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Abstract: Medical images contain complex information, and the automated analysis of medical
images can greatly assist doctors in clinical decision making. Therefore, the automatic segmentation
of medical images has become a hot research topic in recent years. In this study, a novel archi-
tecture called a contoured convolutional transformer (CCTrans) network is proposed to solve the
segmentation problem. A dual convolutional transformer block and a contoured detection module
are designed, which integrate local and global contexts to establish reliable relational connections.
Multi-scale features are effectively utilized to enhance semantic feature understanding. The dice
similarity coefficient (DSC) is employed to evaluate experimental performance. Two public datasets
with two different modalities are chosen as the experimental datasets. Our proposed method achieved
an average DSC of 83.97% on a synapse dataset (abdominal multi-organ CT) and 92.15% on an ACDC
dataset (cardiac MRI). Especially for the segmentation of small and complex organs, our proposed
model achieves better segmentation results than other advanced approaches. Our experiments
demonstrate the effectiveness and robustness of the novel method and its potential for real-world
applications. The proposed CCTrans network offers a universal solution with which to achieve
precise medical image segmentation.

Keywords: transformer; medical image segmentation; visual attention mechanism; deep neural
networks; machine learning

MSC: 68T07; 68T01

1. Introduction

Computer vision (CV) [1] and machine learning (ML) [2] techniques have enabled the
widespread use of deep neural networks in medical image analysis. The accurate, robust
classification of medical images is essential for computer-aided and image diagnosis. The
advancement of deep learning (DL) technology has greatly improved the accuracy and
efficiency of medical image analysis. Deep neural networks (DNNs) can automatically
recognize features from medical image data and handle complex non-linear relationships
and large-scale data, thereby improving the robustness and accuracy of medical image
analysis. In computer-aided diagnosis (CAD) and image diagnosis, the accurate and robust
segmentation of medical images is crucial for improving the efficiency and diagnostic capa-
bilities of doctors. By utilizing DNNs for medical image classification, doctors’ workloads
can be reduced, and the accuracy and efficiency of disease diagnosis and treatment can
be improved.

As U-Net [3,4] has achieved success in the field of medical image analysis, U-shaped
frameworks, such as Res-Unet [5], Dense-Unet [6], etc., have become popular in modern
medical image processing due to their effectiveness. The effectiveness of their methods
can be attributed to the usage of skip connections, which merge feature maps with high-
level abstractions generated by the decoder with the low-level feature maps generated
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by the encoder [7]. The application of this technique allows for the extraction of detailed
information about target objects even in the presence of complex backgrounds, making it
an essential tool for accurate medical image segmentation. Additionally, the incorporation
of skip connections in U-shaped networks reduces the vanishing gradient problem and
improves the flow of information across the network. As a result, models based on U-
shaped frameworks have shown superior performance compared to regular neural network
models in medical image segmentation tasks. Taking inspiration from the benefits of
transformers in the field of natural language processing (NLP) [8–10], several medical
image segmentation techniques have endeavored to employ transformers to tackle the
problems of implicit assumptions. Combining the U-shaped architecture with a transformer
can fully leverage the advantages of both methods. Such a combination of these two
advanced techniques can better exploit local features and global contextual information,
thereby improving segmentation accuracy and robustness.

Therefore, we developed the contoured convolutional transformer network (CCTrans),
which is a kind of powerful medical-imaging segmentation technique. The proposed model
adopts a U-shaped architecture, which consists of a dual convolutional (DC) transformer
block and a contour detection module. The proposed method can integrate local and global
contexts to establish reliable relational connections. In summary, our work contributes in
the following ways:

• A novel segmentation model named the contoured convolutional transformer network
(CCTrans) was designed for accurate medical image segmentation, which utilizes
gated modules and skip connections. Both the dual convolutional (DC) transformer
block and the contour detection module are designed to process important information
contained in medical images.

• The DC transformer blocks utilize convolutional kernels with different sizes to capture
multi-scale information. Short-distance and long-distance attention mechanisms are
combined to extract local features and capture long-range dependencies, thereby
enhancing the model’s interpretability.

• The contour detection module employs traditional CV techniques, which can help deter-
mine regions of interest and refine insignificant contoured segmentation information.

• Comprehensive experiments on two public datasets showed that the novel CCTrans
model outperforms other state-of-the-art medical image segmentation methods. Di-
versified experimental results with illustrations are also presented in the paper.

2. Related Works

This section is divided into three parts, which address convolutional neural network
methods, transformer-based architectures, and U-shaped architectures with transformers.

2.1. Convolutional Neural Network Methods for Medical Image Segmentation

In the past, medical image segmentation methods primarily relied on CV-based and
ML-based algorithms [11]. However, with the emergence of convolutional neural networks
(CNNs), Unet was designed for medical image segmentation [12]. Due to the superior
performance and simplicity of the U-shaped structure, numerous convolutional networks
have emerged, such as Unet++ [13], Att-Unet [14], and nnUnet [15]. In addition, it has
also been applied to the domain of three-dimensional medical image segmentation, such
as 3D-Unet [16] and V-Net [17]. CNNs have been highly successful in medical image
segmentation owing to their strong representational abilities. However, modeling long-
range dependencies and contextual relationships using CNNs is still a challenging task.
Although some studies have attempted to address this issue by modeling long-range
dependencies for convolution, the developed methods still faced significant limitations.
In contrast, the transformer structure, which has been successful in the fields of NLP and
CV, offers an effective solution for the modeling of long-range dependencies in medical
image segmentation.



Mathematics 2023, 11, 2082 3 of 13

2.2. Transformer-Based Architectures for Medical Image Segmentation

Drawing inspiration from the success of transformers in the field of CV, several scholars
have endeavored to incorporate transformer components to improve the performance of
medical image segmentation. Vision transformers (ViTs) [18] have achieved performance
comparable to convolutional neural networks (CNNs) in large-scale image classification
tasks. A ViT uses two-dimensional image patches with positional embedding as an input
sequence and applies transformers with global self-attention mechanisms to process full-
sized images. ViTs constitute a pioneering effort that demonstrates the ability of a pure
transformer-based structure to achieve exceptional performance in image recognition,
particularly when pre-trained on large-scale datasets such as ImageNet-22K and JFT-300M.

2.3. U-Shaped Architectures with Transformers for Medical Image Segmentation

TransUnet [19] draws inspiration from ViTs and further enhances the performance of
medical image segmentation by combining the strengths of transformers and Unet. It is the
first model to integrate self-attention mechanisms through the combination of transformers
and Unet, demonstrating the effectiveness of using transformers as robust encoders for
medical image segmentation.

Based on TransUnet, TransUnet+ [20] was proposed, which redesigns the skip con-
nection. The restructured skip connection incorporates a strengthening component that
leverages the score matrix generated by the transformer block to effectively optimize skip
features and refine global attention.

SwinUnet [21] is different from most previous transformer-based models as it has
the flexibility to be used as an all-purpose backbone architecture, which is achieved by
introducing a hierarchical architecture for dense prediction. The encoder in SwinUnet
adopts the Swin transformer with shifted windows to extract context information, while a
decoder based on a symmetric Swin transformer with a patch-expanding layer is proposed
to carry out up-sampling operations and restore the spatial resolution of the feature maps.

C2Former [22] presents a fresh perspective that stems from SwinUnet. Wang et al.
innovatively redesigned the cross-convolutional self-attention mechanism algorithm to
model long- and short-distance dependencies, resulting in an improved understanding of
semantic features.

Building upon these studies, the proposed network redesigns the basic transformer
unit and integrates abundant contexts. The contour information contained in medical
images is also introduced into the method as prior knowledge, which enhances the inter-
pretability of the model and greatly improves the effectiveness of medical image segmentation.

3. Proposed Method

In this study, the proposed method is explained through the elaboration of three
aspects. Firstly, the overall architecture is introduced. Secondly, the dual convolutional
transformer is designed so that the component can handle the deeper features in greater
detail. The third important component of our proposed model is the contour detection
module, which is designed to improve the network’s ability to extract edge features and
upgrade contoured segmentation information that may not be obvious.

3.1. Overall Architecture

The overall architecture proposed in this study is illustrated in Figure 1. On the basis
of Swin-Unet [21], the architecture of the novel model utilizes a U-shaped structure, which
consists of an encoder, a decoder, and skip connections. The U-shaped design helps to
capture both local and global features, while the encoder and decoder components are
responsible for feature extraction and reconstruction, respectively. The skip connections
facilitate the integration of low-level and high-level features, which improves the model’s
accuracy and robustness. The sequences with various resolutions are processed by different
blocks and modules. Such operations allow the model to completely extract features and
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capture potential information. Overall, this design enables the model to effectively extract
and utilize features from the input data to attain improved performance.
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Figure 1. The overall architecture of the proposed CCTrans network.

In the encoder stage, the input image is represented as Input ∈ RH×W×C, where the
variable H denotes height, the variable W denotes width, and the variable C represents
the number of channels of the input image. C equals 3 in this study. The common patch-
embedding method involves splitting an input image into non-overlapping blocks at a
size of 4× 4 [23–25]. However, models that use a single-size convolution kernel have
weak generalization ability, are prone to overfitting, and cannot comprehensively capture
the information contained in an image. To address these flaws, multi-scale sampling
is performed by first splitting the image at different scales and then concatenating the
sampled results to form a new patch. By adopting this approach, the loss of fine-grained
information is minimized. The multiple-scale sampling process utilizes convolutional
operations with four different kernel sizes (4× 4, 8× 8, 16× 16, and 32× 32). Processed
by the patch-embedding operation, the size of the processed patch is H

4 ×
W
4 × C. This

methodology was inspired by Wang et al. [26].
Detailed descriptions and formulaic expressions of the proposed dual convolutional

(DC) transformer structure are provided in Section 3.2.
The gated module is composed of batch normalization (BN), convolution, ReLU, and

Sigmoid layers, which was inspired by ResNet. It combines feature maps from the current
and upper layers while filtering out irrelevant information to extract more comprehensive
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feature information. The encoder’s one-dimensional features are transformed into two-
dimensional features and fused with edge information from contour detection in the gated
module. The obtained fusion features are then transferred into the gated module to be
further combined with various spatial features. The gated module takes intermediate data
from the encoder and some information from the contour detection module as inputs. The
output of the gated module will be used in the intermediate layers of the decoder. The
calculation is expressed as a two-layer proposed block:

X̂i = Reshape(Xi) (1)

Ci = Conv(X̂i) (2)

token = Gated
(
Ci, contourtokeni

)
+ X̂i (3)

output = DC(token) (4)

where Xi represents the output part of the encoder; X̂i represents the input of the gated
module after the reshaping operations; Ci represents the output after the convolutional
operations; contourtokeni

represents the i-th contoured features extracted by the contour
detection module, whose detailed description is stated in Section 3.3; and Gated represents
the gate module, for which i ∈ {1, 2, 3}.

In the decoder stage, a linear extension is used to perform up-sampling. This involves
linearly mapping sequences to a high-dimensional space, for which all the obtained features
are utilized to generate the final results.

3.2. Dual Convolutional (DC) Transformer Block

The architecture of the DC transformer block is illustrated in Figure 2. Inspired by the
Swin Transformer block [24], the dual convolutional (DC) transformer block is designed
to capture features with multiple scales and expand the receptive field of the proposed
technique. To improve the combination of the attention mechanism and the convolutional
operation for medical image segmentation, a parallel convolutional attention mechanism
was redesigned, which functions alongside self-attention. This approach allows for the
simultaneous capture of information from the spatial and channel dimensions. Following
the CBAM [27] approach, we start by generating average and maximum features over the
spatial dimension for the input Zl−1 ∈ R H

4 ×
W
4 ×C. These features are then passed through

a fully connected network. The final output is obtained using the spatial and channel
dimension attention as follows:

Z = Zl−1 ⊗ σ
(

MLP
(

Zl−1
max

)
+ MLP

(
Zl−1

avg

))
(5)

Y = Yl ⊗ σ
(

MLP
(

Yl
max

)
+ MLP

(
Yl

avg

))
(6)
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max and avg refer to the operations of max- and average-pooling, respectively, and σ
denotes the Sigmoid function.

The smaller convolutional kernels ( f 3×3) are more suitable for the processing of local
features such as texture and details, while the larger convolutional kernels ( f 7×7) are
more suitable for the processing of global features such as shape and contour. By using
convolutional kernels of different sizes, multi-scale features can be better captured. The
equations for computing the multi-scale convolution are as follows:

Zl
c3 = Z⊗ σ

(
f 3×3([Zmax; Zavg

]))
(7)

Zl
c7 = Z⊗ σ

(
f 7×7([Zmax; Zavg

]))
(8)

Yl+1
c3 = Y⊗ σ

(
f 3×3([Ymax; Yavg

]))
(9)

Yl+1
c7 = Y⊗ σ

(
f 7×7([Ymax; Yavg

]))
(10)

In addition, a window multi-head self-attention (W-MSA) mechanism and a long-
distance multi-head self-attention (LD-MSA) mechanism are fully utilized. The difference
between the two approaches is illustrated in Figure 3. The W-MSA mechanism can be
used to develop relevant associations between local regions. It divides the input data
into multiple windows with a size of M×M for feature modelling. To incorporate fine-
grained internal features and efficiently capture hidden details across various regions,
tokens are employed. In the LD-MSA mechanism, I represents the sampling interval. The
LD-MSA mechanism was used to apply masking processing to unsampled image blocks.
The feature graph is split into individual units with a length and width of I, resulting
in H

I ×
H
I groups. Feature modeling is conducted within each group to obtain H

I ×
H
I

feature maps. On the other hand, the W-MSA mechanism samples adjacent image blocks to
establish dependencies. The outputs of both mechanisms are combined to obtain the final
feature representation. The calculations of the W-MSA and LD-MSA can be performed
as follows:

head = Attention(Q, K, V) = so f tmax
(

QKT
√

d
+ B

)
V (11)

W−MSA or LD−MSA(Q, K, V) = Concat(head1, · · · , headn)WO (12)
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where WO denotes the learnable weight matrix, Q represents the query, K represents the
key, V represents the value, and B represents the bias. The stacked blocks consist of W-MSA
and LD-MSA.
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The standard Attention(Q, K, V) operates through query, key, and value matrices.
However, the self-attention mechanism has undeniable shortcomings with respect to mod-
eling short-range dependencies. To address this issue, we incorporate the W-MSA to
integrate the associations. By adopting this window-partitioning approach, the W-MSA
can be calculated as follows:

Ẑl = W−MSA
(

LN
(

Zl−1
))

+ Zl−1 (13)

Zl = MLP
(

LN
(

Ẑl
))

+ Ẑl (14)

where Ẑl represents the output results of W-MSA of the l-layer, while Zl represents the
output results of multilayer perceptron (MLP) of the l-layer. To efficiently capture the
interrelated features among different tokens, the design of the LD-MSA method referred to
the transformer’s cross-scale attention mechanism [26]. The LD-MSA samples feature maps
along a given length and width, allowing for self-attention within the obtained groups and
improving the interaction between each window’s information element. The LD-MSA can
be defined as follows:

Ŷl+1 = LD−MSA
(

LN
(

Yl
))

+ Yl (15)

Yl+1 = MLP
(

LN
(

Ŷl+1
))

+ Ŷl+1 (16)

where Ŷl+1 denotes the output results of the LD-MSA of the (l + 1)-th layer, while Yl+1

denotes the output results of the MLP of the (l + 1)-th layer.
Finally, Yl represents the middle output of the first layer of the DC transformer block,

while Zl+1 represents the output of the second layer of the DC transformer block.

Yl = Zl
c3 + Zl

c7 + Zl (17)

Zl+1 = Yl+1
c3 + Yl+1

c7 + Yl+1 (18)

3.3. Contour Detection Module

The contour detection module is an important component of our proposed CCTrans
architecture. By utilizing the contour information contained in medical images, the module
aims to optimize the interpretability of the model and improve the effectiveness of medical
image segmentation. Specifically, the contour detection module is designed to preserve all
contour information, including both internal and external contours, to provide the model
with more reference information in order to acquire more accurate segmentation results.
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Compared to traditional segmentation methods that only focus on external contours, our
approach can effectively capture and utilize more detailed contour information. This allows
the model to better understand the shape and boundaries of the target objects in medical
images, leading to more accurate segmentation results. The “findContours” function in the
OpenCv package of Python is applied to detect and locate the contours of the object in a
medical image, which is a variant of the Suzuki–Beck algorithm (Figure 4).
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Figure 4. The workflow of contour detection module.

As illustrated in Figure 4, the testing couch (or other interfering information) is first
removed from the original image. If there is no such interference, this step can be omitted.
Then, the contoured features are detected and extracted. The CV approaches are employed
to finish contour detection, which can be used to accurately extract the contour information
from images while preserving local features. Both the contoured and local features have
high applicational value for tasks that require contour analysis and feature extraction in
medical image processing. Finally, the contour detection module utilizes a down-sampling
operation to match dimensions.

4. Datasets and Experiments

This section is composed of three parts, including the introduction of the experimental
datasets, the experimental settings, and the experimental results and analysis.

4.1. Experimental Datasets

There are two public datasets with two modalities (CT and MRI) utilized to evaluate
the corresponding approaches in this study:

• The synapse abdominal multi-organ (Synapse) dataset: Synapse contains thirty CT
volumes of eight kinds of abdominal organs (the aorta, gallbladder, spleen, left kidney,
right kidney, liver, pancreas, spleen, and stomach), with a total of 3779 slices [28]. In
the subsequent experiments, the training set consists of eighteen CT cases, while the
testing set is composed of the remaining twelve cases.

• Automated cardiac diagnosis challenge (ACDC) dataset: The ACDC dataset contains
one hundred MRI cases [29]. The MRI data consist of data concerning the right
ventricle, myocardium, and left ventricle. In the subsequent experiments, seventy
cases form the training set, ten cases form the validating set, and the remaining twenty
cases form the testing set.

4.2. Experimental Settings

The proposed CCTrans architecture and experiments were developed using a universal
Python package, called PyTorch [30] (see: https://pytorch.org/ (accessed on 30 March
2023)), which was run on the Linux operating system. All the experiments, including the
model-training process, in this study were carried out on a high-powered workstation,
which included an Intel Xeon E5-2620 CPU operating @2.4 GHz and three NVIDIA TITAN
XP GPUs with 12 GB of RAM. The input image size was 224× 224. The batch size was
24, and the number of training epochs was 200. We utilized basic data augmentation
techniques for the subsequent experiments, such as random rotation and flipping. The
SGD optimizer with an initial learning rate of 0.05 was used, which was via exponential
decay. The momentum was equal to 0.9, while the weight decay was equal to 0.0001. The

https://pytorch.org/
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joint loss function was employed as the network-training strategy, which comprised dice
loss and cross entropy loss:

Loss = αLossdice + βLosscross (19)

Both α and β are two kinds of hyperparameters. α is set to 0.6, while β is set to 0.4.
The Dice Similarity Coefficient (DSC) [31] is a statistical measure employed to evaluate

the similarity between two sets; it is commonly utilized to assess the performance of
medical image segmentation methods. The DSC is applied to evaluate the segmentation
accuracy in all experiments. The larger the value of DSC, the better the performance of the
corresponding approach. The DSC can be defined as follows:

DSC
(

Rp, Rg
)
=

2
∣∣Rp ∩ Rg

∣∣∣∣Rp
∣∣+ ∣∣Rg

∣∣ (20)

where Rp represents the region segmented by the corresponding architecture, and Rg
represents the ground truth.

4.3. Experimental Results and Analysis

We conducted an evaluation of the proposed CCTrans architecture on the Synapse
dataset. The experimental metrics, as listed in Table 1, indicate that our proposed CCTrans
network outperforms other forefront methods with regard to the average DSC metric.
Specifically, our proposed method achieves a 6.48% improvement over TransUnet and a
5.14% improvement over SwinUnet. The experimental metrics also demonstrate that all
the models perform similarly for voluminous and normally shaped organs (including the
stomach, spleen, and liver). However, for small-sized and complex organs (including the
pancreas, gallbladder, and aorta), our proposed CCTrans network outperforms C2Former
by 2.78%, 1.51%, and 1.11%, respectively. By incorporating the contour information as
prior knowledge into the method, the proposed model not only enhances the model’s
interpretability but also significantly improves the accuracy of medical image segmentation.

Table 1. Segmentation performance of different methods with respect to the Synapse dataset.

Methods DSC (%) ↑ Aorta Gall-
Bladder Kidney (L) Kidney (R) Liver Pancreas Spleen Stomach

Unet [12] 76.53 89.32 68.83 77.15 67.95 93.47 52.75 87.18 75.64
Att-Unet [14] 75.47 85.82 63.81 79.10 72.61 93.46 49.27 87.09 74.85

ViT [18] 75.33 88.12 67.63 75.95 66.75 92.27 51.55 85.98 74.44
Unet++ [13] 77.28 87.46 62.79 80.23 79.07 92.92 56.35 84.88 74.61

TransUnet [19] 77.49 87.62 63.41 80.88 77.29 94.75 55.57 84.90 75.49
SwinUnet [21] 78.83 85.21 65.72 82.84 79.14 94.67 56.41 90.09 76.57

TransUnet+ [20] 81.12 88.53 66.80 82.12 81.44 93.91 65.28 90.19 80.71
nnUnet [15] 82.02 90.33 64.79 81.02 77.64 95.10 69.85 91.50 85.96

C2Former [22] 82.94 87.20 71.87 83.41 81.58 94.66 68.32 92.94 83.52
CCTrans (ours) 83.97 89.98 73.38 83.33 82.72 94.72 69.43 93.87 84.32

The ↑ symbol indicates that a higher value represents better performance. The capital letter R represents right and
the capital letter L represents left. The bold values represent indicators that are superior to other methods.

To better understand the performance of our proposed approach, the visualization seg-
mentation results of the Synapse dataset are illustrated in Figure 5. The poor segmentation
performance of the TransUnet model may be attributed to the fact that its structural design
is not suitable for the segmentation of complex and small organs. It can be observed that
our proposed CCTrans network achieves outstanding performance in terms of segmenting
small organs. To a certain extent, the network is still affected by the interference from
surrounding tissues; thus, the segmented regions were slightly larger than the correspond-
ing ground truth. These visualizations provide valuable insights into the strengths and
weaknesses of our approach and can help guide future research directions.
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Figure 5. Visual comparison of segmentation results on the Synapse dataset reveals several is-
sues. (A–C) represent three typical diagrams of Synapse dataset. The first row shows that nnUnet,
C2Former, and TransUnet failed to recognize the smaller kidney structure (yellow region), while
SwinUnet mistakenly identified more regions as the target area. In the second row, none of the other
methods accurately identified the boundaries of the stomach (brown region). In the third row, both
C2Former and TransUnet failed to diagnose the pancreas region (orange region). Only our proposed
method achieved relatively satisfactory results in all three cases.

We also evaluated the proposed CCTrans architecture based on the ACDC dataset.
The experimental results, as listed in Table 2, indicate that our proposed CCTrans network
outperforms other advanced methods in relation to the average DSC metric. While this
improvement may not appear substantial, it should be noted that the DSC metric is already
at a high level, making this a notable achievement. To better understand the performance
of our proposed approach, the visualization segmentation results of the ACDC dataset are
shown in Figure 6.

Table 2. Segmentation performance of comparative methods with respect to the ACDC dataset.

Methods DSC (%) ↑ Ventricle (R) Myocardium Ventricle (L)

Unet [12] 87.37 87.12 80.29 94.71
Att-Unet [14] 86.55 87.38 79.00 93.07

ViT [18] 87.39 85.89 81.70 94.57
Unet++ [13] 88.16 86.93 85.45 92.11

TransUnet [19] 89.52 88.61 84.09 95.87
SwinUnet [21] 89.73 88.76 85.38 95.05

TransUnet+ [20] 90.47 89.13 87.96 94.31
nnUnet [15] 91.20 89.55 90.23 93.81

C2Former [22] 91.43 91.67 88.19 94.42
CCTrans (ours) 92.15 91.28 89.81 95.35

The ↑ symbol indicates that a higher value represents better performance. The capital letter R represents right,
and the capital letter L represents left. The bold values represent indicators that are superior to other methods.
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Figure 6. Visual comparison of segmentation results with respect to the ACDC dataset reveals several
issues. (A–C) represent three typical diagrams of ACDC dataset. Even under low-contrast conditions,
our proposed method, C2Former, and nnUnet can achieve relatively accurate segmentation results
with respect to the right ventricle (blue region) and left ventricle (green region), while TransUnet and
SwinUnet are less accurate in identifying edges.

5. Discussion

Our proposed method has been validated through the aforementioned experiments.
The gated module redesign enables the control of the relative weights between input and
gating features, thus enhancing the model’s feature representation capacity. Additionally,
the skip connection merges high-level feature maps generated by the decoder with low-
level feature maps generated by the encoder, thereby enabling the recovery of fine-grained
details of target organs, even in intricate backgrounds. The DC transformer block uses
convolutional kernels of varying sizes to capture multi-scale information. It also combines
short- and long-distance attention mechanisms to extract local features and capture long-
range dependencies, thus improving interpretability. The contour detection module utilizes
medical image contour information as prior knowledge, enhancing interpretability and
greatly improving segmentation efficacy. Given that our input images are two-dimensional,
our future research will explore the CCTrans network’s potential applications in three-
dimensional medical image segmentation [32,33].

6. Conclusions

In this study, we proposed the CCTrans network, which incorporates a DC transformer
block and a contour detection module. By utilizing gated modules and skip connections,
the feature representation capacity of the model is enhanced. Our experiments, conducted
on two public datasets, demonstrate that CCTrans outperforms the existing innovative
methods. We aim to promote the use of the CCTrans network in clinics, where it will assist
doctors in completing organ segmentation tasks quickly and improve diagnostic efficiency.
The potential experimental results of this model when applied to other medical data,
not just those concerning organ and cardiovascular segmentation, have also piqued our
research interest. In future research, we will continue to improve the model’s performance
and explore the use of more lightweight structures to further improve its computational
speed and segmentation accuracy. Additionally, we will investigate the application of
CCTrans in other data domains and further refine the model based on experimental results.
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