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Abstract: Among the studies of the effect of rock’s heterogeneity on hydraulic fracture propagation,
very little information on the effects of the heterogeneity of rock’s fracture toughness is available.
The objective of the present paper is to develop a planar-3D model for studying the effect of the
heterogeneity of rock’s fracture toughness on hydraulic fracture propagation. Not only the stage
of fracture propagation, but also the stage before the fracture propagation is considered in this
model. Based on the proposed model, the evolution of hydraulic fracture propagation under a typical
heterogeneous distribution of rock’s fracture toughness and the solution at the stage before fracture
propagation are analyzed in detail. Furthermore, a series of numerical comparison experiments
including five different distributions of rock’s fracture toughness are made in order to study the
effect of the heterogeneity of rock’s toughness. The results indicate that the minimum fracture radius
and the contrast of rock’s fracture toughness between adjacent layers are important parameters for
determining the size and location of the maximum fracture opening. Most importantly, the fracture
contour is greatly affected by the heterogeneity of rock’s fracture toughness.

Keywords: planar-3D model; hydraulic fracture; inhomogeneous fracture toughness; early-time solution

MSC: 97M50

1. Introduction

Hydraulic fracturing is now widely used in various engineering practices, such as
in-situ stress measurement [1,2], underground heat extraction [3,4], preconditioning and
cave inducement in mining [5–7], and is mostly applied to increase the production of oil
and gas wells [8]. Nevertheless, the evolution of hydraulic fracture is a very complex
mechanical problem that is related to the nonlinear coupling of fluid and solid mechanics:
on one hand, the fluid flow in the fracture is governed by the lubrication equation [9],
which is a nonlinear partial differential equation of the fracture opening and fluid pressure;
while on the other hand, the fracture opening is related to the fluid pressure and the in situ
stress by the elasticity equation [10,11]. Moreover, the fracture area will increase with the
hydraulic fluid injected into the fracture, which is controlled by the fracture propagation
criterion based on the linear elasticity fracture mechanics. Moreover, if the heterogeneity
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of a solid medium is considered, the model of hydraulic fracture propagation becomes
more complex.

At present, algorithms for two-dimensional (2D) models with consideration of hetero-
geneous factors (the anisotropic elastic properties [12,13], non-uniform in situ stress [14],
an inhomogeneous permeability [15]) are relatively mature. For planar-3D or 3D models,
although many algorithms and simulators [16–20] have been proposed for studying the
effects of different parameters on hydraulic fracture propagation, the rock’s heterogeneity
is generally ignored in these algorithms and simulators.

In fact, rocks around the reservoir show obvious layered inhomogeneity because of
the deposition and compaction processes [21,22]. Each layer of rock has its own in situ
stress, stiffness, porosity and permeability, as well as fracture toughness. With regard
to these factors, the heterogeneity of in situ stress [23,24], stiffness (elastic modulus and
Poisson’s ratio) [25,26], and porosity [27,28] are studied, whereas the heterogeneity of the
fracture toughness of rock is rarely studied [29]. In fact, the laboratory and numerical
experiments [30,31] prove that rock’s fracture toughness in unconventional reservoirs is
highly inhomogeneous because of its anisotropy and the spatial variation of the clay content.
Results from studies [29,32] demonstrate that fracture toughness is a critical parameter
that is responsible for the fracture initiation and propagation based on the linear elastic
fracture mechanics.

In most studies of the heterogeneity of multi-layered rock [33–36], the effect of the
heterogeneous fracture toughness is usually studied together with the effects of the hetero-
geneous elastic properties (the elastic modulus and Poisson’s ratio), and the non-uniformly
distributed in situ stress; they are rarely designed to determine the independent effect of
heterogeneous fracture toughness on fracture propagation. For this purpose, researchers
started to pay attention to the effect of anisotropy of rock’s fracture toughness on the evolu-
tion of hydraulic fracture, and proposed many models and numerical algorithms [37–39]. In
these models, it is assumed that the hydraulic fracture propagates in a plane perpendicular
to the plane of isotropy, and the fracture toughness is a function of the local propagation
direction. Three-dimensional displacement discontinuity methods for crack problems in
layered rocks were developed and discussed in several papers [40–44]. The propagation of a
penny-shaped fluid-driven fracture in impermeable rock, as well as accounting for the fluid
leak-off, was also studied [45–48]. The study of stress intensity factors for branching cracks
in three-dimensional space was performed [49–51]. In addition, the formation and cleaning
of hydraulically driven fractures in 3-D space was discussed in some studies [52,53].

The weakness of the existing models is that the early-time evolution of hydraulic
fracture, including the stage before fracture propagation and the stage of early-time propa-
gation, is not considered. Furthermore, the treatment for singularity at the wellbore owing
to the neglecting of the wellbore radius and the treatment for fluid pressure at the fracture
front are not described, which are very important for analysing the model.

Therefore, in order to overcome the above-mentioned drawbacks, we tried to establish
a planar-3D model for studying the effect of heterogeneous fracture toughness on hydraulic
fracture propagation in the early-time stage based on the methods developed by us in
previous studies [54–56]. In this model, the whole evolution process including the stage
before propagation and the stage of early-time propagation were considered. In the algo-
rithm, we described in detail the solving process of the two stages, including the treatment
for governing equations in the irregular fracture area, the treatment for singularity at
the wellbore, and the treatment for fluid pressure at the fracture front. Furthermore, the
final discrete system of equations with its Jacobian matrix for iteration is also given for
numerical solutions.

2. Mathematical Model
2.1. Assumptions

Figure 1 shows a planar-3D hydraulic fracture induced by fluid injection from the
wellbore (radius r0) with a volumetric velocity Q(t). The fracture is symmetric about
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the plane xoy with a footprint A(x, y, t) (z = 0) inscribed within the curve C(x, y, t). The
wellbore is along the axis z and is located at the origin of the xoy coordinate system. The
solid medium is characterized by Young’s modulus E, Poisson’s ratio ν, and fracture
toughness KIc. When the hydraulic fluid is injected into the fracture, the fracture will
propagate radially on the boundary points, which satisfy the fracture propagation criterion.
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is in the xOy plane. The blue fluid velocity arrows in the cross section illustrate the direction.

It is well known that hydraulic fracturing is a complex multidisciplinary field that
includes solid mechanics (responsible for fracture opening), fluid mechanics (responsible
for fluid flow), linear elastic fracture mechanics (responsible for fracture propagation),
and seepage mechanics (responsible for fluid leak-off). Furthermore, these branches of
mechanics are coupled with each other in complex forms in hydraulic fracturing. In this
paper, the primary attention focusses on the effect of heterogeneous fracture toughness on
hydraulic fracture propagation. Therefore, in order to simplify the complexity of the model,
we made the following assumptions:

(1) In the solid medium (rocks), there is only one planar fracture, and it propagates only
on this plane and will not be out of this plane.

(2) The solid medium is a linear elastic material with homogeneous Young’s modulus E,
Poisson’s ratio ν, and the heterogeneous fracture toughness KIc.

(3) The fluid flow is governed by lubrication theory, and the hydraulic fluid is incom-
pressible and Newtonian, with a viscosity µ.

(4) The fracture propagation is controlled by the rock fracture toughness according to the
linear elastic fracture mechanics.

(5) The in situ stress σ0 perpendicular to the fracture plane is homogeneous, and the fluid
leak-off and the effect of gravity are neglected.

(6) The fluid front coincides with the fracture front because of the negligible lag between
the two fronts [39].

(7) The initial fracture has a penny-shaped footprint with a radius R0, the formation
process of which is not considered in this model.

The theory of fractures introduces three stress intensity coefficients in the tip of
a fracture depending on the character of loading. There can be fractures in tensile loading,
and fractures in shear and anti-plane deformations. We use only one criterion for frac-
ture propagation in tensile loading (KI), because for hydraulically driven fractures, the
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shear stresses on the fracture walls induced by fracturing fluid flow are several orders of
magnitude smaller than the tensile loading due to the elevated pressure in the fracturing
fluid. Since the distribution of rock toughness KIc is non-uniform, it is impossible for
all fracture boundary points to expand forward at the same time. This leads to different
fracture radii along different radial directions, namely the fracture radius R = R(θ, t) in
the roθ coordinate system, which is equivalent to the boundary curve C(x, y, t) with the
relationship R2 = x2 + y2.

2.2. Governing Equations

According to the linear elastic theory, the planar-3D relationship between the fracture
opening w(x, y, t) and the fluid pressure p f (x, y, t) can be obtained by a hyper-singular
integral equation [40]:

p(x, y, t) = p f (x, y, t)− σ0 = − E′

8π

∫
A(x′ ,y′ ,t)

w(x′, y′, t)dA(x′, y′)[
(x′ − x)2 + (y′ − y)2

]3/2 (1)

where p is the net pressure acting on the unit area of the crack surface, E′ = E/(1− ν2). It
needs to be pointed out that this equation is not convenient for numerical calculation be-
cause of its hyper singularity at some special points, so Crouch and Starfield [41] proposed
the displacement discontinuity method (DDM), which is quite suitable for calculating the
fracture opening without the singularity.

According to the above assumption, the flow in the fracture is laminar, so the fluid
flux can be defined by Poiseuille’s law [55]

q = −w3

µ′
∇p (2)

where µ′ = 12µ. Since the fracture footprint is irregular, there are two directional fluid
flows in the fracture, namely, the gradient operator ∇ = (∂/∂x, ∂/∂y). Due to the incom-
pressibility of the fluid and no fluid leak-off, the continuity equation has the following
form [53]:

∂w
∂t

+∇ · q = 0 (3)

2.3. Boundary and Initial Conditions

The initial fracture footprint and the wellbore are circular, while the fracture prop-
agation is non-uniform, so it is more convenient to describe and solve this model in the
cylindrical coordinates roθz.

The boundary condition at the wellbore is determined by the injection condition.
Generally, there are two different injection modes in experiments or practices: the constant
volumetric velocity of injection and the constant fluid pressure at the wellbore. In this
model we chose the first mode, namely, Q(t) = Q0 as a constant, so the boundary condition
at the wellbore was formulated as [52]:

−w0
3

µ′
∇p =

Q0

2πr0
, r = r0 (4)

here r0 is the wellbore radius, which is relatively small compared with the fracture radius,
so we can assume that pressure around the wellbore is uniformly distributed; there is
no circular pressure gradient in the wellbore. In addition, the crack opening around the
wellbore is the same, namely, w(r0, θ, t) = w0(t).

The boundary conditions at the fracture front C(r, θ, t) are deduced from the propa-
gation criterion, the zero flux condition, and the zero fracture opening. According to the
linear elastic fracture mechanics, when stress intensity factor KI at a point of the fracture
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front is equal to or greater than the corresponding rock fracture toughness KIc, the fracture
will propagate radially at this point, so the propagation condition is as follows [49–51].

KI ≥ KIc (5)

The stress intensity factor KI is related to the fracture opening near the fracture front
by the following limit expression [42]:

KI = lim
r→R

E′

4
w(r, θ, t)

√
π

2(R− r)
(6)

here r is the radial coordinate on the fracture plane, and R is the fracture radius along some
radial direction. The remaining boundary conditions at the fracture front can be easily
written as

lim
r→R

w3

µ′
∂p
∂r

= 0 (7)

w(r, θ, t) = 0, r = R (8)

Through the analysis, we find that boundary conditions (4) and (7) are only related to
the pressure gradient, which are called Neumann boundary conditions and require special
consideration for solutions [43].

In order to simplify the model, we assume that the initial fracture has a penny shape
with a radius R0, and the hydraulic fluid remains still because of the uniform distribution
of the fluid pressure at the initial moment (see Figure 2), namely:

p f (r, θ, 0) = P0, r ≤ R0, 0 ≤ θ ≤ 2π (9)
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Figure 2. The non-homogeneous and layered distribution of rock fracture toughness in the reservoir.
Hoop angle θ is an angular coordinate in the plane of fracture propagations. The rock toughness is
assumed to be dependent on this angle.

The value of P0 is sufficiently small, which cannot lead to immediate fracture propaga-
tion, so the stage before initial propagation is also considered in this model. It needs to be
pointed out that at this stage the fracture is symmetric about the wellbore, so in Equation (2)
the gradient operator has only one term, namely, ∇p = ∂p/∂r (at the stage before initial
propagation there is only a radial fluid flow).
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2.4. Distribution of Rock Toughness

The complete expression for the heterogeneous fracture toughness is a function of
position, namely, KIc = KIc(r, θ) in the polar coordinate system [44]. However, in order to
take into account the layered characteristics of rock in the reservoir [37], we assume that
the non-homogeneous fracture toughness is only related to the hoop angle θ:

KIc = KIc(θ) (10)

This expression can describe not only the horizontal stratification of rock, but also
the oblique stratification of rock with an angle to the horizontal. Figure 2 shows a layered
distribution of heterogeneous fracture toughness: the horizontal layer drawn by the wide
red line is the pay zone of the reservoir, which has a fracture toughness KIc(0) = KIc(π)
that is distinct from the fracture toughness of the remaining zones (barrier zones). The
wider the red line is, the thicker the pay zone will be in the reservoir. The other important
reason of formulating the non-homogeneous fracture toughness with the hoop angle θ
is that this mathematical model will be easier and more convenient to be solved in the
coordinate system (r, θ).

3. Model Discretization
3.1. Fracture Discretization and Propagation

In the polar coordinate system, the hydraulic fracture is divided into cells along the
radial and hoop angle directions (see Figure 3), and ∆r and ∆θ are the grid steps in the
two directions. The red curve is the fracture front C(x, y, t), the black dots are the boundary
points at the fracture front, the black dots with red edge are the vertices of cells, and the
blue dots are the cells’ centers on which all physical parameters (the two-dimensional
numbering of cells (i, j), cell coordinates (ri, θj), fracture opening wi,j and net pressure pi,j)
are set. ∆ri = ri+1 − ri and ∆θj = θj+1 − θj are distances and angles between two adjacent
cells along the radial and hoop directions, respectively. The zone composed of fracture
cells with the same radial coordinate ri is known as the “circumferential region ri”, and
the zone composed of fracture cells with the same hoop coordinate θj is known as the
“radial region θj”. This discretization for the fracture also coincides with the expression of
heterogeneous rock toughness (Equation (10)), because each radial region θj, namely, the

area which the red dotted line passes in Figure 3, has an identical fracture toughness K j
Ic.

1 ≤ i ≤ m, m is the total number of cells of the longest radial region, and this will increase
with the fracture propagation. 1 ≤ j ≤ n, n = 2π/∆θ is a constant.
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With the injection of hydraulic fluid, the stress intensity factor of boundary cells KI

increases. When K j
I of some boundary cells satisfy the propagation condition (5), the

corresponding fracture front grows forward. In Figure 3, two examples are given: the

radial regions θj′ and θj′′ propagate, because their stress intensity factors satisfy K j′
I ≥ K j′

Ic

and K j′′
I ≥ K j′′

Ic . The fracture contour is composed of a smooth curve by connecting
the midpoints of the outer edges of the boundary cells. For the non-uniform fracture
propagation, the exact propagation length of each propagating boundary point is difficult
to determine based on the existing theory. In order to simplify the calculation, we assume
that the propagation length of each propagating point is one fracture cell (∆r) at every time
(when ∆r is enough small, the calculation accuracy can be guaranteed).

It is noted that the size of the wellbore is not considered in this fracture gird, namely,
the wellbore is seen as a point source [45,46]. That is because, on the one hand, the radius
of wellbore r0 is much less compared with the fracture size, while on the other hand, the
parameter r0 does not enter into the final system of equations, which will be proved by
Equation (14). The logarithmical singularity of the fluid pressure at the wellbore is solved
by introducing an additional assumption: the net pressure at the wellbore p0 and the
net pressures p1,j, p2,j of its two nearest cells on the radial region θj satisfy the following
relationship [45,46]

p = −p∗ ln r + p∗∗ (11)

where p∗ and p∗∗ are constants, obtained by the numerical solutions of p1,j, p2,j.

3.2. Discretization of Governing Equations

It is well known that the elasticity Equation (1) is not suitable for numerical calculation
because of the singularity. For this purpose, we introduce the 3D displacement discontinuity
method (3D-DDM) [41] for the relationship between the fracture opening w and the net
pressure p. There is only one discontinuous displacement, Dz, in this model, that being the
fracture opening w (w = Dz).

In our discrete fracture grids, there are two kinds of cell shape: triangle (the first
circumferential region r1) and trapezoid (circumferential regions ri, i ≥ 2). For this discrete
fracture grid, the numerical solution for the net pressure p related to the discontinuous
displacement Dz was obtained [47]:

pξ =
N

∑
ζ=1

E′

8π
Iξ,ζ
zz Dζ

z or p = AD (12)

In Equation (12), p is fluid pressure and D is the crack opening corresponding to this
pressure. Their relationship is not determined by fluid properties, but it is determined by
the solution of the elastic problem in the medium surrounding the crack. Here pξ is the net
pressure of the ξ-th fracture cell, Dζ

z is the fracture opening of the ζ-th fracture cell, N is the
total number of fracture cells, and ξ and ζ are values of the one-dimensional numbering
of fracture cells (ξ, ζ ≤ N). Iξ,ζ

zz is the second derivative of the influence function I(x, y, z)
with respect to z. The influence function I is given in detail in Appendix A. p and D are the
vectors of fluid pressures pξ and the fracture opening Dζ

z , respectively. A is the coefficient
matrix, each element of which is Aξ,ζ = E′ Iξ,ζ

zz /(8π).
With the substitution of Equation (2), the expanded form of continuity in Equation (3)

is rewritten in the polar coordinate system as

∂w
∂t
− 1

µ′
1
r

∂

∂r

(
rw3 ∂p

∂r

)
− 1

µ′
1
r

∂

∂θ

(
w3

r
∂p
∂θ

)
= 0 (13)
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The discrete form in the finite volume scheme is

wi,j,k+1−wi,j,k
∆t − 1

µ′
1
ri

1
∆ri

[(
rw3 ∂p

∂r

)
i+1/2,j,k+1

−
(

rw3 ∂p
∂r

)
i−1/2,j,k+1

]
−

1
µ′

1
ri

1
∆θj

[(
w3

r
∂p
∂θ

)
i,j+1/2,k+1

−
(

w3

r
∂p
∂θ

)
i,j−1/2,k+1

]
= 0

(14)

where (i, j) is the two-dimensional numbering of fracture cells, and k is the number of
calculation steps. ∆t is the time step, and wi,j,k and wi,j,k+1 represent the fracture openings
of cell (i, j) at the previous and present moment, respectively.

The boundary condition at the wellbore (Equation (4)) can be transformed into the
central difference approximation as(

rw3 ∂p
∂r

)
1−1/2,j

= −Q0µ′

2π
(15)

because the subscript (1− 1/2, j) in Equation (15) represents the boundary points at the
wellbore based on the finite volume method. Moreover, this equation does not contain the
parameter r0, and can be directly substituted into Equation (14) as a whole.

The boundary conditions (7) and (8) at the fracture front are discretized as(
rw3 ∂p

∂r

)
mj+1/2,j

= 0 (16)

wmj+1/2,j = 0 (17)

where mj is the total number of fracture cells in the radial region θj, so (mj + 1/2, j) is the
two-dimensional numbering of boundary points on the fracture front. When the evolution
enters into the propagation stage, the fracture will have an irregular front, which leads to
different values of mj in different radial regions θj (j = 1, 2, 3, · · · , n). At the stage before
fracture propagation, all values of mj are equal to m0(m0 = R0/∆r).

It was found that discrete boundary conditions (15)–(17) can be directly substituted
into the governing Equation (14) to simplify the calculation. This is one of the important
reasons why we chose the finite volume method for discretizing the continuity equation
and boundary conditions. However, if the Neumann boundary conditions (14) and (15) are
substituted directly into the governing Equation (14), it will lead to the singularity of the
final coefficient matrix of this model. For this reason, a special treatment is adopted: for the
boundary cell (mj, j) of each radial region θj, we use the midpoint (mj + 1/4, j) (see Figure 4)
instead of the boundary point (mj + 1/2, j) to discretize the governing Equation (13).
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Figure 4. The one-dimensional fluid flow model at the stage before fracture propagation. 1− 1/2, 1,
1+ 1/2, 2, 2+ 1/2, 3, 3+ 1/2, . . . , m0− 1+ 1/2, m0, m0 + 1/4 and m0 + 1/2 are the two-dimensional
numbering of points entering into the calculation (the number j is omitted). The one-dimensional
flow is perpendicular to the well bore and takes place along the radial coordinate in the crack plane.

Equations (5) and (6) together form the fracture propagation condition, which is
a limit expression, and can thus be transformed: the fracture opening wmj ,j instead of the
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limit value w with r → R , and Rj − rmj instead of the limit value R− r with r → R . At
last, the discretized propagation condition is

K j
I(θ) =

E′

4

√
π

2

wmj ,j√
Rj − rmj

≥ K j
Ic, θ = θj (18)

where wmj ,j and rmj are the fracture opening and radial coordinate of the boundary cell in
the radial region θj. Rj = rmj+1/2 is the radius of the radial region θj.

4. Numerical Method for Model Solutions

It is known that if the initial fluid pressure P0 is relatively small, the fracture cannot
immediately propagate, so the complete evolution process of fracture consists of two stages:
the first stage describes the process before fracture propagation, while the second stage is
the propagation process.

4.1. The Stage before Propagation

At the stage before fracture propagation, only radial fluid flow exists in the fracture,
namely, there is the same fluid flow in all radial regions θj (j = 1, 2, 3, · · · , n), so the
hydraulic fluid flow is transformed into one-dimensional, shown in Figure 4. This one-
dimensional model is extracted from one arbitrary radial region θj in Figure 3: each line
segment with one blue point represents one fracture cell in the radial region θj, and the
blue points are centers of fracture cells (where parameters wi,k, pi,k are located). The red
point is the point source (the wellbore), the black points with a red edge are common
points of adjacent cells, the complete black point is the boundary point of fracture, the blue
point with the red edge is the point with the number, (m0 + 1/4, j) (m0 = R0/∆r is the
initial number of fracture cells along the radial direction), which instead of the boundary
point (mj + 1/2, j) enters into the discrete equation of the boundary fracture cell. In this
one-dimensional model, the cell number j in (i, j) is omitted, because for all radial regions
θj the governing equations for fluid flow are the same.

The governing Equation (13) at the stage before propagation is simplified to Equa-
tion (A10). The discretization of Equation (A10) for all fracture cells is divided into four
types, owing to the introduction of the inner and outer boundary conditions and the differ-
ent values of ∆ri for each cell. These four different types of Equation (A10) are provided in
detail in Appendix B. Finally, Equations (A12)–(A15) combine with Equation (12) to form
a closed nonlinear system.

It is known that the two-dimensional numbering (i, j) for fracture cells is used in
discrete Equations (A12)–(A15), whereas the one-dimensional numbering (ξ or ζ) for
fracture cells is used in Equation (12). Therefore, in order to substitute Equation (12)
directly into Equations (A12)–(A15), the one-to-one correspondence (i, j)↔ ξ between the
two kinds of numbering for fracture cells needs to be determined, for which we introduce
a transformation matrix T: elements of matrix T represent the one-dimensional numbering
(ξ or ζ) of fracture cells, and the locations of matrix elements represent the two-dimensional
numbering (i, j) of the fracture cells.

4.2. The Stage of Propagation

The stage of fracture propagation is more complex compared with the stage before
propagation, because at this stage the model of fluid flow cannot be transformed into
a one-dimensional one because of the non-uniform propagation, namely, the third term for
the circular flow in Equation (13) is necessary (∂p/∂θ 6= 0), so the subscript “j” cannot be
omitted in equations of fluid flow.

Since the fracture propagates non-uniformly, perhaps there are some convex or con-
cave segments at the fracture front. This means that there may be four possible loca-
tion relationships between the interior fracture cells (i, j) (i ≥ 3) and their adjacent cells:
Figure 5a shows 4 adjacent cells with the two-dimensional numbering: (i− 1, j), (i + 1, j),
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(i, j− 1) and (i, j + 1), around the interior cell (i, j), which is called the “complete interior
cell”; the other three cases are exhibited in Figure 5b–d, which are called “left-interior cell”,
“right-interior cell” and “radial-interior cell”, respectively. The specific discrete forms of
Equation (13) for interior cells shown in Figure 5a–d are given by Equations (A19)–(A22) in
Appendix C.
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For the outer boundary fracture cells, there may also be four possible location rela-
tionships with their adjacent cells, as shown in Figure 6, which are called “complete outer
boundary cell”, “left-outer boundary cell”, “right-outer boundary cell”, and “radial-outer
boundary cell”, respectively. The corresponding discrete forms of Equation (13) for the
outer boundary cells are given by Equations (A22)–(A25) in Appendix C.
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As in the calculation of the stage before propagation, in the calculation of the propaga-
tion stage we also need to make the two kinds of fracture cell numbering correspond to
each other for the direct substitution of Equation (12) into Equations (A16)–(A25). Similarly,
a transformation matrix T’ is introduced for the one-to-one correspondence between the
two kinds of fracture cell numbering. The difference of matrix T’ from matrix T is that,
in addition to non-zero elements (ξ or ζ) representing the fracture cells, matrix T’ con-
tains some zero elements, which represent the non-fractured zones. This is because the
row number m of matrix T’ is determined by the longest radius of the fracture, namely,
m = Rmax/∆r = max(mj) (mj is the total number of fracture cells in the radial region θj.
Rmax is the longest radius of the fracture (the red arrow shown in Figure 7)). It is known
from Figure 7 that the transformation matrix T’ with the size m× n represents the area
enclosed by the red dotted circle, and the fracture is an irregular area enclosed by the
thick black curve. Thus, in the area represented by matrix T’, in addition to the fracture
zone (the yellow area), there is also a non-fractured zone (the green area) inside it. For
example, the cell denoted by “1” in Figure 7 is located in the fracture area, its corresponding
one-dimensional number ξ 6= 0, and the cell denoted by “2” is located out of the fracture
area (inside the green area), so its one-dimensional number is zero.
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5. The Implicit Algorithm and Verification
5.1. Algorithm

The algorithm at the stage before propagation is the same as the algorithm at the stage
of propagation. The only difference is that the fracture front C(r, θ, t) at the stage before
propagation is constant, not related to time t, whereas, at the propagation stage, C(r, θ, t) is
a function of the parameter t, so here we give a unified algorithm for both two stages.

Since the initial conditions are known, this means that numerical solutions (pi,j,k, wi,j,k
and C(r, θ, tk)), transformation matrix T, coefficient matrix A, and stress intensity factor
K j

I (j = 1, 2, · · · , n) at the previous moment t = tk are known. Moreover, K j
I satisfies the

condition K j
I < K j

Ic (j = 1, 2, · · · , n).
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The complete algorithm flow chart is shown in Figure 8. First, we estimate the solution
of wi,j,k+1 at the current moment t = tk+1, denoted as D∗k+1, and then substitute D∗k+1 into
the final nonlinear system F to get the numerical solution D’

k+1 with the help of the Newton
iteration method and matrices T and A. Secondly, we substitute D’

k+1 into Equation (17)
for obtaining the propagating radial regions, denoted as j∗. If the set j∗ is empty, it means
that the fracture at this moment does not propagate, D’

k+1 is the real numerical solution,
denoted as Dk+1, and then the calculation enters into the third step: the substituting of Dk+1
into Equation (12) for the real numerical solution pk+1. If the set j∗ is not empty, this means
that the fracture will propagate at the radial regions θj∗ . Accordingly, we need to update
matrices T’ and A’, and obtain the new fracture front C′ and the updated Equation (12) for
the new final nonlinear system. Finally, the calculation returns to the first step for iteration:
we estimate the new solution of wi,j,k+1 (D∗k+1), and continue the calculation. The iterating

calculation cannot stop until the set j∗ is empty, namely, the final values of K j
I must satisfy

the condition K j
I < K j

Ic. The final obtained values D’
k+1, p’

k+1 and C′k+1 are the numerical
solutions at the current moment t = tk+1.

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 29 
 

 

The complete algorithm flow chart is shown in Figure 8. First, we estimate the solu-
tion of , , 1i j kw +   at the current moment 1kt t +=  , denoted as 1k

∗
+D  , and then substitute 

1k
∗

+D  into the final nonlinear system F  to get the numerical solution 1k +′D  with the help 
of the Newton iteration method and matrices T  and A . Secondly, we substitute 1k +′D  

into Equation (17) for obtaining the propagating radial regions, denoted as j∗ . If the set 

j∗  is empty, it means that the fracture at this moment does not propagate, 1k +′D  is the 
real numerical solution, denoted as 1k +D , and then the calculation enters into the third 
step: the substituting of 1k +D  into Equation (12) for the real numerical solution 1k +p . If 

the set j∗  is not empty, this means that the fracture will propagate at the radial regions 

jθ ∗ . Accordingly, we need to update matrices ′T  and ′A , and obtain the new fracture front 

C′  and the updated Equation (12) for the new final nonlinear system. Finally, the calculation 
returns to the first step for iteration: we estimate the new solution of , , 1i j kw +  ( 1k

∗
+D ), and con-

tinue the calculation. The iterating calculation cannot stop until the set j∗  is empty, namely, 

the final values of j
IK  must satisfy the condition j j

I IcK K< . The final obtained values 1k +′D
, 1k +′p  and 1kC +′  are the numerical solutions at the current moment 1kt t += . 

 
Figure 8. The algorithm for the two stages of model simulation: F  is the final nonlinear system of 
equations, ε  is the allowable error of calculation. 

5.2. Verification of the Algorithm 
The field tests with detailed measurements allowing for the validation of the devel-

oped mathematical model are not available at present. Thus, the verification of the devel-
oped model by comparing the numerical results with exact analytical solutions was per-
formed. The results are present in Figure 9. The main model parameters for simulation are 
shown in Table 1, and the calculation program is written in MATLAB R2018a. Before the sim-
ulation, we use the initial conditions to calculate the fracture opening and stress intensity fac-
tor for testing the correctness and precision of numerical methods in this model. 

The analytical solutions for fracture opening and stress intensity factor are obtained 
from [48]. The comparison results of fracture opening are shown in Figure 9. The stress 
intensity factor calculated by the analytical solution is 

5 0.5
0 02 7.98 10 Pa mπ= = × ⋅IK p R , and by the numerical method (Equation (17)) it 

is 5 0.58.01 10 Pa m= × ⋅IK . This indicates that the numerical method in this model has 
a high accuracy compared with the analytical solution. 
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equations, ε is the allowable error of calculation.

5.2. Verification of the Algorithm

The field tests with detailed measurements allowing for the validation of the developed
mathematical model are not available at present. Thus, the verification of the developed
model by comparing the numerical results with exact analytical solutions was performed.
The results are present in Figure 9. The main model parameters for simulation are shown in
Table 1, and the calculation program is written in MATLAB R2018a. Before the simulation,
we use the initial conditions to calculate the fracture opening and stress intensity factor for
testing the correctness and precision of numerical methods in this model.

Table 1. The main parameters for model simulation.

Initial fracture radius R0 (m) 0.5 Initial net pressure P0 (MPa ) 1

Young’s modulus E (GPa) 30 Injection velocity Q0 (m3/s) 10−4

Poisson’s radio ν 0.2 Fluid viscosity µ (Pa · s ) 10−3
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The analytical solutions for fracture opening and stress intensity factor are obtained
from [48]. The comparison results of fracture opening are shown in Figure 9. The stress in-
tensity factor calculated by the analytical solution is KI = 2p0

√
R0/π = 7.98× 105 Pa ·m0.5,

and by the numerical method (Equation (17)) it is KI = 8.01× 105 Pa ·m0.5. This indi-
cates that the numerical method in this model has a high accuracy compared with the
analytical solution.

6. Numerical Results and Analysis

In order to reflect the layered characteristic of rock’s fracture toughness in reservoirs,
we assume that the heterogeneous rock’s fracture toughness has a distribution as that
shown in Figure 10: the two symmetric yellow zones represent the pay zone, and the white
zones are the adjacent layers. A hypothetical case is considered without any coincidence
with real field story. The fracture toughness of the pay zone Kp

Ic is different from that of the
adjacent layers (it may be larger or less), and the fracture toughness of adjacent layers (Ku

Ic,
Kl

Ic) may be the same or different. In order to more clearly observe the non-uniform fracture
propagation, the time step given is very small: ∆t = 0.01 s, and the whole simulation is
carried out in 3000 steps, namely, the total simulation time tend = 30 s.
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6.1. Numerical Results under the Weak Pay Zone and Symmetric Adjacent Layers

Firstly, we consider a typical symmetric distribution of rock’s fracture toughness: the
pay zone with a lesser fracture toughness (Kp

Ic = 1.5 Mpa ·m0.5) is weak compared with
adjacent layers with a larger fracture toughness (Ku

Ic = Kl
Ic = 2.0 Mpa ·m0.5). Figures 11

and 12 show the initial evolution of fracture opening and fluid pressure from t = 0 to
t = 0.14 s. It was found that the fracture opening and fluid pressure from t = 0 to t = 0.01 s
abruptly change; the fracture near the wellbore suddenly opens a lot (see the black arrow
in Figure 11), and the fluid pressure in the middle of the fracture is less than the initial fluid
pressure. These abnormal mutations of fracture opening and fluid pressure at the beginning
of the simulation are caused by the sudden introduction of the inner boundary condition
(Equation (4)), because the pressure gradient at the wellbore is zero at t = 0, whereas, after
entering into the simulation the pressure gradient at the wellbore becomes large in order
to satisfy the inner boundary condition ∂p/∂r = −(µ′Q0)/(2πr0w3

0) at t = 0.01 s (see the
second curve in Figure 12). The large fluid pressure near the wellbore causes the fracture to
open quickly (see the curve of t = 0.01 s in Figure 11). The reason that the fluid pressure
in the middle of the fracture is less than the initial fluid pressure is that the velocity of
the deformation wave is much greater than the flow velocity of the hydraulic fluid in the
fracture (the deformation of fracture surfaces can be regarded as an instantaneous process
compared with the hydraulic fluid flow).

After the beginning, the hydraulic fluid goes into the fracture quickly, and the results
of fracture opening and fluid pressure gradually approach stability (see the curves of
t = 0.02 s to t = 0.14 s). When the injected hydraulic fluid completely fills the fracture,
the evolution enters into the stable state: from t = 0.13 s the fluid pressure is significantly
larger than the initial fluid pressure. This means that the abnormal mutation of fracture
opening and fluid pressure caused by the introduction of the inner boundary condition
will disappear quickly over time.
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Figure 11. Distributions of fracture opening from t = 0 to t = 0.14 s at the stage before
fracture propagation.

The abnormal mutation is also observed in the result of the stress intensity factor at
the fracture front (see Figure 13): in the interval of t = 0 to t = 0.05 s, KI keeps decreasing,
because the fluid near the end of fracture flows back to the middle of the fracture, and
causes less stress around the fracture tip. After the injected hydraulic fluid completely fills
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the fracture, KI begins to grow because of the increase of fluid pressure near the fracture
tip. Actually, in practical applications of hydraulic fracturing, there is a transition stage
before the inner boundary condition (Equation (4)) is reached. In this model, this transition
stage is neglected, because the above analysis of results of w, p and KI indicates that the
mutation between the initial condition and the inner boundary condition does not affect
the final results of simulation, and the effect of that only occurs in a small initial period,
after which the model can “self-renovate”. When t = 0.23 s, the stress intensity factor of
the pay zone exceeds its limit of Kp

Ic = 1.5 Mpa ·m0.5; this means that the pay zone begins
to propagate, and the simulation enters into the stage of fracture propagation.
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Figure 14 shows the change of fluid pressure in the fracture before and after the
initial propagation of the pay zone: at the stage before propagation there is only a radial
flow in the fracture, so in each radial region the distribution of fluid pressure is the same
(see Figures 14a and 15a); when t = 0.23 s, obvious weak pressure areas occur at the end
of the two pay zones (θ = 0, 180◦), because only radial regions θ = 0, 180◦ propagate, and
the remaining regions remain still. Furthermore, the obvious circular pressure gradient
occurs near the end of the radial regions θ = 0, 180◦ as a result of their propagation, shown
in Figure 14b. Because of the symmetry about axes x and y, we only exhibit the results of
fluid pressure in the first quadrant area: Figure 15b clearly shows that the fluid pressure
at the end of radial region θ = 0 is much less than that of its adjacent regions; the circular
pressure gradients occur, which causes the fluid near the end of pay zone to flow towards
the pay zone, and the pressure at the end of radial regions θ = 0 increases quickly. The
pressure difference near the fracture tip between the radial region θ = 0 and its adjacent
regions θ = 20◦, 40◦, 60◦, 80◦ gradually decreases, as shown in Figure 15b–d. It is noted that
the distribution of fluid pressure of the propagated region θ = 0 in Figure 15b coincides
with the result of the uniform propagation of the penny-shaped fracture in [45].
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Figure 14. The distribution of fluid pressure in the fracture, (a): t = 0.22 s—before the initial
propagation of pay zone; (b): t = 0.23 s—the initial propagation of the pay zone.

The fracture openings of the radial region θ = 0 and its adjacent regions θ = 20◦, 40◦,
60◦, 80◦ from t = 0.22 s to t = 0.25 s are shown in Figure 16: the fracture opening of each
radial region is the same before the initial propagation (see Figure 16a); after the initial
propagation of radial regions θ = 0, 180◦, the fracture opening near the tip of the radial
region θ = 0 increases faster than that of its adjacent regions θ = 20◦, 40◦, 60◦, and 80◦

(see Figure 16b–d). The above analysis indicates that the effect of the propagation of radial
regions θ = 0, 180◦ on both the fluid pressure and the fracture opening is local, and is only
limited in small zones near the propagated fracture tips.
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Figure 15. The evolution of fluid pressure p  in the first quadrant area of fracture from the stage 
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Figure 15. The evolution of fluid pressure p in the first quadrant area of fracture from the stage before
propagation to the stage of propagation, (a): t = 0.22 s—before the initial propagation of the pay
zone; (b): t = 0.23 s—the initial propagation of pay zone; (c): t = 0.24 s—the next time step after the
initial propagation of pay zone; (d): t = 0.25 s—the second time step after the initial propagation of
the pay zone.

The 3D ellipsoidal outline of the fracture and the evolution of the fracture front C(r, θ, t)
are shown in Figure 17. It was found that the fracture front has the similarity at different
moments, and is like an ellipse because of the existence of a weak pay zone in the reservoir
(the major axis is along the pay zone and the minor axis is perpendicular to the pay zone).
Moreover, the fracture’s 3D outline is similar to an ellipsoid. The results indicate that if
the pay zone has a smaller fracture toughness than that of its adjacent layers, the fracture
mainly propagates along the pay zone, which is more conducive to achieving desired
results with the application of hydraulic fracturing.
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Figure 16. The evolution of fracture opening w in the first quadrant area of fracture from the stage
before propagation to the stage of propagation, (a): t = 0.22 s—before the initial propagation of pay
zone; (b): t = 0.23 s—the initial propagation of pay zone; (c): t = 0.24 s—the next time step after the
initial propagation of pay zone; (d): t = 0.25 s—the second time step after the initial propagation of
the pay zone.
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Figure 17. The evolution of fracture propagation in the reservoir with a weak pay zone, (a): the 3D
outline of the fracture containing the upper and lower surfaces at the moment tend = 30 s; (b): the
fracture front C(r, θ, t) at moments of t = 0, 10 s, 20 s, and 30 s.
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6.2. Results of Numerical Comparison Experiments

The numerical comparison experiments were conducted within five different distribu-
tions of heterogeneous fracture toughness, which are shown in Table 2: “Case a” represents
the uniform distribution of rock’s fracture toughness in the reservoir, “Case b” and “Case c”
correspond to the weak and strengthening pay zone, respectively, and “Case d” and “Case e”
correspond to the pay zone with a median fracture toughness. The toughness in the pay
zone was considered constant, while the toughness of the upper and lower zones were
varied and compared with the case of uniform toughness.

Table 2. Five different distributions of heterogeneous fracture toughness in the numerical compari-
son experiments.

Experiments Kp
Ic (Mpa·m0.5) Ku

Ic (Mpa·m0.5) Kl
Ic (Mpa·m0.5)

Case a 1.5 1.5 1.5
Case b 1.5 2.0 2.0
Case c 1.5 1.0 1.0
Case d 1.5 2.0 1.0
Case e 1.5 1.0 2.0

Figure 18 shows the comparison results of fracture front C(r, θ, t) at the moments
t = 15 s and t = 30 s. The dotted circle is the initial fracture front at t = 0, while the blue
circle represents the result of uniform fracture toughness, namely, “Case a”. The results
of “Case b” and “Case c” indicate that the existence of a weak pay zone is conducive
to the propagation of fracture towards the pay zone. On the contrary, if the pay zone is
a strengthening layer, the fracture tends to propagate perpendicular to the pay zone. The
comparison results of “Case a”, “Case b” and “Case c” show that the contrast of rock’s
fracture toughness between the pay zone and adjacent zones greatly affects the fracture
shape (see the green, blue and red curves in Figure 18), and even determines the direction
of fracture propagation: under the condition of Ku

Ic = Kl
Ic, if Kp

Ic/Kl
Ic < 1 corresponding to

“Case b”, the fracture tends to propagate along the pay zone; on the contrary, if Kp
Ic/Kl

Ic > 1
corresponding to “Case c”, the fracture tends to propagate along the lower and upper
adjacent layers.
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Figure 18. Comparison results of the fracture front C(r, θ, t) under five different distributions of
rock’s fracture toughness in cases (a–e).

For cases of the different fracture toughness in the upper and lower adjacent layers
(“Case d” and “Case e”), the fracture almost always propagates along the adjacent layer
with the less fracture toughness, and propagates a little along the pay zone with the median
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fracture toughness, whereas it almost does not propagate along the adjacent layer with the
larger fracture toughness. The distributions of rock’s fracture toughness as in “Case d” and
“Case e” in Table 2 are not conducive to the application of hydraulic fracturing.

Figures 19 and 20 provide the results of the fracture openings wh and wv of the
horizontal and vertical sections from the numerical comparison experiments. In cases
of symmetric distribution of fracture toughness (“Case a”, “Case b” and “Case c”), the
maximum fracture opening, not only for the horizontal section (y = 0), but also for the
vertical section (x = 0), is obtained in “Case b”, because in this case the fracture has
a minimum radius on the y as is compared with the radii in other cases (see the green
curves in Figure 18). In cases of asymmetric distribution of fracture toughness (“Case d”
and “Case e”), the location of the maximum fracture opening goes away from the wellbore,
and is located in the adjacent zone with the minimum fracture toughness. It means that
the contrast of rock’s fracture toughness between adjacent layers affects the location of the
maximum fracture opening. Another interesting thing is that the greater the fracture radius
that is obtained, the smaller the maximum fracture opening will be for all cases in Table 2.
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Figure 19. Comparison results of the fracture opening wh on the horizontal section y = 0 under
five different distributions of fracture toughness cases (a–e). The curves of “Case d” and “Case e”
coincide because of the same distribution of fracture opening.
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Figure 20. Comparison results of the fracture opening wv on the vertical section x = 0 under
five different distributions of fracture toughness cases (a–e). The fracture opening is wider in the
zones of smaller toughness.

7. Conclusions

In this paper, we have proposed a planar-3D model for studying the hydraulic fracture
propagation in a reservoir with the heterogeneous rock’s fracture toughness in the early-
time stage. A typical heterogeneous distribution of rock’s fracture toughness has been
taken as an example to give the model solutions including the stage before propagation
and the propagation stage.

The field tests with detailed measurements allowing for the validation of the model
are not available at present. Thus, the verification of the developed model by comparing
numerical results with exact analytical solutions was performed, and demonstrated a high
precision of the developed model.

The results show that the proposed model can simulate the non-uniform propagation
of fractures very well. The propagation features indicate that the heterogeneous fracture
toughness of rock in the reservoir greatly affects the fracture evolution. The results of the
numerical comparison experiments show that the pay zone with a less fracture toughness
is more conducive to fracture propagation along the pay zone. On the contrary, the greater
fracture toughness of the pay zone makes the fracture propagate along the adjacent layers.
Besides, the size of the minimum fracture radius can be used as an index to judge the size
of the maximum fracture opening. The contrast of fracture toughness between adjacent
layers has an important influence on the location of the maximum fracture opening.

The main achievement of this paper is to put forward the planar-3D model, and
several qualitative studies have been performed. Further improvement of the model by
incorporating more factors and detailed studies will be carried out in the future.
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Appendix A. Influence Function I(x, y, z) of 3D-DDM

For the planar fracture, the z-axis coordinates of all points on the fracture surfaces
equal 0. Pi(xi, yi, 0) are the vertices of fracture grid cells, 1 ≤ i ≤ C (C is the vertex number
of grid cells, C = 3 for triangular cells, C = 4 for trapezoidal cells). P(x, y, 0) is an arbitrary
point of the fracture surface. The influence function I(x, y, z) at the point P(x, y, 0) has the
following expression [47]:

I(x, y, 0) =
C

∑
i=1

Mi
Li

[ln(Bi + ci+1)− ln(Ai + ci)] (A1)

where coefficients Mi, Li, Bi, Ai and ci are written as

Mi = (yi − yi+1)x + (xi+1 − xi)y + (xiyi+1 − xi+1yi) (A2)

Li = |PiPi+1| =
√
(xi − xi+1)

2 + (yi − yi+1)
2 (A3)

Bi =
(xi − xi+1)x + (yi − yi+1)y + xi+1(xi+1 − xi) + yi+1(yi+1 − yi)

Li
(A4)

Ai =
(xi − xi+1)x + (yi − yi+1)y + xi(xi+1 − xi) + yi(yi+1 − yi)

Li
(A5)

ci = |PPi| =
√
(x− xi)

2 + (y− yi)
2 (A6)

if i = C, then i + 1 = 1. The second derivative of I(x, y, z) with respect to z is

Izz =
C

∑
i=1

Mi(gi
zz − hi

zz)

Li
(A7)

where terms gi
zz and hi

zz are formulated as

gi
zz = −

1

(ci+1 + Bi)
2

(
z

ci+1

)2
+

1
ci+1 + Bi

(cx
i+1)

2 + (cy
i+1)

2

c3
i+1

(A8)

hi
zz = −

1

(ci + Ai)
2

(
z
ci

)2
+

1
ci + Ai

(cx
i )

2 + (cy
i )

2

c3
i

(A9)

where cx
i = x− xi, cy

i = y− yi. For the planar fracture z = 0, there is only the second term
in Equations (A8) and (A9).
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Appendix B. Specific Discrete Forms of Governing Equations in the Stage before
Fracture Propagation

In the stage before propagation there is no circular fluid flow, so the governing
Equation (14) is simplified as

wi,j,k+1 − wi,j,k

∆t
− 1

µ′
1
ri

1
∆ri

[(
rw3 ∂p

∂r

)
i+1/2,j,k+1

−
(

rw3 ∂p
∂r

)
i−1/2,j,k+1

]
= 0 (A10)

According to the finite volume method (FVM), terms with subscripts i + 1/2 and
i− 1/2 in Equation (A10) have the following forms:(

rw3 ∂p
∂r

)
i−1/2,j,k+1

= ri−1/2w3
i−1/2,j,k+1

pi,j,k+1−pi−1,j,k+1
∆ri−1(

rw3 ∂p
∂r

)
i+1/2,j,k+1

= ri+1/2w3
i+1/2,j,k+1

pi+1,j,k+1−pi,j,k+1
∆ri

(A11)

As shown in Figure 4, for the first calculated point with the number “1” (the first blue
point): r1 = 2∆r/3, r1+1/2 = ∆r, ∆r1 = 5∆r/6 and w1+1/2,k+1 = (3w1,k+1 + 2w2,k+1)/5, so
Equation (A10) is rewritten as

µ′r1∆r
∆t

(w1,k+1 − w1,k)− r1+1/2

(
3w1,k+1 + 2w2,k+1

5

)3 6(p2,k+1 − p1,k+1)

5∆r
− Q0µ′

2π
= 0 (A12)

where the last term −Q0µ′/(2π) is obtained by the boundary condition at the wellbore,
namely, Equation (15).

For the second calculated point with the number “2” (the second blue point in Figure 4):
r2 = r1+1/2 + ∆r/2, r2+1/2 = 2∆r, ∆r2 = ∆r and w2+1/2,k+1 = (w2,k+1 + w3,k+1)/2, so the
specific form of Equation (A10) is

µ′r2∆r
∆t (w2,k+1 − w2,k)− r2+1/2

(
w2,k+1+w3,k+1

2

)3 p3,k+1−p2,k+1
∆r +

r1+1/2

(
3w1,k+1+2w2,k+1

5

)3 6(p2,k+1−p1,k+1)
5∆r = 0

(A13)

For calculated points with the number “i” (i = 3, 4, · · · , m0 − 1) in Figure 4: ri =
ri−1 + ∆r, ri+1/2 = i · ∆r, ∆ri = ∆r and wi+1/2,k+1 = (wi,k+1 + wi+1,k+1)/2, Equation (A10)
is transformed as

µ′ri∆r
∆t (wi,k+1 − wi,k)− ri+1/2

(
wi,k+1+wi+1,k+1

2

)3 pi+1,k+1−pi,k+1
∆r +

ri−1/2

(
wi−1,k+1+wi,k+1

2

)3 pi,k+1−pi−1,k+1
∆r = 0

(A14)

For the last calculated point with the number “m0” in Figure 4, we use the point m0 +
1/4 instead of the boundary point m0 + 1/2 for calculation, so rm0 = rm0−1 + ∆r, rm0+1/2 =
R0, rm0+1/4 = (rm0 + R0)/2, wm0+1/4,k+1 = (wm0,k+1 + wm0+1/2,k+1)/2 = wm0,k+1/2 and
∆rm0 = 3∆r/4, Equation (A10) is discretized as

3µ′rm0 ∆r
4∆t (wm0,k+1 − wm0,k)− rm0+1/4

wm0,k+1
3

8
pm0+1/2,k+1−pm0,k+1

∆r/2 +

rm0−1+1/2

(wm0−1,k+1+wm0,k+1
2

)3 pm0,k+1−pm0−1,k+1
∆r = 0

(A15)
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Appendix C. Specific Discrete Forms of Governing Equations in the Stage of
Fracture Propagation

According to the finite volume method (FVM), terms with subscripts j + 1/2 and
j− 1/2 in Equation (14) have the following forms:(

w3

r
∂p
∂θ

)
i,j−1/2,k+1

=
w3

i,j−1/2,k+1
ri

pi,j,k+1−pi,j−1,k+1
∆θj−1(

w3

r
∂p
∂θ

)
i,j+1/2,k+1

=
w3

i,j+1/2,k+1
ri

pi,j+1,k+1−pi,j,k+1
∆θj

(A16)

For the inner boundary cells with the 2-dimensional number (1, j) (triangular cells):
r1 = 2∆r/3, r1+1/2 = ∆r, ∆r1 = 5∆r/6. Equation (14) is discretized as

µ′r1
∆t (w1,j,k+1 − w1,j,k)− r1+1/2

( 3w1,j,k+1+2w2,j,k+1
5

)3 6(p2,j,k+1−p1,j,k+1)

5(∆r)2 − Q0µ′

2π∆r−

(w1,j,k+1+w1,j+1,k+1)
3

8r1(∆θ)2 (p1,j+1,k+1 − p1,j,k+1) +
(w1,j−1,k+1+w1,j,k+1)

3

8r1(∆θ)2 (p1,j,k+1 − p1,j−1,k+1) = 0
(A17)

For the first trapezoidal cells with the 2-dimensional number (2, j): r2 = r1 + 5∆r/6,
r2+1/2 = 2∆r, ∆r2 = ∆r. Equation (14) is transformed as

µ′r2
∆t (w2,j,k+1 − w2,j,k)−

r2+1/2

8(∆r)2

(
w2,j,k+1 + w3,j,k+1

)3
(p3,j,k+1 − p2,j,k+1)+

6r1+1/2

5(∆r)2

( 3w1,j,k+1+2w2,j,k+1
5

)3
(p2,j,k+1 − p1,j,k+1)−

(w2,j,k+1+w2,j+1,k+1)
3

8r2(∆θ)2 (p2,j+1,k+1 − p2,j,k+1)

+
(w2,j−1,k+1+w2,j,k+1)

3

8r2(∆θ)2 (p2,j,k+1 − p2,j−1,k+1) = 0

(A18)

For the complete interior cells (i, j) (i ≥ 3) with four adjacent cells corresponding to
Figure 5a: ri = ri−1 + ∆r, ri+1/2 = i · ∆r, ∆ri = ∆r. Equation (14) is transformed as

µ′ri
∆t (wi,j,k+1 − wi,j,k)−

ri+1/2

8(∆r)2

(
wi,j,k+1 + wi+1,j,k+1

)3
(pi+1,j,k+1 − pi,j,k+1)+

ri−1/2

8(∆r)2

(
wi−1,j,k+1 + wi,j,k+1

)3
(pi,j,k+1 − pi−1,j,k+1)−

(wi,j,k+1+wi,j+1,k+1)
3

8ri(∆θ)2 (pi,j+1,k+1 − pi,j,k+1)

+
(wi,j−1,k+1+wi,j,k+1)

3

8ri(∆θ)2 (pi,j,k+1 − pi,j−1,k+1) = 0

(A19)

For the left interior cells, right interior cells and radial interior cells (i, j) (i ≥ 3)
corresponding to Figure 5b–d, the discrete forms of Equation (14) are, respectively

µ′ri
∆t (wi,j,k+1 − wi,j,k)−

ri+1/2

8(∆r)2

(
wi,j,k+1 + wi+1,j,k+1

)3
(pi+1,j,k+1 − pi,j,k+1)+

ri−1/2

8(∆r)2

(
wi−1,j,k+1 + wi,j,k+1

)3
(pi,j,k+1 − pi−1,j,k+1)−

(wi,j,k+1+wi,j+1,k+1)
3

8ri(∆θ)2 (pi,j+1,k+1 − pi,j,k+1) = 0
(A20)

µ′ri
∆t (wi,j,k+1 − wi,j,k)−

ri+1/2

8(∆r)2

(
wi,j,k+1 + wi+1,j,k+1

)3
(pi+1,j,k+1 − pi,j,k+1)+

ri−1/2

8(∆r)2

(
wi−1,j,k+1 + wi,j,k+1

)3
(pi,j,k+1 − pi−1,j,k+1) +

(wi,j−1,k+1+wi,j,k+1)
3

8ri(∆θ)2 (pi,j,k+1 − pi,j−1,k+1) = 0
(A21)

µ′ri
∆t (wi,j,k+1 − wi,j,k)−

ri+1/2

8(∆r)2

(
wi,j,k+1 + wi+1,j,k+1

)3
(pi+1,j,k+1 − pi,j,k+1)+

ri−1/2

8(∆r)2

(
wi−1,j,k+1 + wi,j,k+1

)3
(pi,j,k+1 − pi−1,j,k+1) = 0

(A22)
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For the outer boundary cells with the 2-dimensional number (mj, j), we use the point
(mj + 1/4, j) instead of the boundary point (mj + 1/2, j):rmj = rmj−1 + ∆r, rmj+1/2 = Rj,
wmj+1/4,j,k+1 = wmj ,j,k+1/2,rmj+1/4 = (rmj + Rj)/2 and ∆rmj = 3∆r/4. The discrete form
of Equation (14) for complete outer boundary cells corresponding to Figure 6a is

µ′rmj
∆t

(
wmj ,j,k+1 − wmj ,j,k

)
+

+ 1
∆rmj

[
−

rmj+1/4

8∆r
Rj−rmj

rmj−rmj−1
w3

mj ,j,k+1 +
rmj−1/2

8∆r

(
wmj−1,j,k+1 + wmj ,j,k+1

)3
](

pmj ,j,k+1 − pmj−1,j,k+1

)
−
(

wmj ,j,k+1+wmj ,j+1,k+1

)3

8rmj (∆θ)2

(
pmj ,j+1,k+1 − pmj ,j,k+1

)
+

(
wmj ,j−1,k+1+wmj ,j,k+1

)3

8rmj (∆θ)2

(
pmj ,j,k+1 − pmj ,j−1,k+1

)
= 0

(A23)

The discrete form of Equation (14) for left outer boundary cells, right outer boundary
cells, and radial outer boundary cells corresponding to Figure 6b–d are, respectively

µ′rmj
∆t (wmj ,j,k+1 − wmj ,j,k)−

(wmj ,j,k+1+wmj ,j+1,k+1)
3

8rmj (∆θ)2 (pmj ,j+1,k+1 − pmj ,j,k+1)

+ 1
∆rmj

[
−

rmj+1/4

8∆r
Rj−rmj

rmj−rmj−1
w3

mj ,j,k+1 +
rmj−1/2

8∆r

(
wmj−1,j,k+1 + wmj ,j,k+1

)3
]
(pmj ,j,k+1 − pmj−1,j,k+1) = 0

(A24)

µ′rmj
∆t (wmj ,j,k+1 − wmj ,j,k) +

(wmj ,j−1,k+1+wmj ,j,k+1)
3

8rmj (∆θ)2 (pmj ,j,k+1 − pmj ,j−1,k+1)

+ 1
∆rmj

[
−

rmj+1/4

8∆r
Rj−rmj

rmj−rmj−1
w3

mj ,j,k+1 +
rmj−1/2

8∆r

(
wmj−1,j,k+1 + wmj ,j,k+1

)3
]
(pmj ,j,k+1 − pmj−1,j,k+1) = 0

(A25)

µ′rmj
∆t (wmj ,j,k+1 − wmj ,j,k)

+ 1
∆rmj

[
−

rmj+1/4

8∆r
Rj−rmj

rmj−rmj−1
w3

mj ,j,k+1 +
rmj−1/2

8∆r

(
wmj−1,j,k+1 + wmj ,j,k+1

)3
]
(pmj ,j,k+1 − pmj−1,j,k+1) = 0

(A26)
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