éy.

To prove the discrete version of the Li-Yau inequality, Bauer et al. introduced the
modified curvature-dimension inequalities CDE and CDE’ and derived the Harnack in-
equality [10]. The Gaussian heat kernel estimate, volume doubling, and Poincaré inequality
were proved in [11] under the assumption of CDE’(#,0). From their papers, CDE’(n, K)
is equivalent to CD(n, K) when the Laplacian is diffusion. On a graph, CDE’(n,K) im-
plies CD(n,K), but the reverse is not true (see [10,12]). The typical graphs satisfying
the CDE’(n,0) assumption are Abelian Cayley graphs. Unlike the classical curvature-
dimension inequality CD, the modified one CDE' is nonlinear and hard to study. The equiv-
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alent gradient estimate associated with CDE’ (oo, K) was derived for bounded Laplacian
in [3], which states that

L(v/Pf) < e M PL (V). 4)

This form is close to the strong gradient estimate (2), and it is a stronger gradient
estimate than the regular one (1) in terms of CD.

It should be pointed out that for the case of unbounded Laplacians, standard tech-
niques for bounded Laplacians could not be used again. Unbounded Laplacians on graphs
have been studied in the past decade or so; see for example [13-16]. Hua and the sec-
ond author proved one of the equivalent semigroup properties, i.e., the gradient estimate
(1) of CD(o0,K) and then the stochastic completeness on a complete graph with a non-
degenerate measure [9]. In ref. [8], other equivalent semigroup properties of CD (oo, K),
i.e., the Poincaré inequality and inverse Poincaré inequality, were proved for unbounded
Laplacian under the same assumptions. The equivalent semigroup properties of CD(n, K)
were also derived. In ref. [17], the Li-Yau inequality and heat kernel estimate have been
extended to the case of unbounded Laplacians on graphs satisfying CDE’(#,0). In this
paper, we focus on unbounded Laplacians and explore the equivalent semigroup properties
of CDE'.

1.1. Setup and Notation

Let G = (V,E) be a graph where V is the set of vertices and E is the set of edges.
For x,y € V, we call them neighbors if (x,y) € E, i.e., an edge between x and y, which is
written as x ~ y. We allow loops, i.e., x ~ x. G is called locally finite if there are only finite
neighbors for any vertex, that is, for any x € V,

#Hy € V]y ~x} <oo.

G is called connected if for any x,y € V, there is a finite sequence {x;} , € V
satisfying
X=Xg~Xp~ " ~Xp=Y.

In this paper, all the graphs we consider are connected and locally finite.

Given two functions m : V — (0,00) and w : E — [0, 00) as the measure on V and
the weight on E separately, we assume w is symmetric, i.e., for any (x,y) € E, wyy = wyx.
As for (x,y) ¢ E, welet wyy = 0. Given a weight function w and a measure function m, we
call G = (V,E,w, m) a weighted graph.

We denote by VR the set of real-value functions on V and by Cy(V) the set of finitely
supported functions on V. Let p € [1,00); we denote by ¢}, the spaces of functions on V
with respect to the measure m and by ¢* the spaces of bounded functions.

Given a graph G = (V, E,w, m), there is an associated Dirichlet form on KZ(V, m)

Q:D(Q) x D(Q) R
Qf.8) =5 T @)~ F(x)(s() - 3(x)),

x,yev

where D(Q) = {f € 2(V,m)| xyzejvwxy(f(y) — f(x))? < o} and the norm on D(Q) is

Ifllg = /U + IIfllg,-

The Laplacian A associated with the Dirichlet form on a graph can be written as

defined as

1
m(x)

Af(x) = Y wxy(f(y) = f(x)), Vf€Co(V).

yev
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The domain of the Laplacian A is defined by D(A) = {f € D(Q)|Af € (2(V,m)}.
The associated semigroup of A is P; = e2. It can be seen that the choice of measure m
does have a great influence on the Laplacian when the weight function w is fixed. Usually,
the measure m has the following two typical forms:

(1) Foranyx € V,m(x) =L,y Wxy;
(2) Foranyx e V,m(x) =1
It is well known that the boundedness of the Laplacian is equivalent to

< 0

7

~x W
D‘u = sup 723’ x Y
xeV m(x)

see [14]. Notice that the Laplacian in case (1) is bounded.
In this paper, we focus on the unbounded Laplace operators. We need to assume the
measure m is non-degenerate, i.e.,

d:= inf m(x) > 0.
xeV

The non-degeneracy of measure is a mild assumption on a graph and plays a significant
role in dealing with unbounded Laplacians. Indeed, we have the following useful lemma.

Lemma 1. Let m be a non-degenerate measure. Then, for any f € ¢P(V,m) and p € [1,c0),
_1
) <P fly, Vrev.
Moreover, 05, — 01 with1 < p < q < Hoco.

We further assume that the graph is complete, i.e., there exists a non-decreasing se-
quence {7, }§ € Co(V) satisfying

©)

Ll

lim Mk = 1, r(ﬂk) <
k—o0

Here, 1 is the constant function on V, and the limit of (5) is pointwise. This condition
is first introduced on the Markov diffusion semigroup in [6] and then on a graph in [9].
The condition of completeness has been proven to be satisfied for a large class of graphs
with intrinsic metrics. See Theorem 2.8 in [9]. The following lemma shows that Cy(V) is a
dense subset of D(Q) when the graph is complete.

Lemma 2 (Lemma 2.5, [9]). Let G = (V, E,w, m) be a complete graph. Then, for any f € D(Q),
we have

1fme—=fllg =0, k= oo

Now, we give the definition of the curvature-dimension inequality. First, we introduce
the following gradient forms.

Definition 1. The carré du champ operator I and the iterated gradient form Ty are defined by

F(f,9)(x) = 5 (A(f9)(x) — gAf(x) — fAg(x),

Io(f,8)(x) = %(Af(f,g) (x) = T(f,88)(x) = T(g,Af)(x))-
For convenience, we write T (f) = T'(f, f) and To(f) = Ta(f, f).



Mathematics 2023, 11, 2138

40f12

Next, we introduce the modified curvature-dimension inequality on graphs. As we
mentioned before, Bauer et al. [10] modified the curvature-dimension inequalities to prove
the Li-Yau inequality. They noticed that the graph Laplacian A does not generate a dif-
fusion semigroup except for the square root function /-, which motivates the following
modification of curvature-dimension inequality. The modification of I'; is defined by

B 2
falf) = 38100 -1 (£, 55,

Definition 2 (CDE'(n,K)). We say G = (V, E, w, m) satisfies CDE'(x,n,K) on x € V, if for
any positive function f, the following inequality holds true

Ba(f)(x) > 1 f(x)?(Alog f) (x)? +KT(f) (x).

G is said to satisfy CDE'(n, K), if for every x € V, CDE'(x,n, K) is true. If n = oo, we say
G satisfies CDE’ (o0, K).
1.2. Main Results

Here, we are ready to state our main results.

Theorem 1. Let G = (V, E, w, m) be a complete graph with a non-degenerate measure m. Then,
the following statements are equivalent:

(1) G satisfies CDE' (o0, K) with K € R.
(2) Forany0 < f e Cy(V), t>0,

F(VBF) < e PT(y/F).
(3) Forany0< fe€D(Q), t>0,

T(VPif) < e X PT(VF).

Similarly, we obtain the gradient estimate of CDE’(n, K) with n € (0,00) on a locally
finite graph under the same assumptions.

Theorem 2. Let G = (V, E, w, m) be a complete graph with a non-degenerate measure m. Then,
the following statements are equivalent:

(1) G satisfies CDE'(n,K) withn > 0and K € R.
(2) Forany0 < f e Cy(V), t>0,

I(VBF) < e KB (T(VF)) - 2 /O t e 2Py (Py_sf(Alog \/Pr—sf)?)ds.

n

(3) Forany0 < f e D(Q), t>0,

I(v/Bif) < e KB (T (/) - = /0 t e 2P (P f(Alog \/Pi—sf)?)ds.

n

The proof of the above theorems is based on the semigroup methods, which is a
generalization of the result in [3] to unbounded Laplacians. The remaining part of this
paper will be organized as follows: In Section 2, we give several preliminary lemmas for
our use later. In Section 3, we finish the proof of the main theorems.

2. Preliminaries

We need the following properties of the heat semigroup and Green’s formula (see [9,17]).
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Lemma 3. Forany f € (P(V,m) and p € [1, 00|, we have P;f € ¢F(V,m) and
IPflly < Ifly, VE=o0.
Moreover, for any f € (2(V,m), Pif € D(A).
Lemma4. Let G = (V,E,w,m). Forany f € D(Q) and g € D(A), we have

Y f(x)Ag(x)m(x) = — ) T(f,g)m(x).

xeV xeV

The following lemma is very useful in the proof of main results.

Lemma 5. For any functions f,g € VR, if |f| < Hand |g| > h > 0, then we have

r({;) < OIT(f) + CT (g),

where C1 and Cy are constants only depending on H and h.

Proof. By definition of I' and the Cauchy-Schwarz inequality, we have

'(%) = L (507 Q;)Z

L 1 1 1\
s Z 57 0 1 +509 (55 )]
1 1
< ) B vty ) S
L w & — o(x 2
o) 2 v @) B 8
2 2H?

< ZT() + ZT(8) = GRT() + Call, H)T(g).
That completes the proof. [

The following Caccioppoli inequality for subsolutions to Poissons equations on graphs
was proved in [9]. The authors of [9] derive a uniform upper bound about the solution to
the heat equation.

Lemma 6 (Lemma 3.4, [9]). Let g,h : V — R satisfy Ag > h. Then, for any y € Co(V),

|r(g)n? )

< c([rng?

+ |lgh?
s 2, o

Lemma 7 (Lemma 3.6, [9]). Let G = (V, E,w, m) be a complete graph. For any f € Co(V) and
T > 0, we have r[na>]< T(Pf), r{n@;}( IT(P:f, AP:f)| € £1L,. Moreover, there exists a positive constant
0T 0,

C(T, f) depending on T and f such that

D IT(Pef, AP:f)|

123 Gy
Combining Lemmas 5 and 7, we have the following uniform upper bound about the
square root of the solution to heat equation.
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Lemma8. Let G = (V, E,w, m) be a complete graph. For any 0 < f € Co(V),e > 0,and T > 0,
we have I[nzi})]( T(\/Pif +€) € L}, Moreover, there exists a positive constant C(T, f, €) depending
0,

on T, f and e such that

maxI'(y/Pif +€)

< C(T,f,e).
na <C(T,fe)

1
Cn

Proof. Notice that P f + € > € since f > 0. Therefore,

r{{)u;)}(l"(\/l’tf—i-e) 1 = ZV na ( Z wyy(V/Prf +€(y) — \/Ptf—I—e(x))z)m(x)
’ W x€ y~x
= Z max ) wxy(«/Ptf—lre(y) — \/Ptf—lr«s(x)>2

2 f&v 0T =

2
max Pif(y) — Pif(x)
-3 L y(xmmw)
41< 2 max 2 wry ((Pef)(y (Ptf)(x))2>

xeV [0 T] y~x

< C(e)

max L(Pf )

< C(e)C(T, f) =: C(T, f,e).

This proves our case. [

Lemma 9. Let G = (V,E,w, m) be a complete graph with a non-degenerate measure m. If G
satisfies CDE' (00, K), for any 0 < f € Co(V) and € > 0, we have

T(y/Pif +€) € D(Q), t>0.

Proof. For convenience, let u = P;f + €. Itis easy to see that T'(/u) € ¢*(V,m) by Lemma 1
and Lemma 8. If we prove that Q(I'(1/u)) < oo, the assertion follows.

Letg = I'(y/u) and h = ZF( f}) + 2KT(y/u). Thus, Ag > h follows from

CDE'(e0,K). According to Caccioppoli inequality (see Lemma 6) and ¢ € ¢*(V,m) C
¢*(V), we have
o)

Au 2
T , —— 2K .
(Vizge )], * |||g||g;,,>

From the Cauchy-Schwarz inequality, we obtain
(727

W) o = %”F(ﬁ)”% + ;HF<2?/uﬁ> 0

Note that e < u < ||f|| + €. By Lemma 5, we have

Au
r{ ==
H <2ﬁ > o,
where |[T(Au)|[n = [T(APf)|[ 1, = IT(PeAf)| 1, < oo by Lemma 7. Therefore, combining
with Lemma 8, it follows that

|r(g)n?

< C(HF(nk)gz + [lgm

1 1
Em an

L, 2
=C (kIIgIIggn F 118l

e NIT(Vu)|lg + Cale, HIT(Au)| 11, ©6)

|r(g)n?

< oo.
4
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According to the Fatou’s lemma, we obtain

|rr(yvpif+e)|,, <timint|[r(r(v/Bf+e))n?

Cin k—o0
which completes the proof. [

< oo,
Oy

3. Proof of Main Results
Proof of Theorem 1. (1) = (2) Forany f,¢ € Co(V), let

G(s) = ¥ T(VPof +€) (x)PE(x)m(x), €>0.

xeV

We separate the proof into the following three steps.
Step 1. The derivative of G(s) is as follows.

Gl =2 (N/Ptsf Te, W) (2) P (x)m ()

— Y T(C(V/Pif +e), Pg) (x)m(x).

xeV
Indeed, the formal derivative of G(s) is
_ € 7A(Pt_sf+€) X x)m(x
2§ (Ve A0 ) pgtoms
+ ¥ T(VPef +€) (AR ()m(x) = + L.

xeV

To prove G'(s) is just the above formula, it is sufficient to show the uniform con-
vergence of the above summations on s. For any f,{ € Cy(V), by the Cauchy—Schwarz
inequality, we obtain

L] < 2[|Psgle )

xeV

A(Ptfsf + 6)
r <\/Pt_sf +€, Z\/W) ’(x)m(x)

A(Pr—sf +¢€)
< ||¢W(HF<¢W> ot r(W) 5)

and

Ib] < ¥ T(VP—of +€)(x)|RAZI (x)m(x) < |88 |T(v/Pi=of +€)

xeV

10
Zm

From Lemma 8 and (6) in Lemma 9, I; and I, are uniformly convergentons € (4,t—J)
for any 0 < ¢ < t. Note that Ps¢ € D(A) forany ¢ € Co(V), and T'(\/Pi—sf +¢€) € D(Q)
by Lemma 9 from the Green’s formula; we finish the proof of Step 1.

Step 2. Under the assumption of CDE’(c0, K), we have

G'(s) > 2KG(s). )
To finish this, we claim that for any h € D(Q),
A(Pt_sf+ €)
_ zx;/I’ (x/Pt_sf +¢, \/W) (x)h(x)m(x)
-y F(F(«/Ptf+ e),h) (x)m(x) > 2K ¥ F(\/Pt,sf+e)(x)h(x)m(x).

xeV xeV

®)
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Letting h = Ps¢ in the above inequality, we obtain (7). The rest of Step 2 is to prove
the claim.
For any 0 < h € Cy(V), by the Green’s formula, we obtain

-y F(F(\/Pthre),h) (x)m(x) = Z%/AF(x/Pt,sf+e> (x)h(x)m(x),

xeV

which yields (8) by the CDE’ (o0, K) condition. For any 0 < h € D(Q), let 17 be defined as
shown in (5). Replace 1 by hnj; € Cy(V) into the above equality. Since

vV Pt—sf +e€
and T'(\/Pi—sf +€) € D(Q), it is obvious that

F(«/Pt—sf—i-e,W),F(\/Pt_sf—i-e) e MV, m)

oy r<W A“’f“) () (x)m ()

xeV V Pf*Sf +e
A(Pt—sf + 6)
— —ZX;/F («/Pt_sf +€, \/W) (x)h(x)m(x),

and

K'Y F(\/Pt,s f+e) (x)he(x)m(x) — 2K ¥ F(\/Pt,s f—l—e)(x)h(x)m(x),

xeV xeV

as k — co. Moreover, we have

¥ r(r(VAfFe) ) (x)m(x) = ¥ T(T(VEF+e), ) (x)m(x)

xeV xeV
= Z‘:/F(F(\/m),hqk—@(x)m(x)
< L T (MR ) 0y T~ D) @m()
1/2 1/2
< (Zrrvmrwne) (L ruon-mmnn) o

which finishes the claim.
Step 3. Integrating (7) in Step 2 from 0 to f, we have

G(t) > e*X'G(0).

Foranyy € V,let{(x) = d,(x) in G(s). From the above inequality and self-adjointness

of P, it follows that
T(VPf +e) <eMP(T(V/f +e)). )

As a result of the local finiteness of the graph, we have

elir& T(VPf +e) = F(ellr(l;r VPif +e) =T(\/Pf).
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Notice that I'(\/f +€) = I'(/f+e—+e€) and 0 < /f+€e— e < /f for any

0 < f € Cy(V). Then, for every x € V, we have

MV = g K| (Ve - ve) ) - (VFFe-ve) ]
;wxdwf?—m (Ve v o)
< ey )+ £09) = a5 + TEIf2).

Note that P;(Af + d;g(’ )) f) < cosince f(x) € Co(V). By the dominated convergence
theorem and the locally finiteness of graph, we obtain

elir(l)h PT(\/f+e)= Pt(elgg+ I(vf+e)) = Ptr(elirg+ Vf+e€) = PT(/f). (10)

Letting € — 07 in (9), we finish the proof of (1) = (2).
(2) = (1) For0 < f € Cy(V), consider

E() i= e ' PI(\/F) — T(y/Bif).

Note that F(0) = 0 and F(t) > 0. It follows that lim F’(t) > 0. Then,

t—0+t

0< lim F(t) = Jim (—ZKeZKtPtr(\/f) + e 2KIAPT(\/f) — 2T ( N7 ZAPtf ))

b f
= Jim (—2K82“Pfr<ﬁ> + e P AT(/F) —2r<\/W/ o ))
t—0+ 5 Ptf
= —2KT(/F) + AT(V) —2r<ﬁ, ;‘j}) = —2KT(V/F) + 20(V)

which implies CDE’ (0, 0).
(2) = (3) Forany 0 < f € D(Q), let 5, be defined as (5). From (2), we have

r< Pt(f;y,f)> < eZKtPtl”(\/ny,%)

By the local finiteness of the graph and monotone convergence theorem, we obtain

(/i ) = (pm aisid) = r(vA)

On the other hand, for any x € V,
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F( fm%) 2m1x ZWXy(FWk ) =y F@) () )

ny

% | (V000 = 50 ) It |+F|nk = ]

R

(1 ) wayf ()] = | (2)])?

ywx

< (1+ ) (v w+ .

In the third step, we use the basic inequality 2ab < \[a + Vkb2. Tt follows that

Pt(r(\/ﬁ,%» < (1 + \}%)Ptl"(\/f) +1 +fPtf

Letting k — +o0, we obtain

T (r(VrE)) < pm (1 J2) e (V) + jim s = (7).

Then, for any 0 < f € D(Q), we have

r(Vrf) = mr(,/nm,ﬁ) < eZKmetr(\/ﬁ,%) <eXpr(y/F).

(3) = (2) Notice that Cyp(V) is a dense subset of D(Q), the proof is obvious. [

Zm(x

IN

+

Proof of Theorem 2. (1) = (2) Forany f,{ € Cyo(V), consider

H(s):= e 2% Y F(\/Pt_sf—l—e)(x)PSC(x)m(x), €>0,

xeV

and obtain the formal derivation of H as follows,

9p—2Ks Z r(\/m,A(Ptsf"'G)> (x)Ps&(x)m(x)

xeV \/m
| p2Ks Zv r(\/m) (x)A(Ps&) (x)m(x) — 2Ke 2K Zvr(\/m) (x)PsZ (x)m (x).

For any ¢ € Cyp(V), we have

2K Y T(\/Pr—sf +€)PsE(x)m(x)

xeV

< 2K[[|gllgge Y- T(VPesf +€)m(x).

xeVv

Notice that [e=2K5| < max{1,e72X'} when s € [0, t]. Combining with Lemma 8 and
Step 1 in the proof of Theorem 1, we conclude that the above formal derivation is uniformly
convergent to H'(s) ons € (6,t —J) for any 0 < 6 < t. Then, using the CDE'(n,K)
condition similar to Step 2 in the proof of Theorem 1, we obtain

H'(s) > 207 Y (Bof ) (Alog y/Br_of + €& (x)m(x)

xeV

Integrating the above inequality from 0 to ¢, and letting (x) = J,(x), we have
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(VAT £ (e (0 <2 [ (g ovs ) o

Let {e; }§° be a positive sequence, and € — 0T as k — co. Replace € with ¢ in the
above inequality. By the local finiteness of G and Fatou’s Lemma, we obtain

2 t 2
— lim = [ e 2Ksp, ((Pt_sf+ek) (Alog \/Pt_sf+ek> >ds

k—oo 1 J0

2 gt 2
—f/o 5_2K5P5<1i1'n(Pt—sf+€k>(A10g \/Pt—sf'f‘ek) )ds

n k—o00

= _2 /Ot ¢~ 2Ks p, <(Ptsf) (A log m)2>d5.

n

IN

Combining with (10) yields
r(VR) = lim T (VP )
N t 2
< Iim e 2P, (F(«/f%—ek)) ~tim 2 [ e 2Ksp, <(Pt_sf+ek) (Alog \/Pt_sf—i—ek) )ds

k—oo 1 J0

< e—ZKtPt(F(\/J?)) _ E/(;te—ZKsps (Ptsf(AIOg m)z)ds.

n

(2) = (1) Let

1 gt
L(t) = T(v/Pef) = e BT (VF)) + - /0 ¢ 2 Py(Pr—sf (B log /Pi—sf)?)ds.
Notice that L(0) = 0 and L(t) < 0 when t > 0. Then, we have

lim L'(t) <0,

t—0+ -

which implies the CDE’(n, K) condition.
(2) < (3) This follows from a density argument. [J
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