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Abstract: Complex intuitionistic fuzzy (CIF) information covers the degree of membership and
the degree of non-membership in the form of polar coordinates with a valuable and dominant
characteristic where the sum of the real parts (the same rule for the imaginary parts) of the pair must
be contained in the unit interval. In this paper, we first derive the Frank operational laws for CIF
information and then examine the prioritized aggregation operators based on Frank operational
laws for managing the theory of CIF information. These are the CIF Frank prioritized averaging
(CIFFPA) operator, the CIF Frank prioritized ordered averaging (CIFFPOA) operator, the CIF Frank
prioritized geometric (CIFFPG) operator, and the CIF Frank prioritized ordered geometric (CIFFPOG)
operator with properties of idempotency, monotonicity, and boundedness. Furthermore, we derive
the WASPAS (weighted aggregates sum product assessment) under the consideration or presence
of the CIF information and try to justify it with the help of a suitable example. Additionally, we
illustrate some numerical examples in the presence of the MADM (multi-attribute decision-making)
procedures for evaluating the comparison between the proposed operators with some well-known
existing operators to show the validity and worth of the proposed approaches.

Keywords: fuzzy sets; intuitionistic fuzzy sets; complex intuitionistic fuzzy sets; frank prioritized
aggregation operators; WASPAS techniques; multi-attribute decision-making

MSC: 03B52; 03E72; 47S40; 90C70

1. Introduction

Multi-attribute decision-making (MADM) procedures are some of the finest or best
techniques for evaluating the valuable and dominant preference from the set of feasible
ones under the consideration of the available data. Traditionally, the MADM problem is a
part of the decision-making procedure which often needs experts to provide evaluation
data about the attributes and the alternatives with fuzzy sets (FSs) [1] in which FSs have
been applied in different fields [2–4]. Various attempts have been derived by the distinct
individuals in proceeding the data values using different extensions such as hesitant soft
fuzzy rough sets [5], and fuzzy Mandelbrot sets [6]. Furthermore, intuitionistic FSs (IFSs)
are also one of the most valuable and dominant extensions of FSs which was performed by
Atanassov [7]. IFSs cover the degree of membership and the degree of non-membership
of a given element to the set of discourse with the characteristic in which the sum of the
pair must be contained in the unit interval. FSs are the particular cases of IFSs if we remove
the degree of non-membership with its applications [8–10]. Furthermore, the utilization
of the second term in the grade of truth is very awkward, and so, in many situations,
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we may face a problem with two-dimensional information, where FSs and IFSs deal only
with one-dimensional information. Therefore, Ramot, et al. [11] successfully utilized the
second term in the grade of truth and gave their name in the form of complex FS (CFS),
where the truth grade in CFS is computed in the form of complex numbers whose real
and unreal (imaginary) parts are covered in the unit interval. Various attempts have been
performed by various individuals using systems such as the Mamdani complex fuzzy
inference system [12]. Additionally, Alkouri and Salleh [13] exposed the new theory of
complex IFS (CIFS) with its applications [14], which is the modified version of the three
different types of ideas such as FSs, IFSs, and CFSs.

Frank t-norm and t-conorm are used for computing any type of aggregation operators
(AOs) which was derived by Frank [15] in 1979. Frank norms have a lot of benefits because
the simple algebraic and Lukasiewicz’s t-norm and t-conorm [16] are the special cases of
Frank t-norm and t-conorm. Furthermore, the idea of prioritizing AOs for the first time
was given by Yager [17], and then Yu and Xu [18] who considered prioritized intuitionistic
fuzzy AOs. These AOs were computed based on algebraic operational laws. Moreover, the
main idea of the weighted aggregated sum product assessment (WASPAS) technique was
given by Zavadskas, et al. [19,20] with its applications [21,22], which is the generalization
of two different techniques such as weighted sum assessment (WSA) and weighted product
assessment (WPS). The WASPAS technique is very strong and valuable because this is the
modified version of many techniques and many individuals have utilized it in numerous
fields such as the computer sciences, pure mathematics, engineering sciences, artificial
intelligence, and decision-making.

The theory of FSs, IFSs, CFSs, and CIFSs has gained a lot of attention from different
fuzzy researchers because these structures are very beneficial and valuable for depicting
awkward and unreliable information very easily. Various attempts have been derived by
distinct individuals in proceeding with the data values using different extensions such as
AOs for IFSs [23] and geometric AOs for IFSs [24]. Furthermore, the Frank power AOs
based on IFSs [25] are also a combination of the Frank and power AOs which is a very
awkward and complicated task. The complex fuzzy credibility of Frank AOs was derived by
Yahya, et al. [26]. Under the consideration of hesitant fuzzy information, the theory of Frank
AOs was invented by Qin, et al. [27]. In the presence of the dual hesitant set theory, the major
theory of Frank AOs was evaluated by Tang, et al. [28]. The prioritized AOs for trapezoidal
IFS were derived by Ye [29], and the simple prioritized AOs for IFS were evaluated by Yu
and Xu [18]. Ali, et al. [30] derived the idea of prioritized AOs for CIF soft information with
their application in decision-making procedures. Yu [31] examined the theory of generalized
prioritized AOs for intuitionistic fuzzy environments, and Lin, et al. [32] derived the fuzzy
number intuitionistic fuzzy prioritized AOs and their application in decision-making
procedures. Furthermore, Garg and Rani [33] exposed the averaging operators for CIFSs.
Garg and Rani [34] evaluated the geometric operators for CIFSs, and Mahmood, et al. [35]
examined the Aczel–Alsina AOs for CIFSs. Sarfraz, et al. [36] examined the prioritized
AOs for IFSs with IF-prioritized Aczel–Alsina averaging. Poryazov, et al. [37] applied AOs
for IFSs to the estimation of service compositions in telecommunication systems. Dai [38]
derived linguistic complex fuzzy sets with their properties.

Frank and prioritized AOs based on IFSs were derived by different researchers, how-
ever, the theory of Frank and prioritized AOs based on CIFSs has not yet been evaluated by
researchers in the literature. The investigation of Frank and prioritized AOs based on CIFSs
is a very challenging task. In this analysis, we have accepted this task and not only derive
the theory of Frank and prioritized AOs based on CIFSs but also derive the combination of
Frank and prioritized AOs based on CIFSs, where the simple Frank and prioritized AOs are
the special case of the derived theory. Furthermore, we also invent the theory of WASPAS
for CIFSs. Inspired by the above discussion, the major investigations of this analysis are
listed below:
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1. To discover Frank operational laws for managing the theory of CIF information;
2. To derive the CIF Frank prioritized averaging (CIFFPA) operator, the CIF Frank

prioritized ordered averaging (CIFFPOA) operator, the CIF Frank prioritized geomet-
ric (CIFFPG) operator, and the CIF Frank prioritized ordered geometric (CIFFPOG)
operator with their properties;

3. To expose the idea of the weighted aggregates sum product assessment (WASPAS)
procedure under the consideration or presence of the CIF information and try to
simplify it with the help of a suitable example;

4. To demonstrate an example in the presence of the MADM procedures for evaluating
the comparison between the proposed operators with some well-known existing
operators to show the validity and worth of the discovered approaches.

This article is arranged in the form as follows: in Section 2, we review the different
types of norms, CIFS, and the WASPAS technique; in Section 3, we examine Frank opera-
tional laws, CIFFPA operator, CIFFPOA operator, CIFFPG operator, and CIFFPOG operator,
and their properties of idempotency, monotonicity, and boundedness; in Section 4, we
derive the WASPAS for CIF information and try to justify it with the help of a suitable
example; and in Section 5, we illustrate some examples in the presence of the MADM
procedures for evaluating CIF information. Furthermore, the comparisons between the
proposed operators and some well-known existing operators, such as Xu [23], Xu and
Yager [24], Yahya, et al. [26], Yu [31], Lin, et al. [32], Garg and Rani [33], Garg and Rani [34],
and Mahmood, et al. [35], are used to show the validity and worth of the discovered
approaches and are discussed in Section 6. The final concluding information is shown in
Section 7.

2. Preliminaries

In this section, we describe the prevailing theory of Frank norms, algebraic norms,
and Lukasiewicz’s norms for positive numbers. Furthermore, we also explain the idea
of the WASPAS method [19,20] for classical set theory. Moreover, the idea of CIFSs and
their related work are also a part of this study. For a clear presentation, the meaning of the
symbols used in this paper is shown in Table 1.

Table 1. Meanings of different symbols used in the paper.

Symbols Meanings Symbols Meanings Symbols Meanings

urp
` (x)

Real part of
membership grade vrp

` (x)
Real part of the

non-membership grade X Universal set

uip
` (x)

Imaginary part of
membership grade vip

` (x)
Imaginary part of the

non-membership grade x Element of the
universal set

rrp(x)
Real part of the
refusal grade rip(x)

Imaginary part of
refusal grade r(x) Refusal grade

IT
Complex

intuitionistic fuzzy
set

ITH
Complex intuitionistic

fuzzy value Vs

(
ITH

)
Score value

Va(ITH) Accuracy value WB Weighted vector ◦F ≥ 0 Scaler
Y(0,0∗) t-norm Y∗(0,0∗) t-conorm kk ∈ (1,+∞) Scaler

2.1. WASPAS Method for Classical Set Theory

The major influence of this section is to recall the theory of the WASPAS procedure
for classical information. The main procedure of the WASPAS method contains various
valuable and dominant steps. Before evaluating the normalization, we arrange a collection
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of classical data which may be of a benefit type or cost type. If the data are of a benefit type,
then good, otherwise, using the below theory, we normalize the information, such as:

{′HB =



∼
{HB

max
H

∼
{HB

f or bene f it

min
H

∼
{HB
∼
{HB

f or cost.

(1)

After performing the above evaluation, we calculate the WSA and WPA, such as:

TWSA
H = ∑d

B=1 WB
∼
{HB

′
; (2)

TWPA
H = ∑d

B=1(
∼
{HB

′
)WB . (3)

Using the data in Equations (2) and (3), we calculate the aggregated measure based on
convex theory, such as:

TH = ◦FTWSA
H + (1− ◦F)TWPA

H , ◦F ∈ [0, 1]. (4)

Before ranking the alternatives, we discuss the special cases of the WASPAS technique
such as: When ◦F = 1, we obtain the data in Equation (2):

1. When ◦F = 1, we obtain the data in Equation (2);
2. When ◦F = 0, we obtain the data in Equation (3).

Finally, we derive the ranking result for examining the best one from the family of
finite preferences.

2.2. Existing Ideas

Definition 1 ([15]). For any two positive numbers 0 and 0∗, we have the theory of Frank t-norm
and t-conorm, such that:

Y(0,0∗) = logkk

1 +

(
kk0 − 1

)(
kk0∗ − 1

)
kk− 1

,kk ∈ (1,+∞). (5)

Y∗(0,0∗) = 1− logkk

1 +

(
kk1−0 − 1

)(
kk1−0∗ − 1

)
kk− 1

,kk ∈ (1,+∞) (6)

Definition 2 ([1]). For any two positive numbers 0 and 0∗ , we have the theory of algebraic t-norm
and t-conorm if we put the value of kk→ 1 in Equations (5) and (6), such that:

Y(0,0 ∗ ) = 0 ∗ 0∗. (7)

Y ∗ (0,0∗) = 0+0 ∗ −0 ∗0∗. (8)
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Definition 3 ([16]). For any two positive numbers 0 and 0∗ , we have the theory of Lukasiewicz
t-norm and t-conorm if we put the value of kk→ +∞ in Equations (5) and (6), such that:

Y(0,0∗) = max{0,0+0∗ − 1}. (9)

Y∗(0,0∗) = min{0+0∗, 1} (10)

Definition 4 ([13]). A numerical or mathematical equation:

IT =
{((

urp
` (x),uip

` (x)
)

,
(
vrp
` (x),vip

` (x)
))

: x ∈ X
}

(11)

Stated the CIFS with a truth grade
(
urp
` (x),uip

` (x)
)

and falsity grade
(
vrp
` (x),vip

` (x)
)

must be implementing the following rules, such that 0 ≤ urp
` (x) + vrp

` (x) ≤ 1 and

0 ≤ uip
` (x) + vip

` (x) ≤ 1. The notion of neutral grade is stated by: r(x) =
(
rrp(x), rip(x)

)
=
(

1−
(
urp
` (x) + vrp

` (x)
)

, 1−
(
uip
` (x) + vip

` (x)
))

and the representation of the CIF val-

ues (CIFVs) is the following: ITH =
((

urp
`H ,uip

`H

)
,
(
vrp
`H ,vip

`H

))
,H = 1, 2, . . . ,`. As noted

in the presence of the above information, we recall the idea of score and accuracy function,
such as:

Vs

(
ITH

)
=

1
2

(
urp
`H − vrp

`H +uip
`H − vip

`H

)
∈ [−1, 1]. (12)

Va

(
ITH

)
=

1
2

(
urp
`H + vrp

`H +uip
`H + vip

`H

)
∈ [0, 1] (13)

To differentiate the above information, we recall some valuable characteristics:
if Vs

(
IT1

)
> Vs

(
IT2

)
⇒ IT1 > IT2 ; If Vs

(
IT1

)
< Vs

(
IT2

)
⇒ IT1 < IT2 ; If Vs(IT1) =

Vs(IT2)⇒ If Va

(
IT1

)
> Va

(
IT2

)
⇒ IT1 > IT2 ; If Va

(
IT1

)
< Va

(
IT2

)
⇒ IT1 < IT2 .

3. CIF Frank Prioritized Aggregation Operators

In this section, we propose the idea of Frank operational laws for CIF informa-
tion. Furthermore, we examine the theory of the CIFFPA operator, the CIFFPOA op-
erator, the CIFFPG operator, and the CIFFPOG operator, and their properties (idem-
potency, monotonicity, and boundedness). From now on, we will be using the CIFVs
ITH =

((
urp
`H ,uip

`H

)
,
(
vrp
`H ,vip

`H

))
,H = 1, 2, . . . ,` for constructing any ideas.

Definition 5. The mathematical form of Frank operational laws is stated as follows: forkk ∈
(1,+∞),

IT1 ⊕ IT2 =



1− logkk

1 +

(
kk1−urp

`1 − 1
)(

kk1−urp
`2 − 1

)
kk− 1

, 1− logkk

1 +

(
kk1−uip

`1 − 1
)(

kk1−uip
`2 − 1

)
kk− 1


,

logkk

1 +

(
kkvrp

`1 − 1
)(

kkvrp
`2 − 1

)
kk− 1

, logkk

1 +

(
kkvip

`1 − 1
)(

kkvip
`2 − 1

)
kk− 1





. (14)
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IT1 ⊗ IT2 =



logkk

1 +

(
kkurp

`1 − 1
)(

kkurp
`2 − 1

)
kk− 1

, logkk

1 +

(
kkuip

`1 − 1
)(

kkuip
`2 − 1

)
kk− 1


,

1− logkk

1 +

(
kk1−vrp

`1 − 1
)(

kk1−vrp
`2 − 1

)
kk− 1

, 1− logkk

1 +

(
kk1−vip

`1 − 1
)(

kk1−vip
`2 − 1

)
kk− 1





(15)

...
P IT1 =



1− logkk

1 +

(
kk1−urp

`1 − 1
)...
P

(kk− 1)
...
P−1

, 1− logkk

1 +

(
kk1−uip

`1 − 1
)...
P

(kk− 1)
...
P−1


,

logkk

1 +

(
kkvrp

`1 − 1
)...
P

(kk− 1)
...
P−1

, logkk

1 +

(
kkvip

`1 − 1
)...
P

(kk− 1)
...
P−1





. (16)

IT
...
P
1 =



logkk

1 +

(
kkurp

`1 − 1
)...
P

(kk− 1)
...
P−1

, logkk

1 +

(
kkuip

`1 − 1
)...
P

(kk− 1)
...
P−1


,

1− logkk

1 +

(
kk1−vrp

`1 − 1
)...
P

(kk− 1)
...
P−1

, 1− logkk

1 +

(
kk1−vip

`1 − 1
)...
P

(kk− 1)
...
P−1





. (17)

Definition 6. The mathematical form of the CIFFPA operator is shown below:

CIFFPA
(

IT1, IT2, . . . , IT`
)
=(

Å1

∑`
H=1 ÅH

)
IT1 ⊕

(
Å2

∑`
H=1 ÅH

)
IT2 ⊕ . . .⊕

(
Å`

∑`
H=1 ÅH

)
IT`

= ⊕`
H=1

(
ÅH

∑`
H=1 ÅH

)
ITH.

(18)

With the values of Å1 = 1 and ÅH = ∏H−1
B=1 Vs

(
ITB

)
.

Theorem 1. With the help of the data in Equation (18), we show that the aggregated value of
Equation (18) will again be in the form of CIFV, such as:

CIFFPA
(

IT1, IT2, . . . , IT`
)
=




1− logkk


1 +

∏`
H=1

(
kk

1−urp
`H −1

)
...

ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1


, 1− logkk


1 +

∏`
H=1

(
kk

1−uip
`H −1

)
...

ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1




,

logkk

1 +
∏`

H=1

(
kk

v
rp
`H −1

) ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1

, logkk

1 +
∏`

H=1

(
kk

v
ip
`H −1

) ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1







. (19)
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Proof. The procedure of Mathematical Induction is used in this proof as follows: if ` = 2,
then we obtain

(
Å1

∑`
H=1 ÅH

)
IT1=




1− logkk


1 +

(
kk

1−urp
`1−1

)
...
Å1

`
∑

H=1
ÅH

(kk−1)

Å1
∑`
H=1 ÅH

−1


, 1− logkk


1 +

(
kk

1−uip
`1−1

)
...
Å1

`
∑

H=1
ÅH

(kk−1)

Å1
∑`
H=1 ÅH

−1




,

logkk

1 +

(
kk

v
rp
`1−1

) Å1
∑`
H=1 ÅH

(kk−1)

Å1
∑`
H=1 ÅH

−1

, logkk

1 +

(
kk

v
ip
`1−1

) Å1
∑`
H=1 ÅH

(kk−1)

Å1
∑`
H=1 ÅH

−1







(
Å2

∑`
H=1 ÅH

)
IT2=




1− logkk


1 +

(
kk

1−urp
`2−1

)
...
Å2

`
∑

H=1
ÅH

(kk−1)

Å2
∑`
H=1 ÅH

−1


, 1− logkk


1 +

(
kk

1−uip
`2−1

)
...
Å2

`
∑

H=1
ÅH

(kk−1)

Å2
∑`
H=1 ÅH

−1




,

logkk

1 +

(
kk

v
rp
`2−1

) Å2
∑`
H=1 ÅH

(kk−1)

Å2
∑`
H=1 ÅH

−1

, logkk

1 +

(
kk

v
ip
`2−1

) Å2
∑`
H=1 ÅH

(kk−1)

Å2
∑`
H=1 ÅH

−1






Thus,

(
Å1

∑`
H=1 ÅH

)
IT1 ⊕

(
Å2

∑`
H=1 ÅH

)
IT2=




1− logkk


1 +

(
kk

1−urp
`1−1

)
...
Å1

`
∑

H=1
ÅH

(kk−1)

Å1
∑`
H=1 ÅH

−1


, 1− logkk


1 +

(
kk

1−uip
`1−1

)
...
Å1

`
∑

H=1
ÅH

(kk−1)

Å1
∑`
H=1 ÅH

−1




,

logkk

1 +

(
kk

v
rp
`1−1

) Å1
∑`
H=1 ÅH

(kk−1)

Å1
∑`
H=1 ÅH

−1

, logkk

1 +

(
kk

v
ip
`1−1

) Å1
∑`
H=1 ÅH

(kk−1)

Å1
∑`
H=1 ÅH

−1







⊕




1− logkk


1 +

(
kk

1−urp
`2−1

)
...
Å2

`
∑

H=1
ÅH

(kk−1)

Å2
∑`
H=1 ÅH

−1


, 1− logkk


1 +

(
kk

1−uip
`2−1

)
...
Å2

`
∑

H=1
ÅH

(kk−1)

Å2
∑`
H=1 ÅH

−1




,

logkk

1 +

(
kk

v
rp
`2−1

) Å2
∑`
H=1 ÅH

(kk−1)

Å2
∑`
H=1 ÅH

−1

, logkk

1 +

(
kk

v
ip
`2−1

) Å2
∑`
H=1 ÅH

(kk−1)

Å2
∑`
H=1 ÅH

−1
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=




1− logkk


1 +

∏2
H=1

(
kk

1−urp
`H−1

)
...

ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1


, 1− logkk


1 +

∏2
H=1

(
kk

1−uip
`H−1

)
...

ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1




,

logkk

1 +
∏2

H=1

(
kk

v
rp
`1−1

) ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1

, logkk

1 +
∏2

H=1

(
kk

v
ip
`1−1

) ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1






We obtain the correct theory. Furthermore, we assume that we also obtain the correct

theory for ` = B, such that:

CIFFPA
(

IT1, IT2, . . . , ITB
)
=




1− logkk


1 +

∏BH=1

(
kk

1−urp
`H−1

)
...

ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1


, 1− logkk


1 +

∏BH=1

(
kk

1−uip
`H−1

)
...

ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1




,

logkk

1 +
∏BH=1

(
kk

v
rp
`1−1

) ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1

, logkk

1 +
∏BH=1

(
kk

v
ip
`1−1

) ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1






Furthermore, we prove it for ` = B + 1, such as:

CIFFPA
(

IT1, IT2, . . . , ITB+1

)
=

(
Å1

∑`
H=1 ÅH

)
IT1 ⊕

(
Å2

∑`
H=1 ÅH

)
IT2 ⊕ . . .⊕

(
ÅB

∑`
H=1 ÅH

)
ITB ⊕

(
ÅB+1

∑`
H=1 ÅH

)
ITB+1

= ⊕BH=1

(
ÅH

∑`
H=1 ÅH

)
ITH ⊕

(
ÅB+1

∑B+1
H=1 ÅH

)
ITB+1

=




1− logkk


1 +

∏BH=1

(
kk

1−urp
`H−1

)
...

ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1


, 1− logkk


1 +

∏BH=1

(
kk

1−uip
`H−1

)
...

ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1




,

logkk

1 +
∏BH=1

(
kk

v
rp
`1−1

) ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1

, logkk

1 +
∏BH=1

(
kk

v
ip
`1−1

) ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1
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⊕




1− logkk


1 +

(
kk

1−urp
`B+1−1

)
...

ÅB+1
B+1

∑
H=1

ÅH

(kk−1)

ÅB+1

∑B+1
H=1 ÅH

−1


, 1− logkk


1 +

kk
1−uip

`B+1−1


...

ÅB+1
B+1

∑
H=1

ÅH

(kk−1)

ÅB+1

∑B+1
H=1 ÅH

−1




,

logkk

1 +

(
kk

v
rp
`B+1−1

) ÅB+1

∑B+1
H=1 ÅH

(kk−1)

ÅB+1

∑B+1
H=1 ÅH

−1

, logkk

1 +

kk
v

ip
`B+1−1


ÅB+1

∑B+1
H=1 ÅH

(kk−1)

ÅB+1

∑B+1
H=1 ÅH

−1







=




1− logkk


1 +

∏B+1
H=1

(
kk

1−urp
`H−1

)
...

ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1


, 1− logkk


1 +

∏B+1
H=1

(
kk

1−uip
`H−1

)
...

ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1




,

logkk

1 +
∏B+1

H=1

(
kk

v
rp
`1−1

) ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1

, logkk

1 +
∏B+1

H=1

(
kk

v
ip
`1−1

) ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1






This proves the theorem. �

Proposition 1 (Idempotency). If we use ITH = IT =
((

urp
` ,uip

`

)
,
(
vrp
` ,vip

`

))
, then

CIFFPA
(

IT1, IT2, . . . , IT`
)
= IT. (20)

Proof. Let

CIFFPA
(

IT1, IT2, . . . , IT`
)
=




1− logkk


1 +

∏`
H=1

(
kk

1−urp
`H−1

)
...

ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1


, 1− logkk


1 +

∏`
H=1

(
kk

1−uip
`H−1

)
...

ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1




,

logkk

1 +
∏`

H=1

(
kk

v
rp
`H−1

) ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1

, logkk

1 +
∏`

H=1

(
kk

v
ip
`H−1

) ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1
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=




1− logkk


1 +

∏`
H=1

(
kk1−urp

` −1
)

...
ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1


, 1− logkk


1 +

∏`
H=1

(
kk1−uip

` −1
)

...
ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1




,

logkk

1 +
∏`

H=1

(
kkv

rp
` −1

) ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1

, logkk

1 +
∏`

H=1

(
kkv

ip
` −1

) ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1






=




1− logkk


1 +

(
kk1−urp

` −1
)

...
`
∑

H=1

ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1


, 1− logkk


1 +

(
kk1−uip

` −1
)

...
`
∑

H=1

ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1




,

logkk

1 +

(
kkv

rp
` −1

)∑`
H=1

ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1

, logkk

1 +

(
kkv

ip
` −1

)∑`
H=1

ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1






=



1− logkk

1 +

(
kk1−urp

` −1
)

(kk−1)1−1

, 1− logkk

1 +

(
kk1−uip

` −1
)

(kk−1)1−1

,logkk

1 +

(
kkv

rp
` −1

)
(kk−1)1−1

, logkk

1 +

(
kkv

ip
` −1

)
(kk−1)1−1



, ∑`
H=1

ÅH

∑`
H=1 ÅH

= 1

=


(

1− logkk
(

1 +
(
kk1−urp

` − 1
))

, 1− logkk

(
1 +

(
kk1−uip

` − 1
)))

,(
logkk

(
1 +

(
kkvrp

` − 1
))

, logkk

(
1 +

(
kkvip

` − 1
)))


=

((
1− logkk

(
kk1−urp

`
)

, 1− logkk

(
kk1−uip

`

))
,
(

logkk
(
kkvrp

`
)

, logkk

(
kkvip

`

)))
=
((

1−
(

1−urp
`

)
, 1−

(
1−uip

`

))
,
(
vrp
` ,vip

`

))
=
((

urp
` ,uip

`

)
,
(
vrp
` ,vip

`

))
= IT.

This proves the proposition. �

Proposition 2 (Monotonicity). If ITH =
((

urp
`H ,uip

`H

)
,
(
vrp
`H ,vip

`H

))
≤ IT

∗
H =((

urp
`H
∗
,uip

`H
∗)

,
(
vrp
`H
∗
,vip

`H
∗))

, then

CIFFPA
(

IT1, IT2, . . . , IT`
)
≤ CIFFPA

(
IT
∗
1 , IT

∗
2 , . . . , IT

∗
`

)
(21)

Proof. Consider ITH = ((urp
`H ,uip

`H), (v
rp
`H ,vip

`H)) ≤ IT
*
H = ((urp

`H
*
,uip

`H
*
), (vrp

`H
*
,vip

`H
*
)).

Notice thaturp
`H ≤ urp

`H
*
,uip

`H ≤ uip
`H

*
andvrp

`H ≥ vrp
`H

*
,vip

`H ≥ vip
`H

*
, then we have urp

`H ≤ urp
`H

*

⇒ 1−urp
`H ≥ 1−urp

`H
* ⇒ kk1−urp

`H ≥ kk1−urp
`H

*

⇒ kk1−urp
`H − 1 ≥ kk1−urp

`H
*

− 1
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⇒
(
kk1−urp

`H − 1
) ...

ÅH
`
∑

H=1
ÅH ≥

(
kk1−urp

`H
*

− 1
) ...

ÅH
`
∑

H=1
ÅH ⇒ ∏`

H=1

(
kk1−urp

`H − 1
) ...

ÅH
`
∑

H=1
ÅH

≥ ∏`
H=1

(
kk1−urp

`H
*

− 1
) ...

ÅH
`
∑

H=1
ÅH ⇒

∏`
H=1

(
kk

1−urp
`H−1

)
...
ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1

≥
∏`

H=1

kk
1−urp

`H
*

−1


...
ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1

⇒ logkk


1 +

∏`
H=1

(
kk

1−urp
`H−1

)
...
ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1


≥ logkk


1 +

∏`
H=1

kk
1−urp

`H
*

−1


...
ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1


⇒ 1−

logkk


1 +

∏`
H=1

(
kk

1−urp
`H−1

)
...
ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1


≤ 1− logkk


1 +

∏`
H=1

kk
1−urp

`H
*

−1


...
ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1


.

In the same way, we find the unreal part, such as:

1− logkk


1 +

∏`
H=1

(
kk1−uip

`H − 1
) ...

ÅH
`
∑

H=1
ÅH

(kk− 1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1


≤ 1− logkk


1 +

∏`
H=1

(
kk1−uip

`H

∗

− 1
) ...

ÅH
`
∑

H=1
ÅH

(kk− 1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1


Furthermore, we have vrp

`H ≥ vrp
`H
∗ ⇒ kkvrp

`H ≥ kkvrp
`H
∗

⇒ kkvrp
`H − 1 ≥ kkvrp

`H
∗

− 1

⇒
(
kkvrp

`H − 1
) ÅH

∑`
H=1 ÅH ≥

(
kkvrp

`H
∗

− 1
) ÅH

∑`
H=1 ÅH ⇒ ∏`

H=1

(
kkvrp

`H − 1
) ÅH

∑`
H=1 ÅH

≥ ∏`
H=1

(
kkvrp

`H
∗

− 1
) ÅH

∑`
H=1 ÅH ⇒

∏`
H=1

(
kk

v
rp
`H−1

) ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1

≥
∏`

H=1

(
kk

v
rp
`H
∗

−1

) ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1

⇒ 1 +
∏`

H=1

(
kk

v
rp
`H−1

) ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1

≥ 1 +
∏`

H=1

(
kk

v
rp
`H
∗

−1

) ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1

⇒ logkk

1 +
∏`

H=1

(
kk

v
rp
`H−1

) ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1

 ≥ logkk

1 +
∏`

H=1

(
kk

v
rp
`H
∗

−1

) ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1

 .
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In the same way, we find the unreal part, such as: logkk

1 +
∏`

H=1

(
kk

v
ip
`H−1

) ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1



≥ logkk


1 +

∏`
H=1

kk
v

ip
`H

*

−1


ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1


. Then, with the presence of the score function and

accuracy function, we can easily obtain our required result with CIFFPA
(

IT1, IT2, . . . , IT`
)

≤ CIFFPA
(

IT
*
1, IT

*
2, . . . , IT

*
`

)
. This proves the proposition. �

Proposition 3 (Boundedness). If IT
−
H =

((
min
H

urp
`H , min

H
uip
`H

)
,
(

max
H

vrp
`H , max

H
vip
`H

))
and

IT
+

H =

((
max
H

urp
`H , max

H
uip
`H

)
,
(

min
H

vrp
`H , min

H
vip
`H

))
, then we have

IT
−
H ≤ CIFFPA

(
IT1, IT2, . . . , IT`

)
≤ IT

+

H. (22)

Proof. Using Propositions 1 and 2, we have CIFFPA
(

IT1, IT2, . . . , IT`
)
≤ CIFFPA(

IT
+

1 , IT
+

2 , . . . , IT
+

`

)
= IT

+

H and CIFFPA
(

IT1, IT2, . . . , IT`
)

≥ CIFFPA(
IT
−
1 , IT

−
2 , . . . , IT

−
`

)
= IT

−
H. Then, IT

−
H ≤ CIFFPA

(
IT1, IT2, . . . , IT`

)
≤ IT

+

H. �

Definition 7. The mathematical form of the CIFFPOA operator is shown below:

CIFFPOA
(

IT1, IT2, . . . , IT`
)
=

(
Å1

∑`
H=1 ÅH

)
ITo(1) ⊕

(
Å2

∑`
H=1 ÅH

)
ITo(2) ⊕ . . .⊕

(
Å`

∑`
H=1 ÅH

)
ITo(`)

= ⊕`
H=1

(
ÅH

∑`
H=1 ÅH

)
ITo(H).

(23)

With the values of Å1 = 1 and ÅH = ∏H−1
B=1 Vs

(
ITB

)
and o(H) ≤ o(H− 1).

Theorem 2. With the help of the data in Equation (23), we expose that the aggregated value of
Equation (23) will again be in the form of CIFV, such as:

CIFFPOA
(

IT1, IT2, . . . , IT`
)
=




1− logkk


1 +

∏`
H=1

kk
1−urp

`o(H) −1


...

ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1


, 1− logkk


1 +

∏`
H=1

kk
1−uip

`o(H) −1


...

ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1




,


logkk

1 +
∏`

H=1

kk
v

rp
`o(H) −1


ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1

, logkk


1 +

∏`
H=1

kk
v

ip
`o(H) −1


ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1







. (24)



Mathematics 2023, 11, 2058 13 of 21

Proposition 4 (Idempotency) If we use ITH = IT =
((

urp
` ,uip

`

)
,
(
vrp
` ,vip

`

))
, then

CIFFPOA
(

IT1, IT2, . . . , IT`
)
= IT. (25)

Proposition 5 (Monotonicity). If ITH =
((

urp
`H ,uip

`H

)
,
(
vrp
`H ,vip

`H

))
≤ IT

∗
H =((

urp
`H
∗
,uip

`H
∗)

,
(
vrp
`H
∗
,vip

`H
∗))

, then

CIFFPOA
(

IT1, IT2, . . . , IT`
)
≤ CIFFPOA

(
IT
∗
1 , IT

∗
2 , . . . , IT

∗
`

)
. (26)

Proposition 6 (Boundedness). If IT
−
H =

((
min
H

urp
`H , min

H
uip
`H

)
,
(

max
H

vrp
`H , max

H
vip
`H

))
and

IT
+

H =

((
max
H

urp
`H , max

H
uip
`H

)
,
(

min
H

vrp
`H , min

H
vip
`H

))
, then we have

CIT
−
H ≤ CIFFPOA

(
IT1, IT2, . . . , IT`

)
≤ IT

+

H (27)

Definition 8. The mathematical form of the CIFFPG operator is shown below:

CIFFPG
(

IT1, IT2, . . . , IT`
)
= IT

(
Å1

∑`
H=1 ÅH

)

1 ⊗ IT
(

Å2

∑`
H=1 ÅH

)

2 ⊗ . . .⊗ IT
(

Å`
∑`
H=1 ÅH

)

`

= ⊗`
H=1 IT

(
ÅH

∑`
H=1 ÅH

)

H

(28)

With the values of Å1 = 1 and ÅH = ∏H−1
B=1 Vs

(
ITB

)
.

Theorem 3. With the help of the data in Equation (28), we expose that the aggregated value of
Equation (28) will again be in the form of CIFV, such as:

CIFFPG
(

IT1, IT2, . . . , IT`
)
=




logkk


1 +

∏`
H=1

(
kk

u
rp
`H−1

)
...

ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1


, logkk


1 +

∏`
H=1

(
kk

u
ip
`H−1

)
...

ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1




,

1− logkk

1 +
∏`

H=1

(
kk

1−vrp
`H−1

) ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1

, 1− logkk

1 +
∏`

H=1

(
kk

1−vip
`H−1

) ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1







(29)

Proposition 7 (Idempotency). If we use ITH = IT =
((

urp
` ,uip

`

)
,
(
vrp
` ,vip

`

))
, then

CIFFPG
(

IT1, IT2, . . . , IT`
)
= IT. (30)

Proposition 8 (Monotonicity). If ITH =
((

urp
`H ,uip

`H

)
,
(
vrp
`H ,vip

`H

))
≤ IT

∗
H =((

urp
`H
∗
,uip

`H
∗)

,
(
vrp
`H
∗
,vip

`H
∗))

, then

CIFFPG
(

IT1, IT2, . . . , IT`
)
≤ CIFFPG

(
IT
∗
1 , IT

∗
2 , . . . , IT

∗
`

)
. (31)
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Proposition 9 (Boundedness). If IT
−
H =

((
min
H

urp
`H , min

H
uip
`H

)
,
(

max
H

vrp
`H , max

H
vip
`H

))
and

IT
+

H =

((
max
H

urp
`H , max

H
uip
`H

)
,
(

min
H

vrp
`H , min

H
vip
`H

))
, then we have

IT
−
H ≤ CIFFPG

(
IT1, IT2, . . . , IT`

)
≤ IT

+

H. (32)

Definition 9. The mathematical form of the CIFFPOG operator is shown below:

CIFFPOG
(

IT1, IT2, . . . , IT`
)
= IT

(
Å1

∑`
H=1 ÅH

)

o(1) ⊗ IT
(

Å2

∑`
H=1 ÅH

)

o(2) ⊗ . . .⊗ IT
(

Å`
∑`
H=1 ÅH

)

o(`)

= ⊗`
H=1 IT

(
ÅH

∑`
H=1 ÅH

)

o(H)

(33)

With the values of Å1 = 1 and ÅH = ∏H−1
B=1 Vs

(
ITB

)
and o(H) ≤ o(H− 1).

Theorem 4. With the help of the data in Equation (33), we expose that the aggregated value of
Equation (33) will again be in the form of CIFV, such as:

CIFFPOG
(

IT1, IT2, . . . , IT`
)
=




logkk


1 +

∏`
H=1

kk
u

rp
`o(H) −1


...

ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1


, logkk


1 +

∏`
H=1

kk
u

ip
`o(H) −1


...

ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1




,

1− logkk

1 +
∏`

H=1

kk
1−vrp

`o(H) −1


ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1

, 1− logkk

1 +
∏`

H=1

kk
1−vip

`o(H) −1


ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1







(34)

Proposition 10 (Idempotency). If we use ITH = IT =
((

urp
` ,uip

`

)
,
(
vrp
` ,vip

`

))
, then

CIFFPOG
(

IT1, IT2, . . . , IT`
)
= IT. (35)

Proposition 11 (Monotonicity). If ITH =
((

urp
`H ,uip

`H

)
,
(
vrp
`H ,vip

`H

))
≤ IT

∗
H =((

urp
`H
∗
,uip

`H
∗)

,
(
vrp
`H
∗
,vip

`H
∗))

, then

CIFFPOG
(

IT1, IT2, . . . , IT`
)
≤ CIFFPOG

(
IT
∗
1 , IT

∗
2 , . . . , IT

∗
`

)
. (36)

Proposition 12 (Boundedness). If IT
−
H =

((
min
H

urp
`H , min

H
uip
`H

)
,
(

max
H

vrp
`H , max

H
vip
`H

))
and

IT
+

H =

((
max
H

urp
`H , max

H
uip
`H

)
,
(

min
H

vrp
`H , min

H
vip
`H

))
, then we have

IT
−
H ≤ CIFFPOG

(
IT1, IT2, . . . , IT`

)
≤ IT

+

H. (37)
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4. CIF WASPAS Procedures

The main point of this section is to extend the theory of the WASPAS procedure to
CIF information. The procedures of the WASPAS method contain various valuable and
dominant steps. Before evaluating the normalization, we arrange a collection of CIF data
which may be of a benefit type or cost type. If the data are of a benefit type, then good,
otherwise, using the below theory, we normalize the information, such as:

IT 0,H =

((
max
H

urp
`iH

, max
H

uip
`iH

)
,
(

min
H

vrp
`iH

, min
H

vip
`iH

))
, i,H = 1, 2, . . . ,`,` (38)

IT
′
H =

((
urp
`iH

,uip
`iH

)
,
(
vrp
`iH

,vip
`iH

))
=



0 otherwise
urp
`iH

1+urp
`0,H

,
uip
`iH

1+uip
`0,H

i f urp
`iH
≤ urp

`0,H
,uip

`iH
≤ uip

`0,H

vrp
`iH

1+vrp
`0,H

,
vip
`iH

1+vip
`0,H

f or f alsity grade (real a`d u`real parts)

(39)

After performing the above evaluation, we calculate the WSA and WPA with the help
of derived theory, such as:

TWSA
H = CIFFPA

(
IT1, IT2, . . . , IT`

)
=




1− logkk


1 +

∏`
H=1

(
kk

1−urp
`H −1

)
...

ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1


, 1− logkk


1 +

∏`
H=1

(
kk

1−uip
`H −1

)
...

ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1




,

logkk

1 +
∏`

H=1

(
kk

v
rp
`H −1

) ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1

, logkk

1 +
∏`

H=1

(
kk

v
ip
`H −1

) ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1







(40)

TWPA
H = CIFFPG

(
IT1, IT2, . . . , IT`

)
=



logkk

1 +
∏`

H=1

(
kk

u
rp
`H −1

) ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1

, logkk

1 +
∏`

H=1

(
kk

u
ip
`H −1

) ÅH

∑`
H=1 ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1



,


1− logkk


1 +

∏`
H=1

(
kk

1−vrp
`H −1

)
...

ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1


, 1− logkk


1 +

∏`
H=1

(
kk

1−vip
`H −1

)
...

ÅH
`
∑

H=1
ÅH

(kk−1)
∑`
H=1

ÅH

∑`
H=1 ÅH

−1







(41)

where, Å1 = 1 and ÅH = ∏H−1
B=1 Vs

(
ITB

)
.

Using the data in Equations (40) and (41), we calculate the aggregated measure based
on convex theory, such as:

TH = ◦FVsTWSA
H + (1− ◦F)VsTWPA

H , ◦F ∈ [0, 1] (42)

Before ranking the alternatives, we discuss the special cases of the WASPAS technique
based on CIF information such as:

1. When ◦F = 1, we obtain the data in Equation (40);
2. When ◦F = 0, we obtain the data in Equation (41).
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In last, we derive the ranking result for examining the best one from the family of
finite preferences. Furthermore, we justify the supremacy and worth of the derived theory
with the help of some suitable examples, such as:

ITH =


((0.4, 0.2), (0.1, 0.2))
((0.5, 0.4), (0.2, 0.3))
((0.6, 0.5), (0.2, 0.3))
((0.7, 0.8), (0.1, 0.1))

((0.4, 0.2), (0.1, 0.2))
((0.1, 0.4), (0.2, 0.3))
((0.6, 0.5), (0.2, 0.3))
((0.7, 0.8), (0.1, 0.1))

((0.4, 0.2), (0.1, 0.2))
((0.5, 0.4), (0.2, 0.3))
((0.2, 0.5), (0.2, 0.3))
((0.7, 0.8), (0.1, 0.1))

((0.1, 0.2), (0.1, 0.2))
((0.5, 0.4), (0.2, 0.3))
((0.6, 0.5), (0.2, 0.3))
((0.7, 0.8), (0.1, 0.1))


Then, we find the positive ideal, such as:

IT0,H = {((0.7, 0.8), (0.1, 0.1)), ((0.7, 0.8), (0.1, 0.1)), ((0.7, 0.8), (0.1, 0.1)), ((0.7, 0.8), (0.1, 0.1))}

With the help of the IT0,H and the information in ITH, we obtain the below theory,
such as:

IT
′
H=



(
(0.2352, 0.1111),
(0.0909, 0.1818)

)
(
(0.2941, 0.2222),
(0.1818, 0.2727)

)
(
(0.3529, 0.2777),
(0.1818, 0.2727)

)
(
(0.4117, 0.4444),
(0.0909, 0.0909)

)

(
(0.2353, 0.1111),
(0.0909, 0.1818)

)
(
(0.0588, 0.2222),
(0.1818, 0.2727)

)
(
(0.3529, 0.2778),
(0.1818, 0.2727)

)
(
(0.4118, 0.4444),
(0.0909, 0.0909)

)

(
(0.2353, 0.1111),
(0.0909, 0.1818)

)
(
(0.2941, 0.2222),
(0.1818, 0.2727)

)
(
(0.1176, 0.2778),
(0.1818, 0.2727)

)
(
(0.4118, 0.4444),
(0.0909, 0.0909)

)

(
(0.0588, 0.1111),
(0.0909, 0.2727)

)
(
(0.2941, 0.2222),
(0.1818, 0.2727)

)
(
(0.3529, 0.2778),
(0.1818, 0.2727)

)
(
(0.4118, 0.4444),
(0.0909, 0.0909)

)


After performing the above evaluation, we calculate the WSA and WPA with the help of de-

rived theory, such as: TWSA
1 = ((0.2375, 0.1154), (0.0933, 0.1846)), TWSA

2 = ((0.229, 0.1146),
(0.0933, 0.1846)), TWSA

3 = ((0.2373, 0.1154), (0.0933, 0.1846)), TWSA
4 = ((0.0456, 0.1055),

(0.0866, 0.1764)), and TWPA
1 = ((0.2373, 0.1140), (0.0944, 0.1853)), TWPA

2 = ((0.2241, 0.1136),
(0.0944, 0.1849)), TWPA

3 = ((0.2373, 0.1141), (0.0944, 0.1853)), TWPA
4 = ((0.0532, 0.1058),

(0.0865, 0.1778)). Using the data in Equations (40) and (41) with ◦F = 0.2, we calculate
the aggregated measure based on convex theory, such as: T1 = 0.03621, T2 = 0.0302,
T3 = 0.036, T4 = −0.053. According to the score values of the four alternatives, the ranking
results is with T1 > T3 > T2 > T4. Thus, the best optimal is T1 according to the score values of
alternatives.

5. Application in MADM Method

The MADM technique is the valuable and dominant part of the decision-making
procedure. The main theme of this section is to utilize the theory of the MADM tech-
nique based on the presented information for CIF set theory. To examine the above
problem, we collect the finite family of alternatives IT1, IT2, IT3, IT4, . . . , IT` and their
attributes ITa−1, ITa−2, ITa−3, ITa−4, ITa−`. Based on the above alternatives and their
attributes, we compute the matrix of information whose term is computed in the form
of CIF values such that the CIFS with a truth grade

(
urp
` (x),uip

` (x)
)

and falsity grade(
vrp
` (x),vip

` (x)
)

must be implementing the following rule: 0 ≤ urp
` (x) + vrp

` (x) ≤ 1 and

0 ≤ uip
` (x) + vip

` (x) ≤ 1. The notion of neutral grade is stated by r(x) =
(
rrp(x), rip(x)

)
=(

1−
(
urp
` (x) + vrp

` (x)
)

, 1−
(
uip
` (x) + vip

` (x)
))

and the representation of the CIFVs is

with ITH =
((

urp
`H ,uip

`H

)
,
(
vrp
`H ,vip

`H

))
,H = 1, 2, . . . ,`. Furthermore, to proceed with the

above information, we compute a technique of decision-making, whose major steps are
shown below:
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Step 1: Before evaluating the normalization, we arrange a collection of CIF data which
may be of a benefit type or cost type. If the data are of a benefit type, then good, otherwise,
using the below theory, we normalize the information, such as:

C =


((

urp
`H ,uip

`H

)
,
(
vrp
`H ,vip

`H

))
f or bene f it((

vrp
`H ,vip

`H

)
,
(
urp
`H ,uip

`H

))
f or cost.

Step 2: After performing the above evaluation, we calculate the CIFFPA operator and
CIFFPG operator with the help of the derived theory.

Step 3: Evaluate the score or accuracy values of the aggregated information.
Step 4: Examine the ranking values in the presence of the score information.
In the last, we aim to show the supremacy and worth of the above procedure with the

help of illustrating some numerical examples.
Illustrative Example: An investment enterprise wants to invest in an enterprise to

increase or grow its income. There are five potential enterprises as alternatives, which are
IT1, IT2, IT3, IT4 and IT5. Four attributes are employed to resolve the problem in order
to find the best preference from our five alternatives, including ITa−1: growth analysis,
ITa−2: social-political impact, ITa−3: environmental impact, and ITa−4: development of
society. Furthermore, to proceed with the above information, we compute a technique of
decision-making, whose major steps are shown below:

Step 1: Before evaluating the normalization, we arrange a collection of CIF data in the
form of Table 1, which may be of a benefit type or cost type. If the data are of a benefit type,
then good, otherwise, using the below theory, we normalize the information, such as:

C =


((

urp
`H ,uip

`H

)
,
(
vrp
`H ,vip

`H

))
f or bene f it((

vrp
`H ,vip

`H

)
,
(
urp
`H ,uip

`H

))
f or cost.

However, the data in Table 2 is not required to be normalized.

Table 2. Original CIF information matrix.

ITa−1 ITa−2 ITa−3 ITa−4

IT1 ((0.4, 0.3), (0.1, 0.3)) ((0.41, 0.31), (0.11, 0.31)) ((0.42, 0.32), (0.12, 0.32)) ((0.43, 0.33), (0.13, 0.33))

IT2 ((0.6, 0.7), (0.2, 0.1)) ((0.61, 0.71), (0.21, 0.11)) ((0.62, 0.72), (0.22, 0.12)) ((0.63, 0.73), (0.23, 0.13))

IT3 ((0.3, 0.2), (0.3, 0.4)) ((0.31, 0.21), (0.31, 0.41)) ((0.32, 0.22), (0.32, 0.42)) ((0.33, 0.23), (0.33, 0.43))

IT4 ((0.7, 0.4), (0.2, 0.3)) ((0.71, 0.41), (0.21, 0.31)) ((0.72, 0.42), (0.22, 0.32)) ((0.73, 0.43), (0.23, 0.33))

IT5 ((0.7, 0.7), (0.1, 0.1)) ((0.71, 0.71), (0.11, 0.11)) ((0.72, 0.72), (0.12, 0.12)) ((0.73, 0.73), (0.13, 0.13))

Step 2: After performing the above evaluation, we calculate the CIFFPA operator and
CIFFPG operator with the help of the derived theory, and see Table 3.

Table 3. Aggregated values.

CIFFPA CIFFPG

IT1 ((0.4084, 0.3071), (0.0969, 0.2941)) ((0.3941, 0.2941), (0.1039, 0.3071))

IT2 ((0.7369, 0.8279), (0.108, 0.043)) ((0.4986, 0.6188), (0.2794, 0.1486))

IT3 ((0.3007, 0.2007), (0.3002, 0.1003)) ((0.3002, 0.2003), (0.3007, 0.1006))

IT4 ((0.7448, 0.4393), (0.1694, 0.2647)) ((0.6776, 0.364), (0.2249, 0.3329))

IT5 ((0.8753, 0.8753), (0.0258, 0.0258)) ((0.5741, 0.5741), (0.1738, 0.1738))



Mathematics 2023, 11, 2058 18 of 21

Step 3: Evaluate the score or accuracy values of aggregated information, and see
Table 4.

Table 4. Score values.

CIFFPA CIFFPG

IT1 0.1623 0.1386

IT2 0.7069 0.3447

IT3 0.0504 0.0496

IT4 0.375 0.2419

IT5 0.8495 0.4003

Step 4: Examine the ranking values of the score information, and see Table 5.

Table 5. Ranking information.

Methods Ranking Results

CIFFPA IT5 > IT2 > IT4 > IT1 > IT3
CIFFPG IT5 > IT2 > IT4 > IT1 > IT3

The valuable and best preference is IT5, according to the theory of CIFFPA and CIFFPG
operators. Furthermore, by excluding the phase term, we have checked the stability and
supremacy of the derived information. Thus, we remove the phase information from the
data in Table 2 in which their score values are shown in Table 6.

Table 6. Score values (without phase term).

CIFFPA CIFFPG

IT1 0.1558 0.1451

IT2 0.3144 0.1096

IT3 0.0002 0.00002

IT4 0.2877 0.2263

IT5 0.4247 0.2001

Furthermore, we examine the ranking values of the score information, and see Table 7.

Table 7. Ranking information.

Methods Ranking Results

CIFFPA IT5 > IT2 > IT4 > IT1 > IT3
CIFFPG IT4 > IT5 > IT1 > IT2 > IT3

The valuable and best preference is IT5 according to the theory of the CIFFPA operator.
Furthermore, the best preference is IT4 according to the theory of the CIFFPG operator.
Additionally, we find the comparisons between the proposed and existing data with the
help of data in Table 2.

6. Comparative Analysis

In this section, we select some existing operators based on various prevailing ideas. We
then try to compare their obtained results with the obtained results of our proposed works.
The comparative analysis is one of the most effective and dominant techniques because
without comparison we fail to show the supremacy and validity of the derived theory.
For this, we consider different types of information, such as aggregation operators (AOs)
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for IFSs [23], geometric AOs for IFSs [24], the complex fuzzy credibility Frank AOs [26].
Additionally, Yu [31] examined the theory of generalized prioritized AOs for intuitionistic
fuzzy environments, and Lin, et al. [32] derived the fuzzy number intuitionistic fuzzy
prioritized AOs and their application in decision-making procedures. Furthermore, Garg
and Rani [33] exposed the averaging operators for CIFSs. Garg and Rani [34] evaluated
the geometric operators for CIFSs, and Mahmood, et al. [35] examined the Aczel–Alsina
aggregation operators for CIFSs. Using data in Table 2, the comparison information is listed
in Table 8.

Table 8. Comparative analysis.

Methods Score Information Ranking Information

Xu [23] ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
Xu and Yager [24] ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
Yahya, et al. [26] ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

Yu [31] ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
Lin, et al. [32] ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

Garg and Rani [33] 0.1506, 0.5008, 0.0506, 0.3005, 0.6010 IT5 > IT2 > IT4 > IT1 > IT3
Garg and Rani [34] 0.1497, 0.4998, 0.0496, 0.2997, 0.5998 IT5 > IT2 > IT4 > IT1 > IT3

Mahmood, et al. [35] 0.1506, 0.5007, 0.0505, 0.3005, 0.6009 IT5 > IT2 > IT4 > IT1 > IT3
CIFFPA 0.1623, 0.7069, 0.0504, 0.375, 0.8495 IT5 > IT2 > IT4 > IT1 > IT3
CIFFPG 0.1386, 0.3447, 0.0496, 0.2419, 0.4003 IT5 > IT2 > IT4 > IT1 > IT3

The valuable and best preference is IT5, according to the theory of CIFFPA, CIFFPG
operators, Garg and Rani [33,34], and Mahmood, et al. [35]. However, the theory of AOs
for IFSs [23], geometric AOs for IFSs [24], the complex fuzzy credibility of Frank AOs [26],
and Yu [31] examined the theory of generalized prioritized AOs for intuitionistic fuzzy
environments with the limitation that fails to evaluate it. Similarly, Lin, et al. [35] derive the
fuzzy number intuitionistic fuzzy prioritized AOs and their application in decision-making
procedures also with the limitation and restriction, because they fail to evaluate it. It
is possible if we use the data in Table 2, however, without phase information, then the
comparison information is listed in Table 9.

Table 9. Comparative analysis (without phase terms).

Methods Score Information Ranking Information

Xu [23] 0.1504, 0.5005, 0.0504, 0.3003, 0.6006 IT5 > IT2 > IT4 > IT1 > IT3
Xu and Yager [24] 0.1498, 0.4999, 0.0497, 0.2998, 0.5999 IT5 > IT2 > IT4 > IT1 > IT3
Yahya, et al. [26] ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

Yu [31] 0.1614, 0.6901, 0.0504, 0.3687, 0.8319 IT5 > IT2 > IT4 > IT1 > IT3
Lin, et al. [32] 0.1394, 0.3526, 0.0496, 0.2452, 0.4097 IT5 > IT2 > IT4 > IT1 > IT3

Garg and Rani [33] 0.1502, 0.2002, 0.0001, 0.2502, 0.3003 IT5 > IT4 > IT2 > IT1 > IT3
Garg and Rani [34] 0.1499, 0.1999, 0.0001, 0.2499, 0.2999 IT5 > IT4 > IT2 > IT1 > IT3

Mahmood, et al. [35] 0.1502, 0.2001, 0.00009, 0.2502, 0.3003 IT5 > IT4 > IT2 > IT1 > IT3
CIFFPA 0.1558, 0.3144, 0.0002, 0.2877, 0.4247 IT5 > IT2 > IT4 > IT1 > IT3
CIFFPG 0.1451, 0.1096, 0.00002, 0.2263, 0.2001 IT4 > IT5 > IT1 > IT2 > IT3

The valuable and best preference is IT5 according to the theory of the CIFFPA operator,
Xu [23], Xu and Yager [24], Yu [31], Lin, et al. [32], Garg and Rani [33,34], and Mahmood,
et al. [35]. However, the most valuable and best preference is IT4 according to the theory
of the CIFFPG operator. However, the complex fuzzy credibility Frank AOs [26] have
limitations and restrictions, and because it failed to evaluate it. Therefore, the proposed
work is effective and valid for evaluating most of the CIFS information.
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7. Conclusions

The idea of CIFS is the modified version of the complex fuzzy set theory, which covered
the grade of truth and falsity in the form of polar coordinates. Furthermore, the theory
of Frank and prioritized aggregation operators is also very famous and valuable because
they are the modified version of the simple averaging and geometric aggregation operators.
Motivated by the above information, in this manuscript, we examined the following ideas:

1. We evaluated the Frank operational laws for the theory of CIF information;
2. We examined the theory of the CIFFPA, CIFFPOA, CIFFPG, and CIFFPOG operators,

and their properties of idempotency, monotonicity, and boundedness;
3. We derived the WASPAS under the presence of the CIFFPA and CIFFPG operators;
4. We demonstrated the MADM procedures based on the invented theory for CIF

information;
5. We compared the derived theory with various existing information to show the

validity and worth of the discovered approaches.

In the future, we aim to develop new aggregation operators based on Frank operational
laws and then we aim to employ them in the field of game theory, neural networks,
clustering, pattern recognition, and decision-making to enhance the worth of the derived
information.
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