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Abstract: In this paper, we present a numerical scheme based on a collocation method to solve
stochastic non-linear Poisson–Boltzmann equations (PBE). This equation is a generalized version of
the non-linear Poisson–Boltzmann equations arising from a form of biomolecular modeling to the
stochastic case. Applying the collocation method based on radial basis functions (RBFs) allows us to
deal with the difficulties arising from the complexity of the domain. To indicate the accuracy of the
RBF method, we present numerical results for two-dimensional models, we also study the stability of
this method numerically. We examine our results with the RBF-reference value and the Chebyshev
Spectral Collocation (CSC) method. Furthermore, we discuss finding the appropriate shape parameter
to obtain an accurate numerical solution besides greatest stability. We have exerted the Newton–
Raphson approach for solving the system of non-linear equations resulting from discretization by the
RBF technique.

Keywords: stochastic non-linear Poisson–Boltzmann equation; biomolecular modeling; collocation
method; radial basis functions

MSC: 60H15; 35J05; 35Q92; 65N35; 65D12

1. Introduction

There are numerous numerical methods for solving partial differential equations
(PDEs). A popular category of numerical techniques is called mesh-free methods [1,2]. As a
special case of the mesh-free methods, we recall radial basis functions (RBFs) collocation
methods, which recently have been studied to solve a large number of PDEs related to
science and engineering problems [3–6]. The implementation of RBF methods is very
simple because the main property of the RBF method is that in order to discretize it does
not require a mesh, indeed it only requires setting collocation points which allow us to deal
with complicated domains. Furthermore, the implementation of this method is easy for
higher dimensional problems [7–9]. So far, many authors have published papers on the
improvement of the RBF method or on how to implement the method for various PDE
problems [10–12]. It is worth noting that this method has been applied to the study of
several biological systems [13,14]. We refer interested readers to [15] for new advances in
RBF methods. Several radial basis functions have been defined so far, and some of them
depend on a constant which is called a shape parameter c > 0. Some popular RBFs are
collected in Table 1.

The accuracy and stability of the numerical results obtained using the collocation
method are highly dependent on the choice of the collocation points and the shape pa-
rameter. A smaller shape parameter generally improves the accuracy, but it may lead
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to instability. Thus, there exists a trade-off between the stability and accuracy of the ap-
proximation, and determining the best shape parameter remains a challenging problem.
Consequently, the value of the shape parameter is included in the unknowns and needs to
be determined. The shape parameter that leads to the lowest error is called the optimal
shape parameter. Various techniques have been proposed by researchers to find the optimal
shape parameter [16–20]. When describing some physical phenomena in the form of partial
differential equations, adding stochastic factors enables the achieving of a more accurate
model. In recent years, many researchers have become interested in studying stochastic
models [21,22]. In this work, we apply a collocation method based on radial basis functions
to find the discrete solutions of a stochastic non-linear Poisson–Boltzmann equation. This
class of stochastic PDEs plays a role in describing various biological phenomena, making it
imperative to solve these equations to obtain beneficial solutions. This strong motivation
drives us to tackle these complex equations [23–25]. Here, we consider the model that is
described in [26].

Table 1. Popular radial basis functions.

Name of Function Abbreviation Definition

Multiquadric MQ ϕ(r) =
√

c2 + r2

Inverse multiquadric IMQ ϕ(r) = 1√
c2+r2

Inverse quadratic IQ ϕ(r) = 1
c2+r2

Gaussian GA ϕ(r) = exp(−c2r2)

Polyharmonic spline PHS ϕ(r) =

{
r2n−1, n ∈ N,
r2n ln r, n ∈ N

Thin plate spline TPS ϕ(r) = r2 log r

The main focus of this paper is to propose a formulation based on the RBF collocation
method to solve stochastic non-linear Poisson–Boltzmann equations. Section 2 is devoted
to describing a physical model for the non-linear stochastic non-linear Poisson–Boltzmann
equation. In Section 3, we present the main results of this paper which is to implement the
RBF collocation method to solve our model problem. In Section 4, we present numerical
results, and in the final section we have summarized the conclusions.

2. The Stochastic Non-Linear Poisson–Boltzmann Equation

Let D be an open-bounded Lipschitz domain in Rd consisting of two non-overlapping
sub-domains with different physical properties with the boundary ∂D. In this paper, we
assume D := DL ∪ DM where DL contains a solvent, such as an electrolyte, blood, or salty
water, and DM is the impenetrable molecules region. The domain DL is filled with two free
charge carriers, namely a positive and a negative carrier (see Figure 1). We also assume
P := (Ω, Σ, P) is a probability space.

Figure 1. Schematic diagram of a biomolecular model in a domain D including two non-overlapping
subdomains DL and DM, namely the liquid and molecule domains. +,− denote positive and negative
charge carriers.



Mathematics 2023, 11, 2118 3 of 13

The above process can be described by a deterministic Poisson–Boltzmann equation.
This model could be generalized to a stochastic version when the molecules move randomly
inside the solvent, which is controlled by Brownian motion. Here, the movements of the
molecules are independent of each other. The governing equation for the stochastic Poisson–
Boltzmann equation is considered as follows

−∇ · (a(x, ω)∇u(x, ω)) + b(x, ω, u(x, ω)) = f (x, ω) in DL, (1a)

−∇ · (a(x, ω)∇u(x, ω)) = g(x, ω) in DM, (1b)

u(x, ω) = uD(x, ω) on ∂D, (1c)

where the elliptic operator depends on some coefficients a(x, ω) for x ∈ D and the sample
ω ∈ Ω. Additionally, the force terms f (x, ω) and g(x, ω) are assumed to be random.
One of the interesting cases of (1a)–(1c) is the following stochastic non-linear Poisson–
Boltzmann equation

−∇ · (a(x, ω)∇u(x, ω)) + κ(x) sinh βu(x, ω) = 0 in DL, (2a)

−∇ · (a(x, ω)∇u(x, ω)) = ρ(x, ω) in DM, (2b)

u(x, ω) = uD(x, ω) on ∂D, (2c)

where u describes the electrostatic potential which is due to free charges, a(x, ω) is the
dielectric constant or permittivity function, and ρ(x, ω) represents the fixed charges of the
molecules. Here, κ(x) is the ionic concentration. κ(x), a(x, ω) are the piecewise constant
functions as below

a(x, ω) =

{
aM x ∈ DM,
aL x ∈ DL,

κ(x) =

{
0 x ∈ DM,
κ̄ x ∈ DL.

β is defined as β : = q
kBT , where the constants κB , T, and q > 0 are the Boltzmann constant,

the temperature, and the elementary charge, respectively.
This stochastic generalization describes physical systems where the fixed charges

have probability distributions, and, hence, the electrostatic potential u is stochastic. The
different configurations of the fixed charges are due to the movement of the molecules.
In this situation, the input data vary randomly from one point of the physical domain D to
another point. In reality, each point in the domain corresponds to a random variable, and
the correlation between the values of any two distinct points in the domain is generally
non-zero. In the model described here, the positions of subdomains are also stochastic.

3. Collocation Method Based on Radial Basis Functions For Solving

In this section, we present a collocation method based on radial basis functions to
solve system (2a)–(2c). For the sake of simplicity, we rewrite the system (2a)–(2c) as

Lu(·, ω) + Gu(·, ω) = f (·, ω) in D, (3)

u(x, ω) = uD(x, ω) on ∂D, (4)

where the linear elliptic operator L is defined as

Lu(·, ω) :=

{
−∇ · (aL(x, ω)∇u(x, ω)) x ∈ DL

−∇ · (aM(x, ω)∇u(x, ω)) x ∈ DM
,

the function G is a Lipschitz continuous function defined as

Gu(·, ω) :=

{
κ(x) sinh βu(x, ω) x ∈ DL

0 x ∈ DM
,
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and the source term f := (x, ω) :=

{
0 x ∈ DL

ρ(x, ω) x ∈ DM
.

Let ϕ(r) : [0, ∞)→ R be a type of radial basis functions defined by ϕj(x) : = ϕ(‖x− xj‖)
at the collocation points {xj}n

j=1 belonging to D := D∪ ∂D. We approximate u by ũ defined
as a linear combination of the radial basis functions ϕ(‖ · ‖), i.e.,

u ' ũ(x) =
n

∑
j=1

λj ϕj(x), xj ∈ D, (5)

where the first n− 1 nodes belong to the interior of the domain and the last node in on the
boundary of the domain. Coefficients λj are unknown and should be determined. Thus, the
collocation method to solve the system (3) and (4) can be written as find λj ∈ R, such that

n−1

∑
j=1

λjLϕ(‖xk − xj‖, ω) + G
(

n

∑
j=1

λj ϕj(x) , ω

)
= f (xk, ω) for k = 1, . . . , n− 1

n−1

∑
j=1

λjLϕ(‖xk − xj‖, ω) + G
(

n

∑
j=1

λj ϕj(x) , ω

)
= 0 for k = n,

which leads to the following system
Lϕ(‖x1 − x1‖) Lϕ(‖x1 − x2‖) · · · Lϕ(‖x1 − xn‖)
Lϕ(‖x2 − x1‖) Lϕ(‖x2 − x2‖) · · · Lϕ(‖x2 − xn‖)

...
... · · ·

...
ϕ(‖xn − x1‖) ϕ(‖xn − x2‖) · · · ϕ(‖xn − xn‖)




λ1
λ2
...

λn

+ G(λ1, · · · , λn) =


f (x1)
f (x2)

...
0

, (6)

where G(λ1, · · · , λn) :=


G
(

∑n
j=1 λj ϕj(x1)

)
G
(

∑n
j=1 λj ϕj(x2)

)
· · ·
0

, and for the sake of simplicity we drop the

stochastic variable ω. We then solve the above system using Newton–Raphson’s method.
Finally, we define the approximate solution of system (3) and (4) as

u(x) ' uD(x) +
n

∑
j=1

λj ϕj(x).

4. Numerical Results

To indicate the effectiveness and efficiency of the RBF method, we present the achieved
numerical results for the model equation in Section 3. Consider the 2D version of problem
(2a)–(2c) that the forcing term on the right-hand side is considered a stochastic term. Then,
by implementing the RBF method, the right-hand vector in system (6) would be random.
For presenting numerical results consider the following assumptions and constants

u = 0 on ∂D,

aL = 78.4, aM = 3.7, κ(x) = 1,

q = 1.6× 10−19, κB = 1.38× 10−23 and T = 300.

Additionally, consider {xi}n
i=1 being the collocation points and h = max

i=1≤i≤n
‖x− xi‖

for all x ∈ D ∪ ∂D. At first, we present our results for the problem consist of one molecule
domain. We provide numerical results using some types of radial basis functions, such as
the Multiquadric (MQ), Inverse Multiquadric (IMQ), and Inverse Quadratic (IQ) functions.
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There is no exact solution for this model. Once we make sure the algorithm is correct,
then we consider the approximation solution for 100 interpolation points using the MQ
function as a reference value, which is shown in Figure 2.

Figure 2. The RBF-reference value from the approximation solution using the MQ function and
100 interpolation points.

Also, for evaluating our results by using the RBF method, we compare our results with
the Chebyshev Spectral Collocation (CSC) method. In this approach, the numerical solution
is interpolated using Lagrange polynomials at the roots of the derivative of Chebyshev
polynomials. The interested reader is referred to [27] for detailed descriptions of the method.
We consider the root-mean-square errors

RMSE := E(‖u− ũ‖2
L2)

1
2 ,

where u can be considered the RBF-reference value (R-value) or the approximation solutions
using CSC, and ũ is the numerical solution obtained by the RBF method. To calculate this
error we employ the Monte-carlo method with 500 realizations for all numerical results.

In Figure 2, it is easy to observe the electrostatic potential energy in the molecular
domain DM. The potential in the liquid region DL is small. Additionally, it can be seen
the nonlinearly changing near the molecule region. These observations are also visible
for subsequent numerical solutions. The numerical solution and error completely depend
on the value of the shape parameter c. So at first, we discuss finding an appropriate
shape parameter. We survey numerical results for different shape parameters. Here,
we present these results for two values of c. For this purpose, we apply the MQ function.
In Figures 3 and 4 we have shown the numerical solution for c = hn, c = hn2 which using
R-value estimation have RMSE 0.0169 and 0.5389, respectively.
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Figure 3. The numerical solution for c = hn with RMSE = 0.0169.

Figure 4. The numerical solution for c = hn2 with RMSE = 0.5389.

Hardy [28] proposed c = 0.815d where d = 1/n ∑n
j=1 dj and dj is the distance of the jth

collocation point from its nearest neighbor which for equispaced node we consider d = h.
Additionally, we found a meaningful relation between the shape parameter, the number
of interpolation points, and d, which we propose in the following formulation to reach a
proper shape parameter for our method. This relation is

c = d(
√

n +
1
i
), i = 1, 2, . . . . (7)



Mathematics 2023, 11, 2118 7 of 13

lWe gained the least RMSE = 0.0013 for the c = d
√

n using R-value estimation. This
nuemical solution is shown in Figure 5.

Figure 5. The numerical solution using the MQ function for c = d
√

n with n = 40 and
RMSE = 0.0013.

In Table 2 and Figure 6, we show RMSE for the RBF method with shape parame-
ters gained from relation (7) for i = 1, . . . , 10. These results are obtained using R-value
estimation and the MQ function with n = 40.

Table 2. Results for various shape parameters using the MQ function with n = 40.

i Condition Number RMSE

1 1.1312 × 108 4.0 × 10−2

2 1.9033 × 107 3.7 × 10−3

3 1.0420 × 107 4.6 × 10−3

4 7.6998 × 106 5.1 × 10−3

5 6.4686 × 106 2.7 × 10−3

6 5.6856 × 106 3.2 × 10−3

7 5.1838 × 106 3.2 × 10−3

8 4.8844 × 106 3.7 × 10−3

9 4.6431 × 106 2.0 × 10−3

10 4.4586 × 106 2.0 × 10−3

cp = d
√

n 3.0942 × 106 1.3 × 10−3

In Table 3, we compare gained results using R-value estimation by the MQ, IMQ, and
IQ function for the proposed shape parameter and shape parameter recommended by
Hardy for six different runs with n = 70.
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Figure 6. Comparison of RMSE for various shape parameters using the MQ function with n = 40.

Table 3. Comparison of RSMEs using two different shape parameters and six different runs with
n = 70.

RBF MQ−RMSE IMQ−RMSE IQ−RMSE
c = d

√
n c = 0.815d c = d

√
n c = 0.815d c = d

√
n c = 0.815d

run
1 6.0 × 10−4 5.6 × 10−3 7.9 × 10−4 4.9 × 10−3 6.0 × 10−3 1.2 × 10−3

2 2.1 × 10−4 9.6 × 10−3 5.3 × 10−4 2.1 × 10−3 3.2 × 10−3 6.7 × 10−4

3 3.4 × 10−4 8.9 × 10−3 8.4 × 10−4 4.3 × 10−3 5.9 × 10−3 5.2 × 10−4

4 5.7 × 10−4 6.0 × 10−3 7.5 × 10−4 3.7 × 10−3 5.1 × 10−3 7.3 × 10−4

5 3.7 × 10−4 7.8 × 10−3 4.5 × 10−4 5.0 × 10−3 2.7 × 10−3 3.8 × 10−3

6 5.5 × 10−4 3.4 × 10−3 7.4 × 10−4 2.2 × 10−3 8.6 × 10−3 1.4 × 10−3

Average 4.2 × 10−4 6.4 × 10−3 6.8 × 10−4 3.7 × 10−3 5.2 × 10−3 1.3 × 10−3

According to the results in Table 3, it is clear that the proposed shape parameter
provides higher accuracy for the MQ and IMQ functions as the basis function. But using
our suggested shape parameter for the IQ function does not yield quite reliable results.
After finding the proper shape parameter and fixing it, we have surveyed results for various
numbers of interpolation points. In Figures 7 and 8, numerical solutions for n = 50, and
n = 70 by utilizing the MQ function can be seen, which via R-value estimation have RMSE
= 0.0079 and 0.00027, respectively. Actually, by increasing the number of interpolation
points, we could reach a more accurate approximation solution.



Mathematics 2023, 11, 2118 9 of 13

Figure 7. The numerical solution by using n = 50, c = d
√

n, with RMSE = 0.0079.

Figure 8. The numerical solution by using n = 70, c = d
√

n, with RMSE = 0.00027.

Additionally, we consider the model contains two molecules with the same assump-
tions of same as the first example. The implementation of the RBF method by employing
the MQ function and using R-value estimation would yield RMSE = 0.0018. Figure 9
illustrates the approximation of the numerical solution in this case.
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Figure 9. The numerical solution for the described model contains two molecules with c = d
√

n, and
RMSE = 0.0018.

Additionally, we surveyed the numerical results for different amounts of κ(x). We
provided results by applying the MQ, IMQ, and IQ functions. Table 4 and Figure 10 show
RMSEs by using the R-valued estimate and SCS method with n = 70.

Table 4. Comparison of RSMEs for various κ(x) with n = 70.

RBF MQ-RMSE IMQ-RMSE IQ-RMSE CSC-RMSE

κ(x)
0.01 2.7 × 10−4 2.3 × 10−4 2.3 × 10−3 1.0 × 10−4

10 9.0 × 10−4 1.2 × 10−3 5.3 × 10−3 9.3 × 10−5

50 1.0 × 10−3 8.0 × 10−4 1.9 × 10−3 4.7 × 10−4

100 1.1 × 10−3 4.7 × 10−4 1.4 × 10−3 9.6 × 10−5

1 1.5 2 2.5 3 3.5 4

(x)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R
M

S
er

ro
r

10-3

MQ-RMSE(N=70)
IMQ-RMSE(N=70)
IQ-RMSE(N=70)
CSC-RMSE(N=70)

Figure 10. Comparison of RSMEs for various κ(x) with n = 70.
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As the last case for numerical analysis, we investigated some results using the MQ,
IMQ, and IQ functions for the described model including one, two, and five molecular
domains (DM). These results are provided in Table 5 and Figure 11 by using the R-value
estimation and CSC method. Figure 12 displays the numerical solution for the model
includes five molecular subdomains using the MQ function with n = 70.

Table 5. Comparison of RMSEs for various DM with n = 70.

RBF MQ-RMSE IMQ-RMSE IQ-RMSE CSC-RMSE

DM
1 2.7 × 10−4 1.0 × 10−3 8.2 × 10−4 4.5 × 10−4

2 7.5 × 10−4 3.6 × 10−4 3.7 × 10−3 9.2 × 10−5

5 1.3 × 10−4 3.7 × 10−4 4.3 × 10−3 8.8 × 10−5

1 1.5 2 2.5 3 3.5 4 4.5 5

M

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
M

S
er

ro
r

10-3

MQ-RMSE(N=70)
IMQ-RMSE(N=70)
IQ-RMSE(N=70)
CSC-RMSE(N=70)

Figure 11. Comparison of RMSEs for various DM with n = 70.

Figure 12. The numerical solution for the described model with five molecules contains c = d
√

n and
the RMSE = 0.0013.

The proof of stability for collocation methods is difficult. More specifically for the
described model in Section 3 which is non-linear and stochastic, it is even more compli-
cated. However, there are some ways to indicate stability numerically. One of them is as
follows: if by changing the shape parameter around a determined value the results do
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not differ much, it can be concluded that the method is stable for that shape parameter.
Due to Table 2, we can observe that whatever the shape parameter would be close to our
suggested shape parameter, the condition number of the matrix obtained in (6) would
change only insignificantly. Therefore, this is evidence for the stability of the RBF method
when employing the suggested shape parameter.

5. Conclusions

In this paper, we have thoroughly demonstrated the efficiency and performance of
the RBF method for solving non-linear stochastic elliptic models. The numerical results
clearly show that this method provides accurate solutions with ease. Not only is the RBF
method efficient, but it is also straightforward to implement, making it more convenient
than other methods, such as finite differences or finite elements. Thus, we recommend the
RBF method as a powerful tool for solving non-linear stochastic equations, particularly
those with complex geometry. Looking ahead, we plan to extend and improve this method
for solving biological PDEs, which are often defined on complex domains. With its accuracy
and simplicity, we believe the RBF method can be a valuable resource for tackling real-
world problems.
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