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Abstract: The aim of this article is to establish a stochastic search algorithm for neural networks
based on the fractional stochastic processes {BH

t , t ≥ 0} with the Hurst parameter H ∈ (0, 1). We
define and discuss the properties of fractional stochastic processes, {BH

t , t ≥ 0}, which generalize a
standard Brownian motion. Fractional stochastic processes capture useful yet different properties in
order to simulate real-world phenomena. This approach provides new insights to stochastic gradient
descent (SGD) algorithms in machine learning. We exhibit convergence properties for fractional
stochastic processes.
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1. Introduction

The gradient descent methodology is not computationally efficient in all applications.
Sometimes, optimization algorithms become stuck in the flat regions of manifolds. In those
cases, the optimization algorithm requires a long time to escape. This is the challenge of a
vanishing gradient where, for instance, ∇z(θ) is almost zero (see Section 4). The method of
stochastic gradient descent (SGD) generally overcomes this problem.

Recent advancements in the field of factional stochastic processes exhibit the theoretical
benefits of modeling complex systems [1–4]. Yet, so far no literature exists on fractional
stochastic gradient descent (fSGD) or fractional stochastic networks. This paper sketches
the potential of such new literature for modeling complex systems. Moreover, we exhibit
that fractional stochastic processes are an advancement in machine learning (ML) and
artificial intelligence (AI).

The methodology of fractional stochastic gradient descent and the role of stochastic
neural networks are based on a generalized assumption of randomness. Mandelbrot and
Van Ness defined a fractional Brownian motion (fBM), BH

t , together with a Hurst parameter
in 1968 [5]. For H = 1

2 , we obtain a standard Browning motion. Yet, for H 6= 1
2 , we obtain

new forms of randomness or stochastic processes that match real-world phenomena.
The new feature of a fractional Brownian motion (fBM) is that increments are inter-

dependent. In the literature, this is called self-similarity. A self-similar stochastic process
reveals invariance with respect to the time scale (scaling invariance). A standard Brownian
motion or a Lévy process displays different properties. They have independent increments
and belong to the famous class of Markov processes.

However, in science, there is ubiquitous evidence that fractional stochastic processes
are of relevance. For instance, we frequently observe probability densities with sharp peaks,
which is related to the phenomena of long-range interdependence. In many real-world
observations and applications, we find the presence of interdependence, too. This pattern
can be captured by fractional stochastic processes.
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Nonetheless, some phenomena are even more complicated and require further gener-
alization towards sub-fractional stochastic processes. The literature on sub-fBM’s demon-
strates that those stochastic processes are useful in scientific applications [6]. A sub-
fractional Brownian motion provides a nexus between a Brownian motion and frac-
tional stochastic process. Those processes were introduced by Tudor et al. [7,8] and
Bojdecki et al. [9]. Note that, as sub-fractional stochastic processes are not martingale
processes, the basic tools of stochastic analysis are insufficient. However, researchers have
developed new machinery to handle fractional stochastic processes, such as [10] or [11–15].

In this paper, our purpose is to develop and study the idea of fractional stochastic
gradient descent algorithms. Our approach generalizes the existing literature on stochastic
gradient descent (SGD) and stochastic neural networks. For instance, Hopfield [16] de-
veloped neural networks consisting of several perceptrons with randomness. Similarly,
a Boltzmann network is a type of stochastic neural network wherein the output of the
activation function is interpreted as a probability.

A study already exists about stochastic gradient descent and its challenges in machine
learning [17,18]. Recent developments in the theory and applications of stochastic gradient
descent are discussed in the following papers: Schmidt et al. [19], Haochen and Sra [20],
Gotmare et al. [21], Curtis and Scheinberg [22], de Roos et al. [23]. The focus of our research
is the motivation of fractional stochastic gradient descent (fSGD) algorithms. Thus, our
research is beyond the scope of current literature and focuses on the possibility of fractional
stochastic gradient descent in theory. We neglect potential computational limitations in
machine learning.

The paper is organized as follows. Section 2 provides preliminary definitions. Sub-
sequently, we introduce the foundations of fractional stochastic processes in Section 3.
Section 4 introduces the idea of fractional stochastic search algorithms and derives the
convergence results in general. Finally, in Section 5, we apply the method to two different
cases. Section 6 concludes the paper.

2. Preliminaries

Machine learning is mainly based on neural networks and efficient optimization
algorithms. The most primitive neural model is inspired by the work of Rosenblatt [24].
In the following section, we define the major elements from a machine learning perspective.

Definition 1. A stochastic neuron is defined by n-inputs X = (x1, . . . , xn)T , n-weighting factors
W = (w1, . . . , wn)T and an n-dimensional vector of biases B together with a sigmoid activation
function σc(ζ) =

1
1+e−cζ with c ≥ 0 and a stochastic output Y

Y = σ(W T X + B) ,

where σ(W T X + B) ∈ (0, 1). Hence, we define the output for Y = 1 by Prob(Y = 1; X) =
σ(W T X + B) and for Y = 0 by the inverse probability: Prob(Y = 0; X) = 1− σ(W T X + B) =
σ(−W T X − B).

Note that, if the activation potential is greater than zero, such as W T X + B > 0, then
this neural network is not necessarily activated according to Definition 1. An activation
value of one only occurs with the probability of the activation function.

In machine learning, the gradient descent algorithm is omnipresent in all optimization
problems. Yet, it does not provide robust solutions in each case. There are computational
obstacles, such as when the algorithm becomes stuck in a local minimum or lost in a plateau
from which it takes a long time to get out. A plateau is defined as a flat surface region
where the gradient ∇σc is very small (or almost zero).

The optimization algorithm of a neural network always has the goal of finding the
optimal weighting parameters θ = (W, B). The standard algorithm used to optimize the
parameters is frequently reformulated in order to minimize the cost function. This is called
the gradient descent method. This method is closely related to Newton’s algorithm in
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numerical computing. The following definition summarizes the algorithm from a machine
learning vantage point.

Definition 2. The gradient descent algorithm is defined by

θt+1 = θt − λtCtgt, (1)

where gt = ∇L(θt) is the gradient of a cost function, Ct is an optional conditioning matrix, and λt
is the learning rate.

The stochastic gradient descent (SGD) method overcomes the obstacle if the gradient
is close to zero. Indeed, SGD reaches a minimum along a non-linear stochastic process.
In the following sections, we first discuss the literature and then generalize the approach to
fractional stochastic processes.

3. Fractional Stochastic Processes
3.1. General Definitions

Consider a stochastic process with a Hurst parameter H. Subsequently, we define the
elementary tools in fractional calculus.

Definition 3. Let a, b ∈ R, a < b. Let f ∈ L1(a, b) and α > 0. The left- and right-sided fractional
integrals of f of order α are defined for x ∈ (a, b), respectively, as

aD−α
x f (x) = a Iα

x f (x) =
1

Γ(α)

∫ x

a
(x− u)α−1 f (u)du −∞ ≤ a ≤ x,

and

bD−α
x f (x) = b Iα

x f (x) =
1

Γ(α)

∫ b

x
(u− x)α−1 f (u)du −∞ ≤ x ≤ b.

This is the fractional integral of the Riemann–Liouville type. In the same vein, we
define factional derivatives where we distinguish between left- and right-sided derivatives.

Definition 4. The factional left- and right-sided derivatives, for f ∈ Iα
a (Lp) and 0 < α < 1, are

defined by

a I−α
x f (x) = aDα

x f (x) =
1

Γ(1− α)

(
d

dx

) ∫ x

a
(x− u)−(α+1) f (u)du (2)

and

b I−α
x f (x) = bDα

x f (x) =
(−1)α

Γ(1− α)

(
d

dx

) ∫ b

x
(u− x)−(α+1) f (u)du, (3)

for all x ∈ (a, b) and Iα
a (Lp) is the image of Lp(a, b).

Let us assume f ∈ I1
a (L1), then we obtain

aDα
x aD1−α

x f (x) = D f (x), bDα
x bD1−α

x f (x) = D f (x). (4)

Notably, Dα f (x) exists for all f ∈ Cβ([a, b]) if α < β. Given those definitions, we are
ready to define a Brownian motion:

Definition 5. Let H be 0 < H < 1, and let B0 be an arbitrary real number. We call BH(t, ω) a
fractional Brownian motion (fBM) with Hurst parameter H and starting value B0 at time 0, such as

1. BH(0, ω) = B0, and;



Mathematics 2023, 11, 2061 4 of 11

2. BH(t, ω)− BH(0, ω) = 1
Γ(H+ 1

2 )

[∫ 0
−∞[(t− s)H− 1

2 − (−s)H− 1
2 ]dB(s, ω)+∫ t

0 (t− s)H− 1
2 dB(s, ω)

]
[Wyle fractional integral];

3. Equivalent to the Riemann–Liouville integral:

BH(t, ω)− BH(0, ω) = 1
Γ(H+ 1

2 )

∫ t
0 (t− s)H− 1

2 dB(s, ω).

Next, let us consider the following corollary:

Corollary 1. Consider H = 1
2 and B0 = 0. Then the Brownian motion is of B(t, ω) = B

1
2 (t, ω).

Proof. Let H = 1
2 , we find B

1
2 (t, ω)− B

1
2 (0, ω) = 1

Γ(1)

∫ t
0 dB(s, ω) = B(t, ω).

In the literature, there exists an alternative, yet useful, definition:

Definition 6. A fractional Brownian motion is a Gaussian process BH(t) for t ≥ 0 defined by the
following covariance function

R f BM(t, s) = E[BH(t)BH(s)] =
1
2
[|t|2H + |s|2H − |t− s|2H ], (5)

where the Hurst index is denoted by H ∈ (0, 1).

Since the covariance of a Brownian motion is given in the literature, it is easy to extend
the definition to an fBM with Hurst index H, such as

Var[B(t)− B(s)] = E[(B(t)− B(s))2] = |t− s|
⇔ Var[BH(t)− BH(s)] = E[(BH(t)− BH(s))2] = |t− s|2H ,

where we obtain the definition of a Brownian motion for H = 1
2 . Following Herzog [15],

we derive the covariance step-by-step:

Cov[BH(t)BH(s)] = E[(BH(t)−E[BH(t)])(BH(s)−E[BH(s)])] = E[BH(t)BH(s)]

=
1
2

[
E[BH(t)2] +E[BH(s)2]−E[(BH(t)− BH(s))2]

]
=

1
2
[|t|2H + |s|2H − |t− s|2H ].

Corollary 2. Consider a fractional Brownian motion. The expectation values of non-overlapping
increments are E[BH(t)− BH(s)] 6= 0 and the variance is of E[(BH(t)− BH(s))2] = |t− s|2H

for all t, s ∈ R

Proof. See [15].

3.2. Properties

Next, we consider the properties of the fBM over time for different Hurst parameters.
Suppose 0 < H < 1

2 or 1
2 < H < 1. If we assume that the Hurst parameter is of 0 < H < 1

2 ,
we say the fractional stochastic process has a short memory. Conversely, if 1

2 < H < 1, we
obtain the property of long-range dependence. Figure 1 illustrates sample processes for the
three ranges of the Hurst parameters, H.
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Figure 1. Different fractional Brownian motions with the following Hurst index: (Left-panel)
H = 0.25, (middle-panel) H = 0.50 (standard BM), and (right-panel) H = 0.75.

Proposition 1. Given a fractional Brownian motion, we obtain the following properties:

1. The fBM has stationary increments: BH
t − BH

s
dis.
= BH

u − BH
s ;

2. The fBM is H-self-similar, such as BH(at) = aH BH(t);
3. The fBM is H-self-similar, such as BH(at) = aH BH(t);

Proof. The proof follows Herzog [15]. In order to prove the stationary of increments, we set
t1 < t2 < t3 < t4. The equality of the covariance implies Y := BH(t2)− BH(t1). Moreover,
it has the same distribution, such as X := BH(t4)− BH(t3). Subsequently, we find

E[(BH(t2)− BH(t1))
2] = (t2 − t1)

2H = (∆t)2H

E[(BH(t4)− BH(t3))
2] = (t4 − t3)

2H = (∆t)2H ,

where t1 < t2 and t3 < t4 with ∆t = t2− t1 = t4− t3. This demonstrates that the increments
and the time evolution of the increments are the same at any given point. Consequently,
we obtain stationary increments.

The second property of Proposition 1 is self-similarity. Consider the following definition,

E[(BH(at))2] =
1
2
[(at)2H + (at)2H − (at− at)2H ] = (at)2H = a2Ht2H

= a2HE[(BH(t))2].

Here, we find that (BH(at))2 = a2H(BH(t))2 and BH(at) = aH BH(t). Part (3) is
already given in Corollary 2.

3.3. Definition of Sub-Fractional Processes

In a recent paper, Herzog [15] described a sub-fractional Brownian motion (sub-
fBM) as an intermediate between a Brownian motion and a fractional Brownian motion.
Without loss of generality, a sub-fBM is a self-similar Gaussian process. Note that both the
fBM and sub-fBM have the properties of self-similarity and long-range dependence, yet
a sub-fBM does not have stationary increments [9].

Any Brownian motion is uniquely defined by its covariance. For the sub-fBM we
denote covariance by Cov(ξH

t , ξH
s ).



Mathematics 2023, 11, 2061 6 of 11

Definition 7. Consider a sub-fractional Brownian motion with Hurst parameter H and a centered
mean zero Gaussian process ξH = {ξH

t , t ≥ 0} with the following covariance function

Rs f BM(t, s) := E[ξH
t ξH

s ] = s2H + t2H − 1
2
[(s + t)2H + |s− t|2H ], (6)

where ξH
0 = 0 and E[ξH

t ] = 0.

Note, a fractional Brownian motion coincides with a Brownian motion if the Hurst
parameter is H = 1

2 . Thus, a Brownian motion on the real line has a covariance of
Cov(ξH

t , ξH
s ) = s ∧ t := min[s, t]. The process ξH

t has the following representation for
H > 1

2 (see [25]):

ξH
t =

∫ t

0
KH(t, s)dWs, (7)

KH(t, s) = cH

(
H − 1

2

)
s1/2−H

∫ t

s
(u− s)H−3/2uH−1/2du. (8)

The kernel function of a sub-fractional Brownian motion is given by

φs f BM(s, t) =
∂2Cov(ξH

t , ξH
s )

∂s∂t
= H(2H − 1)

[
|s− t|2H−2 − (s + t)2H−2

]
. (9)

3.4. Properties of Sub-Fractional Processes

In this subsection, we reiterate useful properties of sub-fractional Brownian motions
such as those described in Herzog [15].

Lemma 1. Consider ξH
t be a sub-fBM for all t. The properties of the sub-fBM are:

1. E[(ξH
t )2] = (2− 22H−1)t2H .

2. E[(ξH
t − ξH

s )2] = −22H−1(t2H + s2H) + (t + s)2H + (t− s)2H .

3. If H 6= 1
2 , then ξH

t − ξH
s

dis.
6= ξH

u − ξH
s , i.e., the increments are non-stationary.

Proof. See [15].

Finally, we follow Herzog [15] and prove the following proposition:

Proposition 2. Let BH
t be a fractional Brownian motion and ξH

t be a sub-fractional Brownian
motion. For H ∈ ( 1

2 , 1), the following holds:

1. E[(ξH
t )2] < E[(BH

t )2];
2. RξH

t
(s, t) ≤ RBH

t
(s, t).

Proof. Obviously, an fBM has the following variance: Var[BH
t ] = |t|2H . Similarly, we

obtain the variance of Var[ξH
t ] = (2− 22H−1)|t|2H for a sub-fBM. Subsequently, we have

0 < (2H − 1) ln 2 if H > 1
2 .

The second part follows for s, t > 0:

s2H + t2H − 1
2
[(s + t)2H + |t− s|2H ] ≤ 1

2
[|t|2H + |s|2H − |t− s|2H ]

s2H + t2H ≤ (s + t)2H .

In the case of s = t = 0 or s = 0, t 6= 0, we have equality.
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4. Fractional Stochastic Search

Let Xt be a an m-dimensional stochastic process driven by a fractional Brownian
motion BH

t , where H = 1
2 . The respective stochastic process Xt is as follows:

dXt = a(Xt)dt + σ(Xt)dBH
t , and X0 = x0 , (10)

where X0 is the initial value and BH
t = (BH

1 (t), . . . , BH
m (t)) is an m-dimensional fractional

Brownian motion. Next, consider a cost function z : Rm → R which needs to be optimized.
Hence, we study the vector field for which the auxiliary function z(X(t)) is decreasing.
This requires us to find the expectation value:

κ(t) = E[z(X(t))] . (11)

Thus, the function z(X(t)) is stochastic and dependent on time t. In general, an opti-
mization algorithm of a neural network minimizes the expectation value of this function.
Utilizing the machinery of stochastic analysis, Dynkin’s formula, among others, and fol-
lowing the approach described in [26], we obtain

κ(t) = z(X0) +
∫ t

0
E[A(z(X(s)))]ds

κ(t + dt) = z(X0) +
∫ t+dt

0
E[A(z(X(s)))]ds ,

(12)

where the operator A = ∑k ak
∂

∂Xk
+ 1

2 ∑i,j(σσT) ∂2

∂Xi∂Xj
. The usage of Taylor-series approxi-

mation and the differencing of Equations (12) yields

∆κ(t) = κ(t + dt)− κ(t) =
∫ t+dt

t
E[A(z(X(s)))]ds

= E[A(z(X(t)))] +O(dt2) .
(13)

The method of steepest descent computes the gradient of ∆κ(t) such that the process
Xt, is as negative as possible. However, if Xt is a stochastic process, we need to study the
expectation of the gradient, particularly where the value ∆κ(t) is as negative as possible,
such as E[A(z(X(t)))] < 0.

In order to construct a stochastic process Xt with this property, we specify a(Xt) and
σ(Xt) in Equation (10), respectively. Next, we specify the diffusion term in Equation (10),
σ, or the product σσT , which is a matrix, such that the algorithm in Equation (1) converges
efficiently. Indeed, if we set the term of σσT as being inversely proportional to the Hessian
matrix, H, then (σσT)ij = τ(Hz)

−1
ij with τ > 0. Through this process we can show the

convergence of the algorithm and the existence of the solution.
Given that function z is of class C2 and strictly convex, then, according to [27], the

Hessian matrixHz is symmetric, real, positive definite, and non-degenerate. This guaran-
tees that the Hessian matrix Hz has an inverse, which is also positive definite. Efficient
computation can be achieved by utilizing the Cholesky decomposition. One can show that
the diffusion term σ is a lower triangular matrix satisfying (σσT)ij = τ(Hz)

−1
ij . Under those

conditions, we compute Az(x)

Az(x) = ∑
k

ak
∂z(x)
∂Xk

+
1
2

τ ∑
i,j
(H−1

z )ij(Hz)ij

= 〈∇z(x), a(x)〉+ n
2

τ .

In order to minimize the gradient, Az(x), we have to minimize the first-term, because
the second term is a constant. Choosing a(x) = −λ∇z(x) and assumingAz(x) < 0 obtains
the following condition:
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Az(x) = 〈∇z(x),−λ∇z(x)〉+ n
2

τ

= −λ‖∇z(x)‖2 +
n
2

τ < 0

τ

λ
<

2
n
‖∇z(x)‖2 .

Using the square vector norm and the assumption of ξ = infx ‖∇z(x)‖2 6= 0, it is
sufficient to set τ and λ as the main parameters in the SGD algorithm, such that τ = 2ξ

n λ.
In the sequel, we apply this algorithm to fractional stochastic search problems.

5. Application of Fractional Stochastic Search

In this section, we demonstrate the working of a fractional stochastic search. We
exhibit the convergence of a fractional stochastic search within neural networks.

5.1. Stochastic Search: Case I

Suppose that we have a neural network with the following cost function: z(x) = 1
2 x2

for x ∈ (a1, a2) with ai > 0 and a1 < a2. The stochastic gradient descent method searches
the minimum of this cost function.

Mathematically, the solution is obvious for this problem. The first derivative is of
z′(x) = x for x ∈ (a1, a2). Hence, the minimum is at z′(a1) = a1, and consequently,
the minimum value is z(a1) =

1
2 a2

1. Next, we show that we can obtain the same value under
a fractional stochastic search algorithm in a neural network.

In step one, we establish an adequate stochastic differential equation according to
dXt = a(Xt)dt + σ(Xt)dBH

t for X0 = x0 ∈ (a1, a2). The gradient of the cost function, which
is equal to the first derivative ∇z(x) = x, as well as the Hessian of the cost function and
the second derivative, is defined as H(x) = ∇2z(x) = 1. Both conditions enable us to
compute the Lipschitz continuous coefficient functions. For a(Xt) = −λ∇z(x) = −λx.
For σ2(Xt) = τH−1(x) = τ

∇2z(x) =
τ
1 = τ. Hence, we obtain σ(Xt) =

√
τ. The stochastic

differential equation for H = 1
2 has the form:

dXt = −λXtdt +
√

τdB
1
2
t . (14)

The SDE in Equation (14) is an Ornstein–Uhlenbeck process driven by a Brownian
motion BH(t) with the Hurst parameter H = 1

2 [28].
The solution is divided into two parts: In part one, we solve the non-stochastic problem

dXt = −λXtdt. This is an ordinary differential equation and has the solution Xt = X0e−λt.
In part two, we define an auxiliary function Yt = Xteλt and apply the Itô-Doeblin’s lemma:

dYt = Xteλt(λ)dt + eλtdXt

= Xteλt(λ)dt + eλt[−λXtdt +
√

τdBH
t ]

=
√

τeλtdBH
t .

Note that, in this case, the derivation coincides with a standard Brownian motion.
Next, integrating the last line yields Yt−Y0 =

√
τ
∫ t

0 eλsdBH
s . Hence, we obtain Xt = Yte−λt,

which is

Xt =

[
Y0 +

√
τ
∫ t

0
eλsdBH

s

]
e−λt

= X0e−λt +
√

τ
∫ t

0
e−λ(t−s)dBH

s .
(15)

Based on Equation (15), we find the expectation of E[Xt] = X0e−λt. Note that
the expected integral of a Brownian motion is zero. For t → ∞, the expected value is
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limt→∞ E[Xt] = 0. Next, utilizing the general condition of τ = 2ξ
n λ for ξ = inf ‖∇z(x)‖2

and n = 1 in Section 4, we obtain

τ =
2ξ

n
λ =

2 inf ‖a1‖2

1
λ = 2a2

1λ ⇔ τ

2λ
= a2

1 .

Finally, it remains to show that the SDE in Equation (14) converges to the minimum
value. Hence, we study the convergence sequence:

κ(t) = E[z(Xt)|X0] =
1
2
E
[
(Xt)

2|X0

]
=

=
1
2
E
[

X2
0e−2λt + 2X0e−λt√τ

∫ t

0
e−λ(t−s)dBH

s + τ

(∫ t

0
e−λ(t−s)dBH

s

)2
]

,

where, for E[(Xt)2], we have substituted Equation (15). Next, we use the property that the
expected stochastic integral is zero and the variance of the Brownian motion is Var(dBH

s ) =
ds. Thus, we obtain

κ(t) =
1
2

[
X2

0e−2λt + τ
∫ t

0
e−2λ(t−s)ds

]
=

=
1
2

[
X2

0e−2λt + τ
e−2λ(t−s)

2λ

∣∣∣∣t
0

]
=

=
1
2

[
X2

0e−2λt +
τ

2λ

(
1− e−2λt

)]
.

In order to show the convergence, we compute the limit of the sequence for time to
infinity. We obtain the following:

lim
t→∞

κ(t) = lim
t→∞

1
2

[
0 +

τ

2λ

]
=

1
2

τ

2λ
=

1
2

a2
1 .

Indeed, we find that the (fractional) stochastic algorithm converges to the same mini-
mum value of our function z(x) = x2

2 for x ∈ (a1, a2).

5.2. Stochastic Search: Case II

Conversely, suppose a fractional stochastic differential equation with a Hurst index
H 6= 1

2 of the form
dXt = µXtdt + λXtdBH

t , (16)

where we define µ := −η and X0 = x > 0. We search the minimum of the function
z(Xt) = Xt, where Xt is the solution of the SDE in Equation (16). This equation can be
rewritten in the fractional Hida space (S)∗H as

dXt

dt
= µXt + λXt �WH

t

=
(

µ + λWH
t

)
� Xt ,

where � is defined as the Wick product. Using Wick calculus, we find the solution as

Xt = xe�
(

µt+λ
∫ t

0 WH
s ds

)
= e�(µt+λBH

t ) , (17)

where we have used the definition BH
t =

∫ t
0 WH

s ds. By applying the following definitions

e�〈w, f 〉 = e(
∫
R ztdBH

t − 1
2 ‖z‖

2
H), where ‖z‖2

H =
∫
R
∫
R z(s)z(t)φ(s, t)dsdt and φ(s, t) = H(2H −

1)|s− t|2H−2 for s, t ∈ R, we obtain the final solution:

Xt = xe(µt+λBH
t − 1

2 λ2t2H) . (18)
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The solution of Equation (18) has an expectation of E[Xt] = X0e−ηt. Hence, for t→ ∞,
the expected value is zero: limt→∞ E[Xt] = 0. It remains to show the convergence of the
fractional SDE in machine learning:

κ(t) = E[z(Xt)|X0] = E
[

xe(µt+λBH
t − 1

2 λ2t2H)|X0

]
= xE

[
e(µt+λBH

t − 1
2 λ2t2H)

]
= xe−ηt .

In order to show convergence, we compute the limit of the sequence for time to infinity.
We equally obtain limt→∞ κ(t) = limt→∞ xe−ηt = 0.

There are notable limitations of fractional stochastic gradient descent in general. Frac-
tional calculus is built around the Riemann–Liouville integral, which is a non-local operator,
lacks in uniqueness, and relies on the initial conditions. Given that a fractional process
is not a martingale, the common stochastic tools are not applicable. Whether those prop-
erties constrain fractional stochastic gradient descent remains an open research question.
Computational aspects might also be a limiting factor. However, for the first time, this
research studies the idea of fractional search analogous to stochastic gradient descent in
machine learning.

6. Conclusions

This article discovers fractional stochastic gradient descent algorithms for the op-
timization of neural networks. In the standard case, the fractional stochastic approach
follows the well-known stochastic gradient descent method in machine learning. We
discuss two special cases. First, we exhibit that fractional stochastic algorithms find the
minima. This result might enhance algorithmic optimization in machine learning. Second,
we discover the generalized patterns and properties of fractional stochastic processes. These
insights may create a universal optimization approach in machine learning and AI in the
future. We highlight the need for further research in that direction, particularly for the
computational issues.
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