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Abstract: Quantized neural networks (QNNs) are widely used to achieve computationally efficient
solutions to recognition problems. Overall, eight-bit QNNs have almost the same accuracy as full-
precision networks, but working several times faster. However, the networks with lower quantization
levels demonstrate inferior accuracy in comparison to their classical analogs. To solve this issue, a
number of quantization-aware training (QAT) approaches were proposed. In this paper, we study
QAT approaches for two- to eight-bit linear quantization schemes and propose a new combined QAT
approach: neuron-by-neuron quantization with straight-through estimator (STE) gradient forwarding.
It is suitable for quantizations with two- to eight-bit widths and eliminates significant accuracy drops
during training, which results in better accuracy of the final QNN. We experimentally evaluate
our approach on CIFAR-10 and ImageNet classification and show that it is comparable to other
approaches for four to eight bits and outperforms some of them for two to three bits while being
easier to implement. For example, the proposed approach to three-bit quantization of the CIFAR-10
dataset results in 73.2% accuracy, while baseline direct and layer-by-layer result in 71.4% and 67.2%
accuracy, respectively. The results for two-bit quantization for ResNet18 on the ImageNet dataset are
63.69% for our approach and 61.55% for the direct baseline.

Keywords: quantized neural network; low-bit quantization; layer-by-layer, neuron-by-neuron training

MSC: 68T20

1. Introduction

Convolutional neural networks (CNNs) are widely used in modern computer vision
problems such as pattern recognition [1], semantic segmentation [2], and many others [3–6].
To achieve outstanding results in terms of accuracy, modern deep CNNs require billions
of floating-point parameters. This causes the large consumption of memory (for example,
about 500MB for VGG-16 [7]) and computational resources. However, many devices are
not efficient enough for the inference of large CNNs, for instance, Systems on a Chip (SoCs)
and Internet of Things (IoT) systems with their Application-Specific Integrated Circuits
(ASICs), Field-Programmable Gate Arrays (FPGAs), or low-power Central Processing
Units (CPUs) [8]. Quantized neural networks (QNN) have been developed to resolve this
issue [9,10].

QNN is a neural network in which floating-point values are replaced with fixed-
point values. This transformation is called quantization. Either weights or weights and
activations of the neural network (NN) can be quantized. Eight-bit quantization is the
state-of-art standard that is implemented in popular machine learning frameworks such
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as Pytorch [11] and Keras [12]. Such QNNs are used efficiently in CPUs, but can still be
too resource-demanding for FPGAs and other low-power devices. Therefore, four-bit and
lower quantization is of great interest. Unfortunately, there is a problem with QNNs: even
though training on low-bit QNNs (such as binary, ternary, and others [13,14]) is possible,
they suffer from significant accuracy loss in comparison to full-precision models [9].

There are two different approaches to QNN training: quantization-aware training
(QAT) and post-training quantization (PTQ) [15]. Both of them include the pre-training of a
full-precision model. PTQ quantizes the weights of the model and calibrates the parameters
of the activations. In QAT, additional training of the NN takes place during the quantization
process. Despite the higher computational cost, QAT results in higher-accuracy QNN rather
than PTQ [15]. There is a problem with QAT approaches: the quantization operation is non-
differentiable, so the backpropagation of the gradients through QNN is impossible. This
problem can be solved with the use of the Straight-Through Estimator (STE) method [16],
which approximates quantization with a differentiable function.

The simplest way to apply QAT is the “direct” method: it takes the pre-trained full-
precision model and all training data, quantizes NN, and retrains the model to raise the
accuracy using STE [16]. This is not an optimal solution, since, at low-bit width, the NN
loses too much information after quantization and cannot recover from this loss during
retraining [17]. The incremental quantization approach (INQ) [18] greedily quantizes
groups of weights and retrains the model. For example, a widely used strategy is to
quantize layer-by-layer [19,20]. This method does not require STE, and it is therefore more
mathematically correct. However, it is greedy, and the resulting QNN may not be optimal.

There are even more variations in QAT methods. For example, in [21,22], the authors
do not quantize the first and the last layers to low-bit, but they should be quantized for
end-to-end integer inference [23]. In INQ [18], authors do not quantize activations, but in
Hessian AWare Quantization (HAWQ) [21] and Quantization Interval Learning (QIL) [22],
they do. Efficient batch normalization fusion for quantized architectures is proposed in [21].
Other authors use quantization to the powers of two [18,21] for better hardware imple-
mentation. Some of the methods operate only eight-bit quantization [23], which is rather
well-investigated and widely used in industry. Quantizations lower than four bits are not as
popular and require other QAT approaches. Non-uniform quantization [22,24] is also a field
of research, but demonstrates hindered deployment on hardware and increased latency.

In this paper, we analyze different QAT methods and experimentally evaluate them
for NNs with two- eight-bit weights and activations. Based on the results of this study,
we analyze the efficiency of these methods and propose a novel combined method that
allows for obtaining QNNs with higher accuracies and works for arbitrary bit width. We
consider the “direct” training method and a layer-by-layer approach as baselines with
toy LeNet models and regular ResNets on CIFAR-10 [25] and ImageNet [26], respectively.
The paper is organized as follows. In Section 2, we consider related works, and Section 3
describes a linear quantization scheme for QNNs. Then, we give our particular research
methodology and consider a combined approach in Section 4. In Section 5, we demonstrate
experimental evaluations and show their results in Section 6. The results are discussed in
Section 7. Finally, Section 8 concludes the paper. The list of all abbreviations used in this
work can be found on page 16.

2. Related Works

There are several ways to improve the trade-off between the NN model’s accuracy and
efficiency, such as developing new NN architectures [27], pruning weights [28], knowledge
distillation [29,30], and quantization.

The quantization uses low-bit precision values for weights or activations [10,23,24,31–34].
The benefit is the reduction in model size and the possibility of integer-only inference.
Despite the increase in efficiency, quantization leads to accuracy degradation, especially
for extremely low-bit weights and activations. To address this, some works propose
non-uniform quantization [24], channel-wise quantization [35], or apply post-training
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quantization [36]. In [21,37], the authors investigate mixed-precision quantization, in which
some layers are kept at high precision and the rest are quantized for a lower bit-width.

The learnable quantization intervals proposed in [22] achieve state-of-the-art accuracy,
but this algorithm is more complicated to implement and may cause some extra computa-
tional overhead. Moreover, the first and the last layers are not quantized, which is critical
for integer-only inference in hardware.

Smooth quantization of the whole network with fine-tuning was introduced in INQ [18].
On each iteration, the authors proposed quantizing half of the remaining weights in each
layer. Quantization is carried out by powers of two. One of the possible quantization
streams is as follows: half of all layer’s weights are quantized on the first iteration, a quarter
of all weights on the second iteration, and the remaining quarter on the third.

HAWQ [21] proposes an integer-only quantization method with a uniform four-bit,
eight-bit, or mixed four/eight-bit scheme. The choice of mixing for each layer is determined
by solving an integer linear programming system with constraints on any combination of
the total model size, bits operations per second, and latency. By applying dyadic arithmetic
for FP32 scaling factors, this work also emphasizes that the inference does not resort to
the 32-bit floating-point (FP32) casting. Thus, it allows for integer-only operations and
bit-shifting for convolutions and skip connections of ResNets. In addition, the authors
propose more efficient batch-normalization fusion than in [23]. The first and the last layers
are always eight-bit quantized.

3. QNN Model with Linear Quantization

In this section, we describe QNN implementation based on the linear quantization
scheme proposed in [23]. Some authors [22,24,38] have explored non-uniform quantization,
which may achieve higher accuracy for a fixed bit-width. However, such approaches
typically suffer from difficult deployment on hardware; therefore, in this work, we consider
only uniform quantization.

3.1. Quantization Scheme

Linear quantization scheme maps the real value r to its quantized approximation q
as follows:

qS,O(r) =
[ r

S
+ O

]
, (1)

where S is a scale, O is an offset, and [·] stands for rounding to the nearest integer. The scale is
a real-valued parameter and the offset is an integer parameter of quantization. This scheme
is the base method used in all the further approaches.

3.2. Optimal Quantization Parameters Search

CNN quantization consists of quantizations of its weights and activations, which are
arrays of real values. Let us consider several ways of obtaining the quantization parameters.
In the gemmlowp library [39], the authors compute scale and offset as:

S =
max(0, rmax)−min(0, rmin)

b− 1
, (2)

O = −min(0, rmin)

S
, (3)

where rmax is a maximum value in the array, rmin is a minimum in the array and b is the
number of quantization levels (2n for n-bit quantization).

In that approach, the real value 0 is exactly represented by O and is necessary for
efficient computations and zero-padding. However, this method is hardly applicable for
low-bit quantization. In that case, only a few quantized values would represent the major
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part of array values (depending on its distribution). To overcome this issue, one may obtain
quantization parameters by solving the minimum mean squared error (MMSE) problem:

S, O = argmin(E[r− qS,O(r)]2) (4)

This problem may be solved either analytically, if there are some assumptions about
the r distribution (for CNN activations) [40], or directly, if the array is relatively small (for
CNN weights) [41].

3.3. Batch Normalization Fusion

Batch normalization (BN) is often used in modern neural network architectures [42].
Given that the feature map x BN applies, the following operation is provided channel-wise:

BN(x) = γ
x− µ(x)√
Var(x) + ε

+ β, (5)

where µ(x) is the running mean, Var(x) is the running variance, γ and β are trainable
parameters, and ε is a small value that prevents division by zero. During inference, all of
these parameters are fixed. Therefore, the BN operation can be fused into the previous
convolutional layer, as it occurred [21]. We can combine BN and convolution into one
operator as follows:

ConvBN(x) = γ
W ∗ x + b− µ(x)√

Var(x) + ε
+ β = W ′ ∗ x + b′, (6)

where W and b are the weight and the bias parameters of the convolutional layer, respec-
tively, W ′ and b′ are the new weight and bias parameters, respectively, and (∗) denotes the
convolution operator.

BN fusion (6) allows for integer-only computation in QNNs. To that end, fusion should
be applied after several iterations of training. In this way, we preserve the benefits of BN,
while gaining the performance of integer-only inference. In [21], the authors have proved
the advantages of this approach.

4. QAT Research

In our research, we consistently combine and experimentally investigate methods
proposed in various QAT works quantization weights and activations of NN for one to eight
bits. Based on the results of this study, we draw conclusions about the efficiency of these
methods and propose a combined method that allows QNN to be obtained with higher
quality, working stably for arbitrary bits. Further, we use the following quantization model.

4.1. QNN Model

For the QNN model training, we propose our module, which is used instead of a
convolutional layer (see Figure 1). The module consists of input quantization, weights
quantization, convolution, and dequantization submodules.

The input quantization collects the histogram and then uses it to obtain optimum scale_in
and offset_in and quantizes the input values by the corresponding scheme (1).

The weights quantization obtains optimum scale_w and offset_w and quantizes weights
using the corresponding scheme.

The convolution calculates the convolution in quantized values.

The dequantization applies the reverse operation from (1) to obtain floating-point values,
in particular, by subtracting the offset from the quantized value and multiplying the
result by scale. This step may be unnecessary during the inference if the activation
functions are piecewise linear [23], but in this paper, we are mainly concerned with
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the training stage of the QNN, and we use the proposed module structure for better
compatibility with the Pytorch pipeline.

The submodules change their behavior during different stages of the quantization
process. In the beginning, quantization and dequantization submodules simply pass the
floating-point values as they are. Then, the input quantization submodule constructs the
histogram to obtain the optimum scale and offset. These parameters (scale_in and offset_in)
are saved for further calculations (see Figure 1b). After that, we solve MMSE (4), resulting
in scale_w and offset_w for weights and save these values as parameters as well.

(a) (b)

Figure 1. (a) Floating-point model. (b) Quantized model.

Thus, our module has two pairs of scales and offsets and floating-point weights as its
parameters during training. During the inference, one can use integer weights directly
without a corresponding quantization submodule. It is important to note that convolutional
and activation layers can be connected without dequantization operation [23,43].

4.2. Optimal Quantization Parameters Solving

Having a pre-trained CNN and its training set, we obtain a quantization scheme for a
convolutional layer as follows:

• For weights: we directly solve the MMSE problem (4), as did the authors of [41].
From the works [40,41], we can observe that MSE function E[r − qS,O(r)]2 has one
local minimum because the weight distribution in CNN is approximately normal.
Therefore, we use a ternary search to solve Equation (4).

• For activations: one could solve the MMSE problem (4) for activations on the whole
training set. However, the computational cost of this method is too high. Therefore,
the authors of [41] used a training subset, but even in this way, the array size is too
large. To overcome this issue, we approximate the activation distribution with a
histogram and solve the MMSE problem (4) with a ternary search.

To use the ternary search, we consider each offset value from 0 to b− 1 and assume the
following bounds δmin and δmax for the search:

δmax =
max(0, rmax)−min(0, rmin)

b− 1

δmin =
max(0, µ + σ)−min(0, µ− σ)

b− 1
,

(7)

where µ is the mean of the values in the array and σ is their standard deviation. The
numerator of δmax is a max difference between the border values of the distribution, that is,
the length of the interval. Thus, δmax is the upper boundary for a ternary search, because
if one increases this boundary, the quantization interval will include values that are not
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contained in the distribution. Analogically, δmin is the lower boundary for ternary search,
since its decreasing will lead to a state where a considerable number of values lay outside
the quantization interval. For the ternary search, we multiply δmax by a factor of 1.1 and
δmin by a factor of 0.9, and we thus increase the search range to avoid boundary effects.
The ternary search provides us with an optimal scale and MSE for a given offset. Then, we
choose the scale and offset with the minimum MSE.

4.3. Baseline Methods

The base idea for training QNN with QAT is a direct approach: quantize all weights
on all input data layers and then retrain the network using the STE approximation for the
backpropagation of gradients. A drawback of such an approach is the strong perturbation
of the features caused by an insignificant change in the parameters of the primary layers
of the network. This effect is amplified with an increase in a network’s depth. It leads to
high volatility during fine-tuning and lower quality than desirable, which is especially
noticeable in the case of low-bit quantization.

To prevent the degradation of accuracy, one can use a layer-by-layer approach [19,20].
The procedure is described in Algorithm 1.

Algorithm 1 Layer-by-layer quantization
Input: Model to quantize M
Output: Quantized model MQ

1: MQ = M
2: for each layer Li ∈ MQ do
3: Quantize the input data of Li
4: Fine-tune the model
5: Quantize weights wi ∈ Li
6: Freeze wi.
7: end for
8: Fine-tune model MQ after last freezing (if there still are layers to retrain)

The layer-by-layer approach allows one to smooth the degradation of accuracy. More-
over, this procedure does not require STE approximation for fine-tuning.

Based on direct and layer-by-layer quantization, we improve these approaches. We
consider some toy LeNet-like models on the CIFAR-10 dataset and regular ResNets on
Imagenet with the BN fusion (see Section 3.3).

4.4. Proposed Combined Approach

The main idea for our research was that minimizing drastic accuracy drops during
quantization allows better results to be achieved, because such drastic drops lead to strong
perturbation of parameters and significant changes in the optimization problem, giving
poor results. To overcome this drawback, we propose split quantization of the entire
network in smaller steps to make less perturbation of parameters at once.

The first improvement is to use progressive quantization with smaller weight groups—
a filter-by-filter approach. It consists of the quantization of the weights of individual groups
with freezing such filters as shown in Algorithm 2. Following this approach allows us to
achieve a smoother quantization for each layer.

Afterward, we complete research with the neuron-by-neuron method. With this
approach, we quantize not only the part of the weights, but the input activations too.
Moreover, the essence of this method is as follows: activations are quantized together with
the corresponding weights, due to the preservation of the freezing mask between iterations,
which is defined in Algorithm 3.
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Algorithm 2 Filter-by-filter quantization
Input: Model to quantize M
Output: Quantized model MQ

1: MQ = M
2: for each layer Li ∈ MQ do
3: Quantize the input data of Li
4: Fine-tune the model
5: while wi ∈ Li is not freezed completely do
6: Quantize some small part of wi
7: Freeze this part wi
8: Fine-tune the model
9: end while

10: end for
11: Fine-tuning model MQ after last freezing (if there still are layers to retrain)

Analogically for weights, we do this for activations, as the input of a layer connected
to its corresponding weights, and this allows changing values only in some small part of
the network.

Algorithm 3 Neuron-by-neuron quantization
Input: Model to quantize M
Output: Quantized model MQ

1: MQ = M
2: for each layer Li ∈ MQ do
3: if Li is first layer then
4: while input of Li is not quantized completely do
5: Quantize n channels of the input data of Li and save the quantization mask
6: Fine-tune the model
7: end while
8: else
9: while wi−1 ∈ Li−1 is not quantized completely do

10: Quantize part of wi−1 accordingly with the quantization mask
11: Create new mask for input data of Li accordingly with channel of the Li−1
12: Fine-tune the model
13: end while
14: Freeze wi−1
15: end if
16: end for
17: Fine-tuning model MQ after last freezing (if there still are layers to retrain)

The last idea is built on the possibility of fine-tuning already quantized values because
it helps us to adapt old quantized parameters to new ones.

The final improvement consists of using the STE method [16] for gradient forwarding
to the previous layer during neuron-by-neuron freezing.

5. Experimental Evaluation of QAT Approaches
5.1. Experimental Setup
5.1.1. CIFAR-10

We carried out a series of experiments on the CIFAR-10 [25] dataset with three CNN
models: A, B, and C. The architecture of the models is described in Table 1. In Table 1,
convn-m denotes convolution with kernel size n× n and m filters, and st=x denotes stride
x. In our convolutions, we do not use bias, padding, or dilation. After each convolution,
we use the ReLU activation function.
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Table 1. CNN models architecture.

A B C

4 layers with weights 5 layers with weights 6 layers with weights
31 k params 70 k params 235 k params

input 32× 32 RGB image

conv5–12 st = 2 conv5–12 st = 2 conv5–20 st = 2
conv3–36 st = 2 conv3–36 st = 2 conv3–40 st = 1
conv3–72 st = 2 conv3–60 st = 1 conv3–60 st = 1

conv3–80 st = 1 conv3–100 st = 2
conv3–160 st = 1

fully-connected-10

soft-max

The CIFAR-10 dataset consists of 60,000 32 × 32 color images in 10 classes, with
6000 images per class. There are 50,000 images in the training set and 10,000 images in the
testing set.

We trained the model with floating-point weights (float pre-trained in the legend
of Figures 2–6) for the first 1500 epochs with a batch size of 2000 and with a decreasing
learning rate from 3× 10−3 to 5× 10−4, and for the next 3000 epochs, it was trained with
a batch size of 1000 and decreasing learning rate from 3× 10−4 to 6× 10−5. For each
architecture A–C, we trained three models (baselines) and averaged the results.

For all quantization approaches, the batch size and number of epochs during fine-
tuning were set to 500. For each of the 3 baselines and each quantization approach, we
trained 2 models for averaging, resulting in 6 models per QAT method.

In our experiments, the number of quantization bits was related to both the weights
and activations. We used a 10,000-column histogram to approximate the input distribution
(see Section 4.1).

5.1.2. ImageNet

The ImageNet dataset consists of 14,197,122 color images in 1000 classes with a size
of at least 256 × 256 for each one. There are 50,000 images in the validation set and
100,000 images in the testing set.

We trained original architecture ResNet baselines on the ImageNet dataset for 100 epochs
with original hyper-parameters [44]; specifically: weight decay 0.0001, momentum 0.9, and a
learning rate starting from 0.1 and decreasing for 0.1 every 25 epochs. The batch size was 256
during training baselines and all experiments. All experiments were trained for 100 epochs.
The number of quantization bits was related to both weights and activations. We also used a
10,000-column histogram to approximate the input distribution (see Section 4.1).

5.2. Direct Training

The test accuracy during direct training for considered models is shown in Figure 2a,b.
We can see that direct quantization changes the NN dramatically, which results in a decrease
in recognition accuracy, especially with a low bit-width (for example, accuracy for 2-bit
quantization is slightly below 60%, while full-precision accuracy is about 80% for CIFAR-
10). Despite that, such a simple approach results in good enough accuracy for 5–8-bits
quantization. Final test accuracy is shown in Section 6.
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(a) (b)

Figure 2. Direct training, test accuracy: (a) CIFAR-10, Model B. (b) ImageNet, Resnet-18. The first,
the last, and the skip connection layers use 8-bit (W8A8) quantization.

5.3. Layer-by-Layer Training

The test accuracy during layer-by-layer training for considered models is shown in
Figure 3a,b. There are noticeable drops in the accuracy after the quantizations of each layer.
The experiments presented in Section 6 show that this approach gives a slightly higher
recognition accuracy of the model with 4–8 bits compared to direct training, while the
accuracy for 3- and 2-bit quantization is significantly lower. This is reasonable because the
layer-by-layer method does not use STE approximation during training. The final results
are presented in Section 6.

(a) (b)

Figure 3. Layered training, test accuracy: (a) CIFAR-10, Model B. (b) ImageNet, Resnet-18. The first,
the last, and skip connection layers are quantized the same way as the other layers.

5.4. Filter-by-Filter Training
5.4.1. Freezing by a Quarter of the Filters

The first improvement is that we do not quantize all weights in the layer at once. We
divide the process into four iterations. In this way, each layer is “frozen” in quarters, and
between those four “freezings”, the model is retrained. We consider six different strategies
to choose the order in which filters are “frozen”:

Seq: filters are chosen sequentially: in the order they are presented in the NN;

Rand: filters are chosen randomly in the same amount;

Var: filters are chosen according to the maximum standard deviation relative to the
whole layer;

Nvar: similar to the previous strategy with minimum standard deviation;

MSE: filters are chosen according to the maximum MSE between quantized and floating-
point values;

NMSE: similar to the previous with minimum MSE.

In Table 2, we present a comparison of different strategies of choosing the order in
which the filters are “frozen” in a filter-by-filter approach. From the table, we can clearly
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see that there is no significant difference between these strategies. Therefore, one can
choose any. Note that the results presented in Table 2 differs from those in Section 6, as the
measurements in Section 6 for the CIFAR dataset were averaged over six runs to improve
the stability for the final strategy comparison.

Test accuracy during training is shown in Figure 4a. We can see that quantization of
the weights inside one layer results in smoother training. However, there are still significant
drops in quantization input stages (epochs 100, 200, 300, and 400).

Table 2. Comparison of strategies with a filter-by-filter approach for CIFAR-10 in terms of test accu-
racy, %. WX stands for X bits weight quantization and AX stands for X bits activation quantization.

Models Float
Train Bits Seq Rand Var Nvar MSE NMSE

A 71.70

W8A8 71.36 71.39 71.21 71.33 71.23 71.40
W5A5 69.55 69.37 69.36 69.52 69.02 68.90
W4A4 65.66 66.31 65.11 66.24 65.88 66.03
W3A3 58.84 59.33 59.67 59.65 58.83 58.54
W2A2 44.26 44.23 43.24 42.80 44.29 42.29

B 78.59

W8A8 78.60 78.56 78.69 78.42 78.49 78.64
W5A5 77.08 77.40 77.08 77.54 76.77 77.27
W4A4 73.98 74.34 73.27 73.68 74.03 73.77
W3A3 67.02 67.70 65.61 67.55 66.64 66.92
W2A2 49.72 49.97 49.57 51.04 49.14 49.92

C 81.62

W8A8 81.73 81.37 81.54 81.49 81.53 81.54
W5A5 79.88 79.82 80.33 79.53 80.17 80.13
W4A4 77.29 77.23 77.38 77.64 77.64 77.64
W3A3 70.62 70.63 70.37 70.69 71.16 70.48
W2A2 48.38 50.65 49.78 51.26 50.34 51.00

(a) (b)

Figure 4. Filter-by-filter training CIFAR-10, Model B, test accuracy: (a) Quarters. (b) Smooth.

5.4.2. Smooth Filter Freezing

This method improves on the previous one by dividing filters into smaller sets. The
number of “frozen” filters on each iteration of the “freezing” layer is small, so this process
is smoother, and the resulting accuracy is slightly higher, which is demonstrated in Table 3
in Section 6. The strategies for choosing the order in which filters are “frozen” remain the
same. While the quantizing single layer became smoother, drops in the input quantization
remain big (see Figure 4).

5.5. Neuron-by-Neuron Training

In the previous subsection, we considered the gradual quantization of weights, but
the input was quantized as in the layer-by-layer approach. This resulted in noticeable
drops in accuracy when the input was quantized. Therefore, the next improvement we
made was “freezing” both filters of one convolutional layer and a corresponding input
of the next layer. This means that we froze one neuron (linear operation followed by a
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non-linear activation) at a time. The test accuracy during training for such an approach
is shown in Figure 5a. This demonstrates that the neuron-by-neuron training had slightly
better accuracy than the previous one; however, it is still comparable with the layer-by-
layer approach. However, it removes the subsidence of accuracy after input quantization,
compared with a filter-by-filter method. The final averaged accuracy is shown in Section 6.

(a) (b)

Figure 5. Neuron-by-neuron training CIFAR-10, Model B, test accuracy: (a) without STE; (b) with
gradient forwarding on all networks.

5.6. Neuron-by-Neuron with Gradient Forwarding

To improve the results of the neuron-by-neuron approach, we proposed using gradient
forwarding. In the first version, we forwarded the gradient to all the quantized layers
using STE the same way as the direct training, but quantized the weights and activations
consecutively and smoothly as in the neuron-by-neuron approach. As expected, that led to
a very “noisy” training process (see Figure 5b), since a small change at the beginning of
the network seriously affected the rest of the network. However, the accuracy for two- and
three-bit quantization dramatically increased in comparison to training without STE.

We considered the gradient forwarding only on the previous layer to the quantized
one in the following version. As a layer-by-layer approach, this method is greedy and
has low “noise” (see Figure 6a), but allows the network to adapt the weights of the layer
depending on the quantization of the next one. This method shows notable results in terms
of accuracy, as presented in in Section 6.

(a) (b)

Figure 6. Neuron-by-neuron training with gradient forwarding on the previous layer only, test
accuracy: (a) CIFAR-10, Model B. (b) ImageNet, Resnet-18. The first, the last, and the skip connection
layers are quantized the same way as the other layers.

6. Results

Finally, to provide a reliable comparison for the considered approaches, we present
an averaged accuracy on the test set. The CIFAR-10 results are shown in Table 3. We use
the following notation for the considered QAT methods: LbL—layer-by-layer; FbF—filter-
by-filter with four iterations of quantization per layer; FbF-s—filter-by-filter with smooth
quantization (many iterations) of each layer; NbN—neuron-by-neuron; NbN ste—neuron-
by-neuron without freezing the quantized layers (they are trained using the STE method);
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NbN ste-1l—neuron-by-neuron with STE gradient approximation applied only to the layer
previous to the currently quantized one during training.

Table 3. Comparison between different approaches in terms of averaged (over six models) test
accuracy on CIFAR-10, %. The highest mean accuracy colored in lime. Accuracies close to the highest,
taking into account the measurement mean error, colored in green. WX stands for X bits weight
quantization and AX stands for X bits activation quantization.

Models Float Bits Direct LbL FbF FbF FbF FbF-s FbF-s FbF-s NbN NbN NbN Mean
Train (rand) (var) (nvar) (rand) (var) (nvar) ste ste-1l Error

A 72.3

W8A8 71.3 71.7 71.7 71.7 71.6 71.7 71.7 71.6 71.7 71.4 71.8 ±0.3
W5A5 68.9 69.7 69.7 69.8 69.7 69.7 69.7 69.5 69.6 69.5 70.4 ±0.4
W4A4 66.5 66.2 66.0 65.5 66.3 66.0 65.6 66.2 66.5 66.8 68.2 ±0.4
W3A3 62.0 58.4 58.8 58.9 59.1 59.1 58.8 59.0 59.3 61.8 63.9 ±0.4
W2A2 46.8 43.2 41.8 42.6 41.6 42.3 42.4 41.6 43.0 52.0 52.4 ±0.8

B 78.7

W8A8 78.2 78.3 78.3 78.4 78.3 78.3 78.4 78.4 78.4 78.1 78.4 ±0.2
W5A5 75.9 76.9 76.8 76.6 76.9 76.9 76.8 77.1 77.0 76.5 77.1 ±0.2
W4A4 73.5 73.6 73.6 73.7 73.2 73.8 73.7 73.2 73.7 74.5 75.6 ±0.2
W3A3 68.5 66.8 66.5 66.3 67.2 66.4 66.5 67.0 67.1 70.1 71.3 ±0.4
W2A2 58.2 47.9 48.0 48.6 48.0 49.5 48.8 48.8 49.3 59.6 60.1 ±0.6

C 81.2

W8A8 80.2 80.4 80.4 80.5 80.1 80.5 80.5 80.5 80.4 80.3 80.5 ±0.5
W5A5 77.9 78.6 78.6 78.8 78.2 78.6 78.7 78.7 79.0 78.3 78.8 ±0.6
W4A4 75.4 75.5 75.4 75.3 74.9 75.5 75.3 75.6 75.7 75.5 77.2 ±0.7
W3A3 71.4 67.2 67.1 66.6 67.5 66.9 66.5 68.0 68.3 70.8 73.2 ±1.1
W2A2 57.4 46.9 47.2 46.4 47.5 47.7 47.5 47.7 48.2 59.6 60.8 ±1.1

As we can see, NbN ste-1l shows the best results on all models and all bit widths. The
filter-by-filter approach turns out to be similar in quality to the layer-by-layer approach.
We assume that it is caused by dramatic changes in NN after quantization of the whole
input of a convolutional layer. We also notice that propagation of the gradient using
STE greatly improves the results of the neuron-by-neuron method. Without STE, this
method demonstrates lower accuracy than the direct method on two- and three-bit QNNs.
Restrictions on the number of layers to which the gradient is propagated further improves
the neuron-by-neuron approach. This is likely connected to the decrease in the “noise”
during training (see Figures 5b and 6a).

In Figures 4a and 6a , we noticed that during the training process, some approaches
to QNNs did not reach the limit of potential accuracy before the next quantization occurs.
That was caused by our restriction on the number of training epochs, which was kept the
same in all approaches. Unlimited fine-tuning till loss convergence may be a subject of
future research.

Next, we will consider ImageNet recognition, since the results on CIFAR-10 are not
representative. Firstly, we study the influence on accuracy freezing delay, a count of
the layers that are not yet frozen and can be retrained through STE during subsequent
quantization of layers. This number varies from 0, in the case we immediately freeze the
layer after its quantization and quantized values are not updated with STE, to the number
of layers in NN, which is similar to direct quantization. As shown in Table 4, it is important
to notice that the absence of a delay negatively affects the final accuracy. In addition, we
observed more noisy graph training for the delay in whole-NN layers. As a result, we can
conclude that a delay of one to two layers is optimal. It allows us to reduce computational
overhead and volatility of STE without a noticable loss in accuracy.

We also note that quantization of the first and the last layers greatly decreases the
quality of the NN, as can be seen from Figure 6b. This confirms previous works’ [10,45]
conclusions about its significant impact on accuracy.
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Table 4. Influence of the delay in freezing layers on Resnet18 on ImageNet dataset, %. WX stands for
X bits weight quantization and AX stands for X bits activation quantization.

Precision Direct No Delay Delay 1 Delay 2 Delay 15

W4A4 69.42 68.80 69.18 69.22 68.82
W3A3 67.66 67.00 67.18 67.63 67.58
W2A2 61.55 61.73 63.00 63.69 63.07

As a result, our final experiments on the ImageNet dataset were conducted with
eight-bit quantization of the first convolutional, the last fully-connected layer, and the skip
connection layers to keep the entire integer reference. The results on the ImageNet dataset
with a comparison of the other methods are shown in Tables 5 and 6. We can see that the
baseline direct method is adequate up to four-bit quantization and has a minimal loss of
quality for three bits. Given that result, there is no need for complex methods for four-bit
quantization without quantizing (or eight-bit quantizing) the first and last layers. Our
NbN approach is better than the direct approach for two bits and slightly loses to other
works for two- and three-bit quantization, but it is easy to understand and implement. It is
also important to notice that two-bit NN with the direct method extremely suffers from
quantization (about 21% accuracy without fine-tuning, while the full-precision model has
71%). Consequently, it still does not converge after 100 epochs (see Figure 2b); meanwhile,
our NbN can converge faster or can achieve better accuracy at the same time.

We present the dependence of the accuracy on the used bit-width in Figure 7.

Table 5. Comparison between different approaches in terms of test Top-1 accuracy on Resnet18
on ImageNet dataset, %. WX stands for X bits weight quantization, and AX stands for X bits
activation quantization.

Precision Direct NbN
ste-2l

INQ [18]
(A32 All) PACT [46] LQ-Nets

[24]

HAWQ-
V3
[21]

FP32 70.78 70.78 68.27 70.20 70.30 71.47

W8A8 70.46 70.11 - - - 71.56
W5A5 69.86 69.50 68.98 69.80 - -
W4A4 69.42 69.22 68.89 69.20 69.30 68.45
W3A3 67.66 67.63 68.08 68.10 68.20 -
W2A2 61.55 63.69 66.02 64.40 64.90 -

Table 6. Comparison between different approaches in terms of test Top-5 accuracy on Resnet18
on ImageNet dataset, %. WX stands for X bits weight quantization and AX stands for X bits
activation quantization.

Precision Direct NbN ste-2l INQ [18]
(A32 All) PACT [46] LQ-Nets [24]

FP32 89.54 89.54 88.69 89.60 89.50

W8A8 89.31 89.02 - - -
W5A5 88.76 88.42 89.10 89.30 -
W4A4 88.54 88.32 89.01 89.00 88.80
W3A3 87.70 87.74 88.36 88.20 87.90
W2A2 83.51 85.03 87.13 85.60 85.90

Overall,

• We confirmed that the quantization of the first and the last layers dramatically drops
the accuracy and should be avoided;

• Using progressive quantization (FbF or NbN) methods, there is no significant difference
between freezing strategies, and one can therefore choose neurons to freeze randomly;
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• For eight-bit quantization, there is no need for complex approaches—direct linear
quantization is good enough—and there is no need for extra fine-tuning;

• For quantization with four bits and higher, direct linear quantization achieves state-of-
the-art results with little fine-tuning;

• For three-bit quantization, NbN ste and direct approaches show comparable accuracy;
• For two-bit quantization, NbN ste is better than the baseline and comparable to other

approaches, but easier to implement.

Our research will be potentially helpful for practitioners in ultra-low-bit quantization
due to its simplicity in deployment and better accuracy than the baseline approaches.

Figure 7. Trade-off between accuracy and bit-width on ImageNet, test top-1 accuracy.

7. Discussion

The efficient practical application of QNNs on mobile and embedded devices requires
integer-only inference. To achieve it, there are several factors to consider: (1) The first
and the last layers should be kept in eight bits to prevent accuracy degradation; (2) It can
be useful to keep skip connections in eight bits also; (3) The batch-norm layer should be
quantized through fusion with convolution, as was mentioned in [21].

We demonstrate that for eight-bit quantization, it is sufficient to apply a linear quanti-
zation scheme directly even without retraining in the considered tasks. This quantization
is indeed used in many areas and is applied in practice without problems. For four-bit
quantization, fine-tuning of the model takes is required. However, training quickly reaches
convergence and achieves results comparable with other more complex methods [21,46].
Consequently, quantization approaches for two- and three-bit schemes are more interesting
for research.

Intuitively, it seems that splitting the weights into small subgroups during progressive
quantization should give a better result than the direct method. We experimentally confirm
this statement, provided there are enough iterations for fine-tuning with the considered
weight groups and the optimal selection of hyper-parameters. Despite that improvement,
accuracy increases less than can be expected and still loses to a full precision model. The
choice of optimal hyper-parameters can also be tricky. We conducted a study of the
number of layers to freeze during fine-tuning and showed that a delay of one to two layers
is optimal.

Note that weight freezing does not affect convergence, on the condition that it lasts
to the end of the fine-tuning, as freezing itself does not change the values of the param-
eters. In addition, our method is a QAT one. QAT approaches successfully converge, as
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demonstrated in [9]. Additionally, it is important to note that we do not quantize gradients
during training.

Limitations of the study. The proposed neuron-by-neuron quantization NbN belongs
to QAT methods, so it is necessary to have access to the source dataset for fine-tuning. This
means that it is not applicable when only a trained neural network is available. We also did
not consider non-linear quantization schemes, because of their algorithmic and possibly
computational complexity, and the obtained results are not applicable in those cases.

8. Conclusions

In this paper, we propose several new approaches for training quantized CNNs.
We consider a well-known layer-by-layer approach and point out two major drawbacks:
(1) The significant perturbation of parameters during layers’ quantization, which leads to a
drop in accuracy, and (2) the absence of quantized layer fine-tuning. On the contrary, direct
training using STE suffers from high volatility caused by updating discrete parameters in
deep NNs.

We propose a method that balances the above methods and avoids their disadvantages.
It allows for smooth network quantization using the neuron-by-neuron approach and
propagates gradients via several (but not all) quantized layers. Thus, quantized parameters
are fine-tuned without causing high volatility.

We experimentally confirm that our neuron-by-neuron method outperforms the direct
approach using Resnet18 for two-bit quantization on the ImageNet dataset and is superior
to the direct and layer-by-layer approaches using LeNet-like networks trained for image
recognition on the CIFAR-10.
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Abbreviations
The following abbreviations are used in this manuscript:

QNN Quantized neural networks
QAT Quantization-aware training
STE Straight through estimator
NbN Neuron-by-neuron
CNN Convolutional neural networks
VGG-16 Visual Geometry Group Very Deep Convolutional Networks
SoC System on a chip
IoT Internet of things
ASIC Application-specific integrated circuit
FPGA Field-programmable gate array
CPU Central processing unit
PTQ Post-training quantization
NN Neural network
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INQ Incremental quantization approach
HAWQ Hessian AWare Quantization
QIL Quantization Interval Learning
FP32 32-bit floating-point
MMSE Minimum mean squared error
BN Batch normalization
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