
Citation: He, K.; Qin, Y.; Gou, F.; Wu,

J. A Novel Medical Decision-Making

System Based on Multi-Scale Feature

Enhancement for Small Samples.

Mathematics 2023, 11, 2116.

https://doi.org/10.3390/

math11092116

Academic Editor: Vasile Preda

Received: 23 March 2023

Revised: 24 April 2023

Accepted: 27 April 2023

Published: 29 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Novel Medical Decision-Making System Based on
Multi-Scale Feature Enhancement for Small Samples
Keke He 1, Yue Qin 2,*, Fangfang Gou 2,* and Jia Wu 2,3,*

1 School of Computer Science and Engineering, Changsha University, Changsha 410003, China;
z20131046@ccsu.edu.cn

2 School of Computer Science and Engineering, Central South University, Changsha 410083, China
3 Research Center for Artificial Intelligence, Monash University, Clayton, Melbourne, VIC 3800, Australia
* Correspondence: 214711088@csu.edu.cn (Y.Q.); gff8221@csu.edu.cn (F.G.); jiawu0510@csu.edu.cn (J.W.)

Abstract: The medical decision-making system is an advanced system for patients that can assist
doctors in their medical work. Osteosarcoma is a primary malignant tumor of the bone, due to its
specificity, such as its blurred borders, diverse tumor morphology, and inconsistent scales. Diagnosis
is quite difficult, especially for developing countries, where medical resources are inadequate per
capita and there is a lack of professionals, and the time spent in the diagnosis process may lead
to a gradual deterioration of the disease. To address these, we discuss an osteosarcoma-assisted
diagnosis system (OSADS) based on small samples with multi-scale feature enhancement that can
assist doctors in performing preliminary automatic segmentation of osteosarcoma and reduce the
workload. We proposed a multi-scale feature enhancement network (MFENet) based on few-shot
learning in OSADS. Global and local feature information is extracted to effectively segment the
boundaries of osteosarcoma by feeding the images into MFENet. Simultaneously, a prior mask is
introduced into the network to help it maintain a certain accuracy range when segmenting different
shapes and sizes, saving computational costs. In the experiments, we used 5000 osteosarcoma
MRI images provided by Monash University for testing. The experiments show that our proposed
method achieves 93.1% accuracy and has the highest comprehensive evaluation index compared with
other methods.

Keywords: decision-making system; imaging segmentation; multi-scale feature enhancement; few-shot

MSC: 68T07

1. Introduction

A medical decision system is an advanced information system for patients that can
assist doctors in diagnosis. It is a scientific decision-making system that assists physicians
in diagnosis by synthesizing clinical data and organically combining numerous models.
It has been well used in some common cancers such as breast cancer, lung cancer, and
brain tumors. As a rare bone malignancy [1], osteosarcoma is a rare malignant tumor
which is currently poorly treated due to the lack of experience of physicians [2]. Especially
in developing countries, large-scale clinical trials cannot be conducted due to resource,
environmental and demographic constraints, and up to 75% of patients have a poor curative
effect. Most patients miss the best period of tumor resection and develop blood metastases
in the later period, which leads to the exacerbation of the disease and an unsatisfactory
prognosis [3,4]. Therefore, for developing countries, building a medical decision system is
one of the best ideas to improve the diagnostic environment and increase the survival rate
of patients with osteosarcoma.

Optimal segmentation of medical images is important for facilitating automated
methods in medical decision-making and disease diagnosis. Imaging is an important
tool in the detection of osteosarcoma. The radiologists identify the area of the lesion by

Mathematics 2023, 11, 2116. https://doi.org/10.3390/math11092116 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11092116
https://doi.org/10.3390/math11092116
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-0453-8222
https://orcid.org/0000-0001-9013-0818
https://doi.org/10.3390/math11092116
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11092116?type=check_update&version=2


Mathematics 2023, 11, 2116 2 of 19

manually tracing the contour lines of the target structure on medical images and delineating
the target area from the surrounding tissues and organs. Magnetic resonance imaging
(MRI) is often used in the preoperative diagnosis of osteosarcoma because of its very high
tissue resolution. MRI image analysis before treatment can not only be used to predict
osteosarcoma, but is also a major step in estimating clinical parameters and assisting disease
diagnosis and surgical planning [5,6].

Unfortunately, due to their largely underdeveloped healthcare infrastructures, the major-
ity of developing nations experience the same problem with osteosarcoma diagnosis [7–11]. It
requires a large number of professionals, particularly in the field of medical imaging. In China,
for example, the growth rate of medical imaging data is very fast, with an annual growth rate
of 30%. However, the number of radiologists is growing slowly, with an annual growth rate
of only about 4%. The gap between the two growth rates is huge. Additionally, there is a
massive shortage of pathologists in China (an average of 1 pathologist every 70,000 people
in China compared to 1 pathologist every 2000 people in the United States). The shortage
of medical professionals in China and their heavy workload are the reasons for the high
rate of misdiagnosis and underdiagnosis. According to a misdiagnosis data report from the
Chinese Medical Association, China has a clinical misdiagnosis rate of 27.8% overall, with
malignant tumors having an average misdiagnosed rate of 40% [12]. The most important
thing is that the radiologist’s reading speed is limited. They need to mark the position of the
organ and tumor on each image while outlining the images. This process usually takes a lot
of time [13,14]. Moreover, after finding the location of the tumor, doctors also need to design
specific irradiation plans or surgical plans of radiation according to the tumor’s size and
shape. Therefore, the speed of medical imaging diagnosis is extremely limited in developing
countries, and there is an urgent clinical need for a fast, accurate, and reproducible automated
osteosarcoma-assisted segmentation method.

With the rise of computer-aided diagnosis systems, image segmentation is one of
the key steps. Researchers can automatically mine and analyze the deep features of input
images by using the good ability of deep learning to express complex nonlinear relationships.
The identification of functional tissue and the diagnosis of tumors provides interpretive
information. In a practical sense, the application of deep learning technology in the diagnosis
of osteosarcoma can not only assist doctors to complete the initial automatic segmentation of
osteosarcoma, but also can allow doctors to conduct further processing on the automatically
segmented images, which can improve the diagnostic accuracy and doctors’ work efficiency
and reduce the pressure on doctors [15]. Additionally, it can successfully address the issues
associated with the limited and unequal distribution of medical resources in developing
nations, while simultaneously lowering the high cost of the growing number of high-quality
medical resources and raising the standard of primary care [16].

Currently, MRI image segmentation based on deep learning methods is mainly ap-
plied to the heart, brain, liver, and other regions [17–20]. Most of them are CNN-based
methods for image segmentation, which have a small field of view due to the limitations of
CNN, resulting in a lack of accuracy in segmentation. Especially, it is not applicable to rare
diseases such as osteosarcoma, because there are several factors affecting osteosarcoma
segmentation: (1) The limited quantity of information available; the model is prone to
overfitting despite the enormous amount of medical picture data that is accessible. (2) Indi-
vidual variation; there are many types of osteosarcoma lesions, and the form of the lesion
varies with the individual. Tumors may vary greatly in size and location from patient to
patient. (3) Tumor heterogeneity: osteosarcoma originates from the bone and surrounding
soft tissues. The variation in the composition and morphology of local tissues makes the
borders blurred and difficult to identify. All of these reasons make MRI image segmentation
of osteosarcoma a challenging task.

Therefore, to reduce the pressure on hospitals in developing countries and the time-
consuming problem of traditional manual segmentation, this paper proposes a novel medi-
cal decision-making system based on small samples with multi-scale feature enhancement
(OSADS) for osteosarcoma. The core of the system is a multi-scale feature enhancement
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segmentation network (MFENet) based on the few-shot method. The network can obtain
the global and local feature information through MRI and accurately segment the boundary
with a small number of samples. Additionally, the computational cost can be saved by
introducing a prior mask in the model. Furthermore, the network can adapt to lesion
regions of different sizes and locations by generating multi-scale features. It can effectively
assist doctors in diagnosis in clinical practice. It greatly improves the efficiency of doctors
and reduces their workload.

The following is a list of the contributions to this paper:

(1) This paper discusses an osteosarcoma-assisted diagnosis system (OSADS) in conjunc-
tion with artificial intelligence techniques. Physicians can use an OSADS for automatic
image segmentation and the results can be used as a second opinion to assist doctors
in their diagnosis. This not only addresses the high rate of misdiagnosis caused by
doctors’ enormous workloads in underdeveloped nations, but also allows patients to
obtain timely and effective treatment.

(2) We design a multi-scale feature enhancement network (MFENet). In this network,
we use several transformer blocks to extract global information and convolution to
extract local information. The feature information of different scales is generated at the
same time. This enables the model to maintain a range of accuracy when segmenting
osteosarcomas of different shapes and sizes.

(3) We add a prior mask to the image segmentation model. It can replace the reconstruc-
tion process from features to segment MRI images. This enables a rapid response to
provide auxiliary results to doctors.

(4) The experiments are conducted using real data of osteosarcoma images provided by
Monash University. The results show that our proposed method of osteosarcoma
segmentation is better than other methods. The system is extremely important for
osteosarcoma diagnosis, the course of treatment, and outlook.

The rest of the paper is structured as follows. In Section 2, this paper presents the work
related to the preliminary research and the latest research results. In Section 3, this paper
details the osteosarcoma-assisted diagnosis system (OSADS), a framework that includes
four main parts: classification, preprocessing, segmentation, and diagnosis. In the fourth
chapter, we analyze and discuss the experimental results. In the fifth chapter, we conclude
the paper and describe future research directions.

2. Related Work

Early non-invasive inspection and quantitative analysis are needed to separate and
identify lesions from the healthy surrounding tissue with complex features. Additionally,
it is important for neoadjuvant chemotherapy efficacy and evaluation. In the early years,
there was some research on osteosarcoma segmentation techniques [21–24]. However,
most of them were based on traditional segmentation methods, usually on low-level
features for osteosarcoma. Due to the specificity of osteosarcoma, it originates in the
bone as well as the surrounding soft tissue. The grayscale and textural features within
the tumor are inconsistent. These methods have limited ability to express features. To
achieve higher accuracy in image segmentation, researchers have started to experiment
with new image segmentation methods. The most common one is the method based on
CNN architecture [2,25,26].

These methods have greatly improved performance compared to traditional segmen-
tation methods. However, CNN-based methods rely on convolutional operations, which
only collect information from the neighborhood with limited sensory fields and lack the
ability to explicitly capture long-range dependencies. They cannot effectively identify the
boundary of osteosarcoma, carrying this out with low robustness.

Transformers have recently attracted a lot of interest from the computer vision com-
munity and were first used to express sequence-to-sequence prediction in NLP tasks [27].
Because the multiple self-attention mechanisms can effectively establish global connections
between sequence tags, their long-range correlation modeling capabilities work effectively
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in dense prediction tasks such as image segmentation. A self-aware model with a moving
window is called a Swin Transformer [28]. Concatenated window self-attention operation
and sliding window self-attention operation are used to obtain global attention, and feature
fusion is used to extract multi-scale features from the input image. In SETR [29], the input
image is treated as a sequence of image patches represented by learnt patch embeddings,
and this sequence is transformed for the purpose of learning discriminative feature repre-
sentations. In medical image segmentation, the DS-TransUNet [30] is a two-scale encoder
sub-network that introduces a hierarchical Swim Transformer into the encoder and decoder
of a U-shaped structure. The network can extract features of different scales. TransFuse [31]
is a new parallel branching architecture that combines the Swin Transformer and CNN to
efficiently capture global dependencies and low-level spatial details. PMTrans [32] utilizes
a pyramid network structure to combine multi-scale attention and CNN feature extraction
to accommodate multi-scale and multi-resolution patches instead of fixed-size patches,
enabling robust adaptation to objects of various sizes and shapes.

Although the above-mentioned literature shows that the Swin Transformer shas great
performance in image segmentation, it still faces two bottlenecks in clinical practice: (1) in
clinical practice, high computational costs burden hardware requirements and virtually
increase patient waiting times. (2) Medical image datasets are usually much smaller than
everyday images. Traditional Swin Transformer pre-training relies on large datasets; the
model is prone to overfitting and has poor generalization ability.

The burden of expensive model training data annotation plagues the majority of su-
pervised deep learning algorithms for medical picture segmentation. To ease this pressure,
a few-shot segmentation method was recently presented. MSHNet [33] can establish a
strong semantic relationship between the support and query images together with cosine
similarity. It is used to reduce the overfitting problem caused by a small amount of data.
CRNet [34] is a cross-reference network for few-shot segmentation. The model can make
predictions on both support images and query images. It can better discover co-occurring
objects in two images through a cross-reference mechanism, helping to complete the task
of few-shot segmentation. MFNet [35] is a novel multiplexed (class) encoding and decod-
ing architecture. It successfully combines multi-scale query and multi-class support data
into a single query support embedment. As was already mentioned, current approaches
only take into account local data when implementing query support capabilities, and they
ignore global data. It is well known that global relationship modeling is crucial for scene
understanding in computer vision [36–38].

The medical decision-making system is a comprehensive application of a large amount
of data, through the combination of models for human–computer interaction, to assist
doctors in making decisions. Currently, there are many studies in this area in China and
abroad. For example, Xue et al. [39] proposed a data-driven decision weight and reliability
fusion method to provide a solution for thyroid cancer. Its idea is to model and describe the
evaluation of each criterion for thyroid cancer diagnosis by using three types of language
scaling functions. Thus, the weight and reliability of each radiologist’s assessment of each
criterion are determined. Vaiyapuri et al. [40] proposed an intelligent decision system
(IDLDMS-PTC) for guiding pancreatic tumor segmentation, which combines multi-level-
threshold (EPO-MLT) technology and optimizes the EPO algorithm for threshold selection
to guide tumor segmentation. The method has shown superior performance through
experiments. Zhou et al. [41] proposed a new intelligent decision method for GC screening
(ID-GCS). It is a data-driven decision system based on multimodal semantic fusion. ID-GCS
uses a hybrid attention mechanism to extract text semantics from multimodal gastroscopy
reports, thus improving the interpretability of gastroscopy results. Intelligent decision-
making systems have demonstrated their superior performance in the medical field.

In summary, this paper proposes a medical decision-making system for osteosarcoma
which is a segmentation scheme based on the few-shot method, named the multi-scale
feature enhancement network (MFENet). The network uses the Swin Transformer to guide
global information on the merged query support features to make up for the deficiency of
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the few-shot method, improving segmentation efficiency. This method not only addresses
the insufficiency of osteosarcoma data, but can effectively segment the boundaries of
osteosarcoma by capturing global contextual information and local details.

3. System Model Design

MRI is the current routine imaging modality used to detect osteosarcoma. Accurate
segmentation of osteosarcoma areas from MRI images can provide accurate tumor quantifi-
cation for clinical preoperative planning for radiotherapy and assessment of postoperative
treatment efficacy. This is important for neoadjuvant chemotherapy efficacy and evaluation.
Because there are not enough medical resources per person in developing nations, radiolo-
gists must manually outline tumor areas from vast amounts of picture data every day. It is
labor-intensive, complex, and time-consuming work. It is difficult for patients to receive
timely and effective treatment. Therefore, we hope to build an automatic segmentation
system for osteosarcoma MRI images to assist doctors in segmenting osteosarcoma regions,
reduce the workload of doctors and improve the efficiency of diagnosis and treatment. The
most important thing is to allow patients with osteosarcoma to receive timely treatment.
The system architecture is shown in Figure 1. The system is mainly divided into four stages
as follows.
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Figure 1. The framework of OSADS (including four stages: classification, pretreatment, segmentation
and diagnosis).

First, in this experiment we collect real data on osteosarcoma and divide them into
three categories: sagittal plane, transverse plane, and frontal plane. Next, the acquired
data images are preprocessed, including image denoising, data normalization, and data
augmentation operations to improve image quality. Then, we use MEFNet to segment the
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image and adjust the parameters to make the model achieve optimal results. Finally, the
segmentation results of the system can be used as a “second opinion” to assist doctors
in diagnosis.

3.1. Problem Definition

Similar to the work of [42–44], we aim to build the support and query sets in the
osteosarcoma segmentation task to accommodate few-shot segmentation. As mentioned
before, due to the specificity and individual differences of osteosarcoma, the shape char-
acteristics of osteosarcoma such as size and location are not exactly the same for each
patient. We treat osteosarcoma images from different people as separate classes in this
paper, and the tumors that correspond to each class are considered its members. Then, as
the support set, we sample the members of various classes, while the remaining members
of the relevant class serve as the query set.

We follow the formula for few-shot segmentation in [44], Given a training set
Dtrain = {(Si, Qi)}

Ntrain
i=1 , each osteosarcoma image (Xi) in it is considered a unique class.

This training set is cropped into patches to build the support set Si = {{x
Sk
i , ySk

i }
K
k=1}

Ntrain
i=1

and the query set Qi = {xi, yi}
Ntrain
i=1 . That is, each query set (Qi) is associated with a small

(K-shot) support set (Si). xi and yi are the i-th query image and the corresponding ground
truth mask, respectively. Each training episode includes a support set and a query set. To
make the experimental data distribution more reasonable, we let Dtest = {(Si, Qi)}Ntest

i=1

represent the test episode. It is worth noting that Qi = {xi}Ntest
i=1 , Si = {{x

Sk
i , ySk

i }
K
k=1}

Ntest
i=1 .

The model only needs to segment xi based on the information provided by the support set
{xSk

i , ySk
i }

K
k=1, i.e., it only needs to segment the class with the same ground truth mask in

the support set. The main symbols in this chapter are shown in Table 1.

Table 1. Symbol Description.

Symbol Meaning

Dtrain train set (including support set and query set)
Dtest test set

Si = {{xSk
i , ySk

i }
K
k=1}

Ntrain
i=1 support set

Qi = {xi, yi}Ntrain
i=1 query set

xi i-th image
yi i-th image with label

MQ query feature map
MS support feature map
cS maximum similarity index

O =
{

O1, O2, . . . , On} the spatial resolution of average pooling
I = {I1, I2, . . . , In} feature pyramid

3.2. Data Preprocessing

During the training process, all data input into the neural network are required
to have the same dimensionality, i.e., each image input to the neural network needs to
maintain the same dimensions. To speed up the program, we normalize the input image
by converting the value of each pixel (W) in the image so that it is within the range of
0–1. Additionally, the sizes of MRI images generated by different medical devices are
inconsistent, so normalization can solve the above problems.

Wnorm =
W −min(W)

max(W)−min(W)
(1)

It is inevitable that some noise will be doped when medical equipment generates MRI
images. The most important effect of noise on an image is that it can override and reduce
the visibility of certain features in the image. Due to the low contrast inside osteosarcoma,
the loss of visibility has a significant impact on the image. It has a hindering effect on
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the subsequent segmentation. Therefore, image denoising is an integral part of image
preprocessing. We use the median filter method to denoise the image, and the formula is
as follows:

F(x, y) = med{ f (x−m, y− n), (m, n) ∈ K} (2)

where med is the median filter function and K is a two-dimensional template, usually taken
as 3 × 3 or 5 × 5. Finally, we extend the dataset by scaling up (scaling down) the images,
rotating and flipping them to prevent overfitting during subsequent model training.

3.3. Segmentation Network

In this section, we will introduce the specific steps of the MFENet proposed in this
paper to achieve the task of detailed automatic osteosarcoma segmentation. To reduce the
computational time of the system, we first map the osteosarcoma MRI images from high-
dimensional features to low-dimensional features. The backbone of the feature extractor
is ResNet-50 [45]. ImageNet [46] is used to train the backbone model. ResNet layers are
separated into four blocks based on spatial resolution, which corresponds to four different
representation levels. To produce features, we select blocks 2 and 3 and drop the layers
following block 3. After block 2, all feature maps have a fixed size of 1/8 of the input
osteosarcoma MRI image. After block 2 and block 3, the features are concatenated and
encoded into 256 dimensions using 3 × 3 convolution. During training, we always keep
the weights of ResNet unchanged. Simply, our formulas are all based on (S, Q) in a single
episode. Supposing G, MQ ∈ RH×W×C, MSk ∈ RH×W×C represent the backbone function,
the query feature map and the k-th support feature map, respectively, H, W, and C represent
the height, width and number of feature channels of the MRI images, respectively. The
following formula can be obtained:

MQ = G(x), MSk = G(xSk )� ySk (3)

From [47], it is clear that the high-level features of the image lead to lower recognition
performance and the mid-level features have better performance because they form part of
the object shared by the invisible class, especially in the few-shot semantic segmentation
task, although higher-level features can directly provide training-class semantic informa-
tion, reducing the training loss. The model is not good for evaluating unseen test classes.
Hence, we add a prior mask to the model and make the osteosarcoma support images
generate a “prior” in it. This prior knowledge helps the model identify targets in query
images of osteosarcoma. In other words, it can use high-level features to pre-estimate the
likelihood of pixels in osteosarcoma images belonging to the target class. The flow of the
module is shown in Figure 2, in three steps.

In the first step, the cosine similarity is calculated to obtain the similarity matrix
(W). cos

(
mq, msk

)
calculates the cosine similarity between pixels mq and msk , mq ∈ MQ,

msk ∈ MSk , as shown in Equation (4):

cos(mq, msk ) =
mT

q msk

‖mq‖‖msk‖
q, sk ∈ {1, 2, 3, . . . , hw} (4)

In the second step, the similarity matrix is used to find the similarity between a pixel in
MQ and each pixel in mq, mq ∈ MQ. We compute the similarity of this point with each pixel
of MSk and obtain the maximum similarity index denoted as cSk , as shown in Equation (5):

cSk = argmax
sk∈{1,2,3,...,hw}

(cos(mq, msk )) (5)
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In the third step, to enhance the relevant features of osteosarcoma images and improve
the accuracy of osteosarcoma segmentation, we further obtain the support prototype (Ms)
for guiding query image segmentation as follows:

MS =
∑K

k=1 GAP(MSk [y
Sk , :])

K
(6)

where GAP represents the global average pooling of the spatial dimension, and we resize
the ground truth mask (ySk ∈ RH×W) to the feature resolution. Intuitively, the support
prototype (Ms ∈ RC) is a feature vector obtained by averaging the foreground features from
the support set, which encodes representative information in the osteosarcoma images.
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Since the size of the objects in the osteosarcoma support image and the query image
may vary considerably, we design a multi-scale feature enhancement module (MFEM)
with input feature map I so that the information on different scales of the osteosarcoma
image can be utilized. It mainly consists of two parts: global enhancement block and local
enhancement block. As shown in Figure 3, with the global and local enhancement blocks,
not only can the entire tumor area be effectively segmented, but they are also important
for improving the border segmentation of osteosarcoma. To obtain features at different
scales, we use an adaptive averaging pool. Letting O =

{
O1, O2, . . . , On} denote the spatial

resolution of average pooling, we assume O1 > O2 > . . . > On. The feature Ii with space
size Pi can be expressed as

Ii = GAPIi (I) (7)

In the wa, the size of the output feature is Pi. At the same time, we obtain a feature
pyramid of {I1, I2, . . . , In}. Each feature pyramid will be handled by a global enhancement
block and a local enhancement block. It is worth noting that Ii ∈ RRi×Ri×(2C+1).
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Figure 3. Muti-scale feature enhancement module.

Global Enhancement Block (GEB). In order to effectively learn the texture and shape
features of osteosarcoma in MRI images. We need to obtain global features of osteosarcoma
images. Different from previous work [48] that used convolutional layers to refine the
combined features, due to the limitation of the convolution operator, the receptive field is
limited. We utilize the Swin Transformer to enhance features so that global information
can be exploited. First, we reduce the number of channels of Ii through the fully connected
layer to obtain I′i ∈ RRi×Ri×C. I′i merges the output features from the branch refinement
(Ii−1) by feature merging. If i = 1, merging is not performed and output directly. Therefore,
the following equation can be obtained.

Oi =

{
Conv1×1(Concat(I′i , T j

i−1)) + I′i , i f i> 1
I′i i f i = 1

(8)

where Concat(·) represents feature connections across channels, and Conv1×1 represents
1× 1 convolution with output channel C. We reshape Oi into RRi

2×C, The vector sequence
is obtained by using the J Transformer blocks to explore the global information as follows.

T0
i = Oi,

T̂ j
i = MHSA(T j−1

i ) + T j−1
i , j = 1, . . . , J,

T j
i = MLP(T̂ j

i ) + T̂ j
i , j = 1, . . . , J

(9)

In the formula, MHSA(·) represents the standard multi-head self-attention in the
Swin Transformer, and the specific structure is shown in Figure 3. MLP(·) is a two-layer
multilayer perceptron. After using the Swin Transformer, we obtain T J

i ∈ RRi
2×C, and

reshape it into RRi×Ri×C. In our experiments, we use J = 3. After dealing with different
scales, we obtain { T J

1 , T J
2 , . . . , T J

n

}
. The final output features of the global enhancement

blocks are formed by a series of n-enhanced feature maps (T J
i ), denoted as

T0
i = Yi,

T̂k
i −MHSA(Tk−1

i ) + Tk−1
i , k = 1, . . . , K,

T = Concat(TK
1 , TK

2 , . . . , TK
n )

(10)

The final obtained T is used to predict the target mask (M).
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Local Enhancement Block (LEB). Local enhancement follows the same process as GEB.
Ii is processed by a fully connected layer and FMU to generate Oi. Unlike using Swin
Transformer blocks to handle Oi, LEB utilizes traditional convolution to refine Yi, thereby
encoding local information. Global and local information can complement each other. After
LEB, let {Z1, Z2, . . . , Zn} denote output features from different scales. Similarly, the final
output feature of LEB is formed by the interpolation and concatenation of Zi, denoted as

Z = Concat(Z1, T2, . . . , Tn) (11)

The output (Z) is used to predict the target mask (M).

3.4. Loss Function

The features from both GEB and LEB are used to predict the target mask of the query
image with the losses LGEB and LLEB. The final loss of the whole network is defined as

Lseg = LGEB + LLEB (12)

Here, both LGEB and LLEB are common cross-entropy losses in semantic segmenta-
tion [49]. During testing, the final prediction for the query image is the average of the output
of the prediction by the global augmentation module and the local augmentation module.

The osteosarcoma segmentation method proposed in this study not only overcomes
the difficulty of working with less labeled data for osteosarcoma, but also maintains a
certain range of accuracy when segmenting osteosarcomas of different shapes and sizes,
effectively segmenting the boundaries of osteosarcoma. More importantly, this method can
effectively assist doctors in diagnosing osteosarcoma and solve common medical problems
in developing countries.

4. Experiment
4.1. Experimental Settings
4.1.1. Dataset

In order to better measure the accuracy, robustness and effectiveness of the algorithm
proposed in this paper, we utilized more than 5000 MRI images of osteosarcoma provided
by the Monash University. These osteosarcoma images were from 204 patients (92 men
and 112 women). Among these patients, 181 were diagnosed with osteosarcoma and the
remaining 23 were undiagnosed. We selected 80% of the data as the training set (Dtrain)
and 20% of the data as the test set (Dtest). The details of the patient information items are
shown in Table 2.

Table 2. Patient information items.

Characteristic Type
D = 204

Dtrain = 164 (80.4%) Dtest = 40 (16.9%)

Sex
Female 69 (42.1%) 23 (57.5%)
Male 95 (57.9%) 17 (42.5%)

Marital status
Married 19 (11.6%) 13 (32.5%)

Unmarried 145 (88.4%) 27 (67.5%)

SES
Low 66 (40.2%) 12 (30.0%)
High 98 (59.8%) 28 (70.0%)

Surgery Yes 146 (89.0%) 35 (87.5%)
No 18 (11.0%) 5 (12.5%)

Grade
Low 15 (9.1%) 26 (65.0%)
High 149 (90.9%) 14 (35%)

Location
Axial 21 (12.8%) 8 (20.0%)

Extremity 109 (66.5%) 29 (72.5%)
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4.1.2. Evaluation Metrics

We selected accuracy, precision, recall, and F1-score as metrics to evaluate the quality
of the model. The first three indicators are quantified by the four parameters, TP, TN, FP,
and FN, in the confusion matrix, TP (true positive) indicating that the actual osteosarcoma
area is consistent with the segmentation result, TN (true negative) indicating that the actual
normal area is consistent with the segmentation result, FP (false positive) indicating that it
is actually a normal area, but it is determined to be an osteosarcoma area, and FN (false
negative) indicating that it is actually an osteosarcoma area, but iis judged as a normal area.
Therefore, we define the relevant indicators as follows:

Accuracy (Acc) is the proportion of the correct number of samples (TP and TN) to the
total number of samples.

Acc =
TP + TN

TP + TN + FP + FN
(13)

Precision (Pre): the proportion of correctly predicted positive samples (TP) to all
predicted positives (TP and FP).

Pre =
TP

TP + FP
(14)

Recall (Re): the proportion of correctly predicted positive samples (TP) to all actual
positives (TP and FN).

Re =
TP

TP + FN
(15)

F1 score (F1): due to accuracy and recall affecting each other, we find a balance between
them in order to combine their performance. It is defined as follows.

F1 =
2 ∗ Pre ∗ Re

Pre + Re
(16)

In addition to the above-mentioned common model evaluation indicators, there are
usually two special indicators in the segmentation task, the dice similarity coefficient
(DSC) and the intersection of union (IoU), where M is the mask and Z is the result of the
segmentation [50].

DSC =
2 ∗ |Z ∩M|
|Z|+ |M| (17)

IoU =
Z ∩M
Z ∪M

(18)

4.2. Brief Introduction of Comparison Algorithms

We use the FPN [51], MSRN [25], MSFCN [2], PFENet [43], PSPNet [52], UNet [53],
FCN [54] and our proposed MFENet for comparative experimental analysis. Below is a
brief introduction to them:

1. The feature pyramid network (FPN) [51] aims to use the hierarchical semantic features
inherent in convolutional networks to build feature pyramids. It substantially improves
the performance of small object detection by a simple change in network connectivity,
with essentially no increase in the computational effort of the original model.

2. The multiple supervised residual network (MSRN) [25] incorporates three supervised
edge output modules in the residual network to guide the learning of low-level
shape features and high-level semantic features. This helps to segment low-contrast
tumor regions.

3. The multiple supervised fully convolutional network (MSFCN) [2] introduces con-
volution kernels of different scales based on fully convolutional neural networks to
guide multi-scale feature learning as a contraction structure, so that local and global
image features can be captured.
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4. The prior-guided feature enrichment network (PFENet) [44] is a few-shot segmenta-
tion network that can quickly adapt to new classes with few labeled support samples.
Simultaneously, a prior mask and feature enrichment module is developed, which uses
supporting features and prior masks to adaptively enrich query features, improving
the model’s segmentation performance.

5. The pyramid scene parsing network (PSPNet) [52] provides a pyramid scene parsing
network that may combine contextual information from several regions, boosting the
ability to obtain global knowledge.

6. The UNet [53] is an encoder–decoder U-shaped network structure. The encoder part
completes feature extraction, and the decoder part completes upsampling by intro-
ducing skip connections and information connections from different convolutional
layers. It is a classic network model in the field of medical image segmentation.

7. The fully convolutional network (FCN) [54] is an end-to-end network structure that
replaces the fully connected layer in the classification network with convolutional
layers and pooling layers, and introduces a skip connection structure, so that the
network structure can adapt to pixel-level dense prediction tasks.

8. The multi-scale feature enhancement network (MFENet) is a new method we propose
in this paper. It uses transformer blocks to extract global information and convolu-
tion to extract local information and generate feature information at different scales,
effectively combining the advantages of both [50,55,56].

4.3. Evaluation of Segmentation Effect

We examine the effects before and after applying the MFEM in the segmentation of
osteosarcoma MRI images in this paper to quantify its effectiveness. The findings are
displayed in Figure 4. The ground truth mask is on the left, the segmentation effect without
the MFEM is in the middle, and the segmentation effect with the MFEM is on the right. We
can observe that the segmentation result has an incorrect segmentation region before the
prior mask is introduced. In contrast, the segmentation results are closer to the true labels
after the prior mask is added. The accuracy of segmentation has been improved.
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When improving global features, we additionally assess the effects of various trans-
former block counts on DSC and IoU metrics in the MFEM. The outcomes demonstrate the
robustness of our method in terms of the various L selections and the comparability of our
method’s output. However, Layer = 3 is when the best performance is shown. This is most
likely a result of the tiny Layer = 2 not properly utilizing the global information. The net-
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work may over-adapt to the base class and perform somewhat worse if more transformer
blocks (Layer = 4) are employed. Table 3 displays the specific outcomes.

Table 3. The effect of different numbers of transformer blocks.

Block Layer DSC IOU

GEB 3 0.883 0.865
LEB 3 0.881 0.876

GEB + LEB 2 0.916 0.925
GEB + LEB 3 0.942 0.952
GEB + LEB 4 0.937 0.939

Figure 5 shows the comparison of the segmentation effect of osteosarcoma under
different models. We list four groups of osteosarcoma images of different types in total. The
initial image of the osteosarcoma is shown in the first column, the lesion area is shown in
the second column, and the segmentation results for each model are shown in the following
columns. By visually comparing the comparative photos of osteosarcoma segmentation in
these four groups of images, we discovered that the suggested osteosarcoma segmentation
model segmented the best. In particular, the best fit to the real lesion area was achieved
when segmenting relatively small size lesion areas. On the contrary, other models, especially
the FCN, perform poorly in segmentation performance, mainly because most of these
models are based on convolution operations with limited receptive fields and cannot obtain
global features of images. Additionally, the model proposed in this paper can effectively
enhance the global features and improve the accuracy of segmentation by adding Swin
Transformer blocks.
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Figure 5. Comparison of segmentation effects of different models. The red part of the figure is the
ground truth marked by the doctor. the white area is the tumor area predicted by different models.

In order to evaluate the performance of different methods more clearly. We trained
a total of 300 epochs, and the results were averaged and then compared and analyzed.
Additionally, four common model evaluation metrics were used to evaluate the various
model models, and the results are shown in Figures 6–9.
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Figure 6 shows the comparison of the accuracy of each model. We can see that the
accuracy of the three models except the MSRN, MSFCN and FCN is below 90%. Because
the FCN architecture is based on the VGG top-level feature segmentation as the target,
the receptive field is limited. However, its own structure does not take into account the
relationship between pixels and lacks spatial consistency. This will result in the loss of
feature information in several small-scale osteosarcoma pictures, lowering segmentation
accuracy. The PSPNet gathers features using a feature pyramid module, and its accuracy
is 91.5%, which is second only to the UNet and our technique. Compared with other
traditional methods, the PSPNet adds a pyramid structure that can aggregate contextual
information from different regions, thereby improving the ability to obtain global informa-
tion. demonstrating that multi-scale features can help improve segmentation performance.
However, overall, the study’s suggested model performs the best, with a 93.1% accuracy
rate, demonstrating that by incorporating Swin Transformer blocks to strengthen the global
characteristics, segmentation accuracy may be increased and clinicians can obtain accurate
diagnosis findings.
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The precision and recall of each model are compared in Figures 7 and 8. According
to the data in the figure, the model suggested in this study has the best accuracy, at 94.2%.
Compared with the PFENet and PSPNet, the improvements are 0.5% and 0.8%, respectively.
It is shown that using transformer in the few-shot segmentation method to guide global
information on the merged query support features while capturing multi-scale features can
effectively improve segmentation precision. Comparing with the recall rate, our proposed
method far surpasses that of other methods, reaching 93.4%, indicating that the method
can better predict the osteosarcoma samples of those small targets without missing a lot
of relatively unlikely but relatively small samples. In clinical diagnosis, the occurrence of
misdiagnosis and missed diagnosis can be better avoided.

Since the accuracy and recall rates affect each other, we would like to achieve both
ideally, but they are mutually constrained in practice. As a result, the model developed in
this study was thoroughly examined in order to balance the effects of precision and recall.
We added an evaluation metric, the F1 score. As shown in Figure 9 above, although our
proposed method is slightly inferior in accuracy, its F1 value is always the highest, reaching
93.3%. The other models performed averagely except for the PSPNet, which reached 92.4%
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accuracy, and the PFENet, which reached 92.1% accuracy. The results show that the model
we proposed has good robustness.

DSC and IoU are two types of special metrics for image segmentation. As shown
in Figure 10, the point model closer to the upper right corner shows a higher IoU-DSC
value and better segmentation efficiency. The closer to the point in the lower left corner,
the lower the IoU-DSC value exhibited by the model, and the less ideal the segmentation
effect. We can see by comparing the positions of other models in the figure that the DSC
value of the method proposed in this paper is 91.5% while the IoU value reaches 88.1%,
which far exceeds that of the other methods. The results demonstrate that the method
presented in this research has the best segmentation impact and can better automatically
define the lesion region without over-segmentation and under-segmentation. The method
can become a good reference for doctors, better assist doctors in diagnosis and reduce the
workload of doctors.
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To demonstrate that adding a prior mask to the model can speed up the computation
of the model, we compared the MFENet model which has a prior mask with the model
without it, as shown in Table 4. We can see that the run rate with a prior mask is higher than
the rate of the model without it, where FPS represents the number of frames per second of
transmitted images.

Table 4. The effect of using a prior block.

Methods DSC IOU Speed

Ours (without prior) 0.892 0.865 15.8 FPS
Ours 0.905 0.891 17.1 FPS

5. Conclusions

In our study, we discuss a medical decision-making system, the core of which is an
automatic segmentation network for osteosarcoma named MFENet. It extracts local and
global multi-scale features by introducing traditional convolutional neural networks and
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transformer blocks. It may not only assist physicians in segmenting osteosarcomas of
different shapes and sizes with a range of accuracy, but also greatly save computational
costs by introducing a prior mask in the model to replace the reconstruction process from
features when segmenting MRI images. However, there are some limitations in this paper,
which include the fact our proposed method can only outline the general area of the tumor.
In general, the interior of a tumor includes necrotic areas, edematous areas, and the actual
tumor area. Single-mode MRI images cannot distinguish tumors from muscle tissue and
joint fluid because they all show low signals in the image. In the future, we should introduce
more modal data to improve the experimental content based on this experiment.

The two most critical problems in AI-based medical image analysis are fine-grained
lesion segmentation and disease classification. In order to help clinicians diagnose osteosar-
coma more thoroughly and address issues with osteosarcoma diagnosis in underdeveloped
nations, in this study, we performed a segmentation of osteosarcoma. In the future, we will
use the segmentation results of this paper as samples for the next step of disease grading,
and effectively grade the tumor mass according to the relevant parameters of osteosarcoma.
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