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Abstract: Skin segmentation involves segmenting the human skin region in an image. It is a prepro-
cessing technique mainly used in many applications such as face detection, hand gesture recogni-
tion, and remote biosignal measurements. As the performance of skin segmentation directly affects
the performance of these applications, precise skin segmentation methods have been studied. How-
ever, previous skin segmentation methods are unsuitable for real-world environments because they
rely heavily on color information. In addition, deep-learning-based skin segmentation methods in-
cur high computational costs, even though skin segmentation is mainly used for preprocessing. This
study proposes a lightweight skin segmentation model with a high performance. Additionally, we
used data augmentation techniques that modify the hue, saturation, and values, allowing the model
to learn texture or contextual information better without relying on color information. Our proposed
model requires 1.09M parameters and 5.04 giga multiply-accumulate. Through experiments, we
demonstrated that our proposed model shows high performance with an F-score of 0.9492 and con-
sistent performance even for modified images. Furthermore, our proposed model showed a fast
processing speed of approximately 68 fps, based on 3 x 512 x 512 images and an NVIDIA RTX 2080T1I
GPU (11GB VRAM) graphics card.

Keywords: skin segmentation; preprocessing; mobile vision transformer; low color
information dependency

MSC: 68U10; 68T45

1. Introduction

Skin segmentation is the task of detecting human skin regions in an image. It is a
preprocessing method commonly used in various applications and is especially important
in the field of biological systems and medicine [1]. Its applications include face detection,
hand gesture recognition, and biosignal measurements such as remote photoplethysmog-
raphy (rPPG) [2—4]. The performance of skin segmentation is important because it directly
affects the performance of these applications, and it should be lightweight to avoid affect-
ing the processing time of the entire process. For example, in rPPG measurement, infor-
mation about a human heart is contained only in the human skin pixels, and elements
such as the background or moving mouth, eyes, and hair across the face can contaminate
the signal. Therefore, accurate skin segmentation is important for reliable measurement
of rPPG signals [5,6].

Thresholding-based methods are the most commonly used skin segmentation ap-
proaches. This simple and quick technique segments the skin region by defining a limited

Mathematics 2023, 11, 2057. https://doi.org/10.3390/math11092057

www.mdpi.com/journal/mathematics



Mathematics 2023, 11, 2057

2 of 15

range of skin colors within a specific color space such as YCbCr or HSV [7-11]. However,
several problems exist because skin segmentation is performed using only pixel color in-
formation. The first is the change in the illumination conditions. The range of skin color is
limited, but the skin color can change owing to illumination. Changes in illumination con-
ditions are more frequent in the real world than in laboratory environments, which sig-
nificantly affects the performance of thresholding-based methods [7,12]. The second is the
presence of pixels of the same color as skin. This also causes performance degradation in
thresholding-based methods [8,13]. Finally, defining the range of skin colors perfectly is
challenging because skin colors vary according to race or individual differences. There-
fore, thresholding-based methods are unsuitable for applications where preprocessing
performance is important.

Recently, owing to improvements in computer performance, learning-based methods
that use machine or deep learning have attracted interest in various fields. In particular,
deep-learning-based methods exhibit better performance than traditional methods, and
real-time processing is possible. Therefore, studies are being actively conducted in most
computer vision fields, as well as in skin segmentation. To the best of our knowledge, the
best-performing deep-learning-based methods are Tarasiewicz’s proposed method and
Salah’s proposed method [14,15]. Tarasiewicz’s proposed method is based on U-Net and
trained using the ECU dataset [16,17]. This method yielded a high F-score of 0.9230. Sa-
lah’s proposed method classifies skin and nonskin pixels using a simple convolutional
neural network (CNN). Their model was trained using the SFA dataset and showed a high
F-score of 0.9765 in experiments [18].

Both Tarasiewiz’s and Salah’s methods showed an overperformance for each dataset;
however, these methods also have problems. These problems are described in Section 2.2.
In this study, we propose a high-performance method for solving these problems. The
contributions of this study are as follows:

e  We propose a lightweight skin segmentation method that is more suitable than pre-
vious methods for real-time application preprocessing.

e We used data augmentation techniques to reduce the color-information dependency
of the model and demonstrated this experimentally.

2. Related Work
2.1. Thresholding-Based Method

As described above, the thresholding-based method defines the most suitable range
of color for human skin and uses the color range to segment the skin region. This method
is mainly used because it can perform skin segmentation with low processing times and
does not require a training process or numerous device resources.

In Phung’s study, skin was segmented by defining the range of €b and Crin the
YCbCr color space [8]. The ranges are Cb € [75,154] and Cr € [130,180] as defined by
the experiment. The authors of this paper explained that it quickly removed non-skin re-
gions.

Hajraoui et al. proposed a skin segmentation method using the RGB color space [9].
This method defines two conditions for skin segmentation and classifies pixels that satisfy
both conditions as skin. The conditions are shown in Equations (1) and (2).

R >95,G > 40,B > 20,
max(R,G,B) —min(R,G,B) > 15, (€))]
|IR—-G|>15,R<G,R > B.
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0.36 0.465,

“R+G+B"
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0.28 < 0.363.

e —
R+G+B

Tao et al. proposed a method for skin segmentation using YCbCr and YIQ color
spaces [10]. Pixels that satisfy both conditions are classified as skin pixels. The conditions
are shown in Equations (3) and (4).

Cr € [-Cg + 260, —Cg + 280],

(3)
Cg € [85,135].
I € [15,90],
4)
Q € [-20,10].

Kolkur et al. proposed a method for performing skin segmentation using the RGBA
and YCbCr or HSV color spaces [11]. The ranges defined are shown in Equations (5) and

(6).
0.5 < H <50,0.23 < S <0.68,
R >95,G > 40,B > 20,R > G,R > B, (5)
IR — G| > 15,4 > 15.

R>95,G>40,B>20,R>G,R > B,
IR — G| >15,A > 15,Cr > 135,Cb > 85,Y > 80,

Cr < (0.15862 x Cb) + 20, "
Cr > (0.3448 x Ch) + 76.2069,

Cr > (—4.5652 X Cb) + 234.5652,
Cr < (—2.2857 x Cb) + 432.85.

Although many studies have been conducted on thresholding-based methods, the
performance of skin segmentation varies greatly depending on the image because of the
limitation of relying on the color information of the pixels. For example, Figure 1 shows
the low performance of the thresholding-based method for images of black people or im-
ages with poor illumination conditions. Figure 1 shows an example using Equation (5), as
defined by Kolkur.

(b)

Figure 1. Example of thresholding-based method using Kolkur’s proposed method: (a) Example of
clean skin segmentation results; (b) Example of poor skin segmentation results.

2.2. Deep-Learning-Based Method

Deep-learning-based methods have become dominant in the study of computer vi-
sion since the proposal of CNN. Deep learning-based methods perform better than exist-
ing methods without requiring inconvenient handcrafted features. Therefore, CNN-based
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studies have been actively conducted on skin segmentation. Kim et al. proposed a net-
work-in-network (NiN) architecture and demonstrated a better performance than existing
methods or other proposals based on VGGNet [19,20]. The NiN architecture was inspired
by the inception module [21].

As shown in Figure 2, the NiN architecture comprises a cascade of CNNs with a filter
size of one or more CNNSs. The final feature map is obtained by concatenating the feature
maps of each CNN. They modified the structure of the inception module to make it effec-
tive for image-to-image tasks. They removed the pooling layer of the inception module
and added a CNN layer with a filter size of seven to maintain a large receptive field. This
architecture required fewer parameters than models with the same depth. Their proposed
model using the NiN architecture required fewer parameters than another proposed
model based on VGGNet, with a total number of 2.3M parameters. They trained and eval-
uated their proposed model using the ECU dataset and evaluated the performance of the
model using the Pratheepan and VT-SSAT dataset [22,23]. The performance of their pro-
posed model using the NiN architecture had an F-score of 0.8917 for the ECU dataset and
0.8957 for the Pratheepan dataset.

D 1x1 CNN feature map
I:I 3x3 CNN feature map

= - 5x5 CNN feature map

. 7x7 CNN feature map

D feature map concatenation

Figure 2. NiN architecture proposed by Kim.

Tarasiewicz et al. proposed Skinny based on U-Net, which is mainly used in medical
image segmentation. Skinny is at a level deeper than U-Net in learning larger-sized fea-
tures well. They added an inception module and a dense block to improve performance
[24]. In addition, they attempted to solve the gradient vanishing problem, which is a major
problem in deep networks, and reduced the number of parameters through dense blocks.
They trained their model using the ECU dataset and evaluated its performance using the
ECU and HGR datasets [25]. The HGR dataset is not used to train the model. The perfor-
mance of Skinny was 0.9230 and 0.9494 for the ECU and HGR datasets, respectively.
Skinny not only shows high performance compared to U-Net, but also requires 7.5M pa-
rameters, which is four times lower than U-Net. Furthermore, their model was shown
experimentally using an NVIDIA RTX 2080Ti GPU (11GB VRAM) with 19 frames per sec-
ond (fps) on 512 x 512 image.

Salah et al. proposed a skin segmentation method using a CNN as a class classifier to
determine whether it is a skin pixel, instead of segmenting the whole or part of the image,
as in the previous two methods. Their proposed method classifies the pixels individually
and then uses several morphological operations to generate a final skin region mask. A
summary of Salah’s proposed method is presented in Figure 3. They modified the SFA
dataset to be suitable for training the proposed model and experimented with it for eval-
uation using the SFA and Pratheepan datasets. Salah’s model had an F-score of 0.9500 for
the SFA dataset and 0.9765 for the Pratheepan dataset.
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Figure 3. Summary of Salah’s proposed method.

Deep-learning-based methods have shown better performance than thresholding-
based methods. However, these methods exhibit several limitations. First, they did not
consider changes in illumination conditions, as did the thresholding-based methods. Sec-
ondly, they did not consider the characteristics of skin segmentation, which are primarily
used for preprocessing. It can be assumed that a processing time of 19 fps is sufficient for
Skinny. However, when used for preprocessing, it is not fast enough to affect the pro-
cessing time of the application process to be processed later. Salah’s model requires few
parameters, owing to the use of a simple CNN model. However, it relies on information
from one pixel because it cannot learn the local information of neighboring pixels, which
is an advantage of CNN. Because each pixel of the image requires computation of the
model, the computational cost is not small compared with the model that uses the entire
image. The computational costs of each method are listed in Table 1 as giga-multiple ac-
cumulations (GMACs). It is calculated as the sum of the number of a X b + ¢ operations.

Table 1. The computational cost of each method. Computational costs were calculated based on 512
X 512 image.

Kim’'s * Skinny Salah’s Ours
GMACs 6744MMACs x 47=30.4278 18.37 34.96KMACs x 512 x 512=9.16 5.04

* The computational cost of Kim’s model was multiplied by 47 because Kim’s model was based on
a patch of size 50 X 50 and moved 10 strides to obtain the final skin mask.

3. Method

In this section, we describe the architecture of the proposed method based on SINet
and a mobile vision transformer (MobileViT) [26,27]. SINet is an extremely lightweight
network used for portrait segmentation. One of the main contributions of SINet is infor-
mation blocking. Information blocking can reduce typical segmentation errors by provid-
ing additional information to regions in which the model is uncertain (Section 3.1). We
combined the SINet architecture with MobileViT to improve model performance. The Mo-
bileViT is a lightweight vision transformer that can simultaneously encode local and
global information (Section 3.2). Therefore, we changed the encoder of SINet to a Mo-
bileViT block. However, this change caused the model to be heavy; therefore, we applied
Simplified Channel Attention (SCA) to make the model lighter (Section 3.3) [28]. Finally,
to reduce the color information dependence of the proposed model, we used the data aug-
mentation technique proposed by Xu (Section 3.4) [29]. The overall architecture of the pro-
posed model is illustrated in Figure 4.
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Figure 4. The overall architecture of our proposed model.

3.1. Information Blocking

Information blocking has been proposed to reduce errors in the segmentation model
[26]. In the encoder—decoder structure used in SINet, the encoder loses details of the local
information while extracting the feature maps. Thus, the segmentation model of this struc-
ture has low certainty at the boundary between the foreground and background. Owing
to the disadvantage of losing the details of the information, several studies have often used
skip connections to compensate [26]. However, using a skip connection not only provides
useful information, but also unnecessary information that can act as noise. Thus, SINet
applies information blocking, which provides additional information only for uncertain
regions.

The equation of information blocking is shown in Equation (7):

M =1 —max (softmax(X;ow)),

@)
I = Xhigh(:) M.

Xjow 1s a feature map of the same size as the high-resolution feature map obtained by
performing pointwise convolution and bilinear upsampling on the final feature maps of
the encoder. Xy;4p, is a high-resolution feature map and © is the mean element-wise
product. The maximum softmax value in the feature maps can be considered as the confi-
dence maps of the model for each pixel’s class. By subtracting 1 from the confidence map
and the element-wise product from the high-resolution feature, additional information
can be provided only to low-confidence regions. This reduces the uncertainty of the
model, thereby reducing the typical segmentation errors.

3.2. MobileViT

MobileViT is a type of Vision Transformer (ViT) suitable for low-resource devices
such as mobile devices [30]. ViT, proposed by Dosoviskiy, showed state-of-the-art (SOTA)
performance by dividing images into patches and feeding them as inputs to a vanilla
transformer [31]. However, ViT lacks inductive biases compared to CNN. Therefore, it is
large-scale dataset-dependent and requires strong regularization. In contrast, MobileViT
has the same properties as convolution because it processes local information using a
CNN and global information using a transformer. Furthermore, because of this, it has a
sufficient capacity to learn visual representations, allowing the model to be lighter and
faster. Therefore, MobileViT is suitable for segmentation tasks that require simultaneous
handling of local and global information; therefore, we replaced the encoder of SINet with
the MobileViT block to improve the performance of skin segmentation. In addition, a gate
depthwise convolution feed-forward network (GDFN) was used instead of the simple
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feed-forward network of MobileViT blocks [32]. The GDEN is useful for learning local
image structures and allows hierarchical models to focus on fine details using the gate
mechanism. The GDEN formula is given by Equation (8):

X = W,Gating(X) + X,

8
Gating(X) = ¢p(WW,LN (X)) OW4 W, LN (X). ®)

W, indicates pointwise convolution. W, represents depthwise convolution. LN indi-
cates layer normalization [33]. ¢ means gaussian error linear units (GELU) [34]. In addi-
tion, the activation functions of MobileViT and SINet were replaced by GELU.

3.3. Simplified Channel Attention

In this study, SCA was applied to make MobileViT lighter. SCA is an attention mech-
anism that simplifies Channel Attention (CA) [35]. The SCA equation is shown in Equation

©):
SCA(X) = X * Wpool(X) 9)

where * indicates a channel-wise product. W means convolution. pool refers to global
average pooling. Through experiments, the authors demonstrated that there was no per-
formance loss in the denoising task compared with CA. In addition, the original Mo-
bileViT required the process of unfolding X € RF*XW*¢ to X, € RF*N*4, and then folding
to the original dimension to apply Attention while maintaining positional information.
Here, P = w X h means the size of patch, and N = % means number of patches. How-

ever, SCA did not require them, so we removed those processes. A comparison of the
computational costs of SINet and MobileViT is presented in Table 2. The proposed model
requires 5.04 GMACs and requires the number of 1.09M parameters. The details of the
model are listed in Table 3.

Table 2. The computational cost of SINet with MobileViT.

MobileViT + SINet MobileViT + MobileViT + GDFN + SCA

GDEN + SINet + SINet
GMACs 5.88 6.17 5.04
Table 3. The details of the model.
Input Operation Output
3x3 CNN

[3x 512 x 512] [16 x 512 x 512]

Batch normalization

[16 x 512 x 512] [16 x 256 X 256]
[16 x 256 X 256] [24 x 128 x 128]
[24 x 128 x 128] MobileV2 * [24 x 128 x 128]
[24 x 128 x 128] [24 x 128 x 128]
[24 x 128 x 128] [48 X 64 X 64]
[48 x 64 x 64] MobileViT block [48 x 64 x 64]
[48 x 64 x 64] MobileV2 [64 x 64 X 64]
[64 X 64 x 64] MobileViT block [64 X 64 X 64]
[64 X 64 x 64] MobileV2 [80 x 64 X 64]
[80 x 64 x 64] MobileViT block [80 x 64 X 64]
1x1 CNN
[80 > 64 x 64] Batch normalization [320 x 64 x 64]
1x1 CNN
[320 X 64 x 64] Upsampling [2 X128 x 128]

Batch normalization



Mathematics 2023, 11, 2057 8 of 15

[2 %128 x 128] X 2 Information Blocking [2 x 128 x 128]
li
[2 x 128 x 128] Upsampling [2 X 256 X 256]
Batch normalization
Upsampling
[2 x 256 x 256] 3% 3 CNN [2%x512 x 512]

* MoblieV2 is MobileNet-V2 block proposed by Sandler [36].

3.4. Xu’s Data Augmentation

Existing skin segmentation methods rely on color information. This can cause perfor-
mance degradation in real-world environments. To address this problem, Xu proposed a
novel data augmentation technique. Xu noted that the color information dependence of
deep-learning-based methods is due to the skin color bias of the dataset. Because most
datasets are biased towards bright skin tones, the proposed method addresses this bias by
modifying hue, saturation, value channels of the image. The hue channel of the images
was rotated by 60°, the saturation channels decayed at ratios of (0.8, 0.6, 0.4, 0.2, 0.0), and
the value channel changed at ratios of (1.0, 0.8, 0.6, 0.4, 0.2). The authors of demonstrated
performance improvements in skin-type and race-group images through experiments us-
ing this method. We also experimentally demonstrate that the color information depend-
ence is reduced compared to other methods that do not use this method. Examples of
modified images are shown in Figure 5.
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(c)

Figure 5. Example of Xu’s method: (a) Example images of hue channel rotation; (b) Example images
of saturation channel decay; (c) Example of images of value channel change.

4. Experiments
4.1. Implementation Details

The training setting of the proposed model mostly follows that of MobileViT. Similar
to SINet’s training, only the encoder part was trained 200 epochs with batch size 8, and
then the whole model was trained 100 epochs with batch size 4. The weight of the model
was initialized using a truncated normal distribution [37]. The loss function used the mean
of cross entropy and DICE coefficient with reference to the experimental results of the
Skinny model. To learn the boundary better, the part that calculates the loss of the model
using only the boundary component was added in the same way as SINet. The equation
for the loss function is shown in Equation (10):

n k
L _1 CE(y;, 7)) + DICE(y;,7, “ CE(y?,y?) + DICE(y?,y? 1
055 = > 9 + w9 +35 ) (CEG).yP) + (7 yP) (o)
7 7

where n means the number of pixels in the image. y;, 7, denote the labels of the i-th
pixel and the predicted label, respectively. y}’ p ﬁ denote the labels of the j-th pixel and
the predicted label of the boundary component image for the input image, respectively. A
means ratio that control balance of boundary loss term. CE is the cross-entropy loss func-
tion and DICE is the DICE loss function using the DICE coefficient. AdamW was used as
the optimizer for the model [38]. The initial learning rate of the model was 0.0002. The
learning rate was increased to 0.002 by five epochs when training only the encoder and by
ten epochs when training the entire model, and then lowered to 0.0002 through a cosine
annealing schedule [39]. Finally, an L2 weight decay of 0.01 was used. The model was
implemented using PyTorch and NVIDIA RTX 2080Ti GPU (11GB VRAM) graphics cards.

4.2. Datasets

We used the ECU datasets for training and evaluation. The ECU dataset was collected
by Edith Cowan University for facial detection and skin segmentation. A total of 4000
color images were obtained. Of these, 1% were obtained through digital cameras, whereas
the remainder were collected online between 2002 and 2003. They have tried to secure
diversity in various ways. Therefore, images of various skin colors were collected and con-
sisted of images of all exposed skin areas, such as the neck and arms, not only facial skin.
The illumination conditions also included images acquired in indoor and outdoor envi-
ronments. The data used for the training were the same as those used by Tarasiewicz. A
total of 1750 images were used for training, 250 for verification, and 2000 for evaluation.
At this time, 26,250 images were used for training which increased 15 times due to the
data augmentation technique.

Additionally, we used only the Pratheepan dataset for the evaluation. The
Pratheepan dataset contains images for skin segmentation randomly collected using
Google. The dataset consisted of 32 images of faces with simple backgrounds and 46 im-
ages of multiple people with complex backgrounds, totaling 78 images.

4.3. Performance for ECU and Pratheepan Datasets
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The precision, Recall, and F-score were used in all the experiments. The evaluation
metrics were calculated by averaging the true positive (TP), true negative (TN), false pos-
itive (FP), and false negative (FN) for each pixel in the test dataset images. Table 4 shows
the performance of the model for the ECU and Pratheepan datasets. Table 5 shows the
confusion matrix of our proposed model. Salah’s model has no open code or model
weights; thus, no experimental results are available for the ECU dataset. For the ECU da-
taset, our proposed model showed a better performance than Skinny, the best performing
model. For the Pratheepan dataset, Salah’s proposed model performed the best. Our
model performed second best. Examples of skin mask images from the Pratheepan dataset
are shown in Figure 6.

Table 4. Performance of the model for ECU dataset and Pratheepan dataset.

Method ECU Pratheepan
Precision Recall F-Score Precision Recall F-Score
Kim’s 0.8720 09122 0.8917 0.9003 0.8912 0.8957
Skinny 09253 09299 0.9230 0.8672 0.7475 0.8333
Salah’s - - - 0.9801 0.9600 0.9765
SINet * 09230 09486 09333 0.8476 0.8168 0.8178
Ours 09574 09459 09501 09133 0.9041 0.9055

* SINet was trained using the same dataset as our proposed model.

Table 5. Confusion matrix of our proposed model.

E Prath
Predicted Values — cu - — ratheepan -
Positive Negative Positive Negative
Positive 99,505,194 3,964,144 3,451,822 225,831
Negative 5,533,018 410,872,818 256,364 16,256,424

(d) (e)

Figure 6. Examples of skin mask image for Pratheepan dataset: (a) Input; (b) Skinny; (c) Salah’s; (d)
SINet; (e) Ours.

4.4. Performance on Images Modified by the Xu’s Method
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Subsequent experiments used only the ECU dataset and compared the proposed
model with Skinny and SINet. Table 6 shows the performance of the experiment, in which
the test dataset was modified using Xu’s method. In the case of Skinny, the F-score was
approximately 34% compared to when the image was not modified. However, the pro-
posed model only reduces the F-score by approximately 2%. SINet trained with the same
dataset did not exhibit significant performance degradation. In addition, Skinny per-
formed poorly on images with modified hues. In contrast, our proposed model showed
that the performance was constant for any modification, demonstrating that the model
has a low color information dependency owing to Xu’s proposed data augmentation tech-
nique. Examples of the experimental results are shown in Figure 7.

Table 6. Performance of the model for modified images.

Modification

Skinny SINet Ours
Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

Hue
Saturation
Value
Total

0.1845 0.0675 0.0834 09180 09419 09265 0.9519 0.9380 0.9428
0.8857 0.8686 0.8640 09198 0.9484 09311 09539 09455 0.9480
0.8978 0.8410 0.8468 09191 0.9500 09316 09559 0.9453 0.9489
0.6560 0.5923 0.5980 09190 0.9468 09298 0.9539 0.9430 0.9466
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Figure 7. Examples of result image for modified image by Xu’s method. First, second, and third
columns are examples of result images for image modified by hue, saturation, and value, respec-
tively (red: FP, blue: FN): (a) Input; (b) Skinny; (c) SINet; (d) Ours.

4.5. Performance for Gray Scale Images

The performances of the grayscale images are shown in Table 7. The models used in
the experiment were not trained using grayscale images. The performance on grayscale
images was also higher in our proposed model than in the other models. Example images
from the experiment are shown in Figure 8.

Table 7. Performance of the model for gray scale images.

Metric Skinny SINet Ours
Precision 0.9349 0.8815 0.8819
Recall 0.4405 0.7661 0.8288
F-score 0.5692 0.7855 0.8419

()
Figure 8. Examples of result image for gray scale image: (a) Input; (b) Skinny; (c) SINet; (d) Ours.

(@)

5. Discussion

The proposed model exhibited the best performance for the ECU dataset in the ex-
periment, and the computational cost was 77% lower than that of the previous highest-
performance model, Skinny. For the Pratheepan dataset, our model showed a slightly
lower performance than that of Salah’s proposed model. However, the proposed model is
more efficient because the computational cost is approximately 44% lower, whereas the
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performance decreases by 7%. Figure 9 shows the relationship between the computational
cost and F-score, and the size of the circle is proportional to the number of parameters of
the model.

F-score for Pratheepan dataset and GMACs for 3x512x512 image

1000

Salah
0975

0950

0925

Ours

0.900

F-score

03875

skinny

0.850

03825

0.800 T
S 10 15 20 r=) 30

GMACs

Figure 9. F-score and GMACs for the model’s for Pratheepan dataset. The size of the circle is pro-
portional to the number of parameters.

The proposed model is efficient, with a high performance and low computational
cost and parameters. This is useful in applications involving devices with limited re-
sources such as embedded or mobile devices. It can also be used for preprocessing appli-
cations that require real-time processing because it has a fast processing speed of 68 fps
based on 3 x512x512 images and an NVIDIA RTX 2080TI GPU (11GB VRAM)
graphics card.

6. Conclusions

In this study, we propose an efficient MobileViT-based skin segmentation model with
low color dependency. The proposed model shows high performance in experiments on
the ECU and Pratheepan datasets but requires a lower computational cost and number of
parameters than the existing model. In addition, we demonstrate that our proposed model
is less dependent on color information, with no significant performance degradation, even
in hue, saturation, value-modified, or grayscale images.

The model proposed in this study has a lower computational cost than existing mod-
els. However, it does not have sufficient performance improvement compared to the sig-
nificantly heavier SINet, owing to architectural changes in SINet. In the future, we will
study ways to improve this to maintain the performance and make the model more light-
weight, similar to SINet.
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