
Citation: Gorbunov, K.; Lyubetsky, V.

Constructing an Evolutionary Tree

and Path–Cycle Graph Evolution

along It. Mathematics 2023, 11, 2024.

https://doi.org/10.3390/

math11092024

Academic Editor: Andrea Scozzari

Received: 29 March 2023

Revised: 19 April 2023

Accepted: 21 April 2023

Published: 24 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Constructing an Evolutionary Tree and Path–Cycle Graph
Evolution along It
Konstantin Gorbunov * and Vassily Lyubetsky †

Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia;
lyubetsk@iitp.ru
* Correspondence: gorbunov@iitp.ru; Tel.: +7-910-439-0597
† Partial support of RFBR grant 20-01-00670 acknowledged.

Abstract: The paper solves the problem of constructing an evolutionary tree and the evolution of
structures along it. This problem has long been posed and extensively researched; it is formulated
and discussed below. As a result, we construct an exact cubic-time algorithm which outputs a tree
with the minimum cost of embedding into it and of embedding it into a given network (Theorem 1).
We construct an algorithm that outputs a minimum embedding of a tree into a network, taking into
account incomplete linear sorting; the algorithm depends linearly on the number of nodes in the
network and is exact if the sorting cost is not less than the sum of the duplication cost and the loss
cost (Theorem 3). We construct an exact approximately quadratic-time algorithm which, for arbitrary
costs of SCJ operations, solves the problem of reconstruction of given structures on any two-star tree
(Theorem 4). We construct an exact algorithm which reduced the problem of DCJ reconstruction of
given structures on any star to a logarithmic-length sequence of SAT problems, each of them being
of approximately quadratic size (Theorem 5). The theorems have rigorous and complete proofs of
correctness and complexity of the algorithms, and are accompanied by numerical examples and
numerous explanatory illustrations, including flowcharts.

Keywords: exact algorithm; low computation complexity algorithm; discrete optimization; discrete
evolution; tree reconciliation; path-cycle graph reconstruction; minimum embedding of a tree into
a network

MSC: 05C15; 05C40; 05C70; 05C85; 05C90

1. General Introduction

Tree graphs arise very widely, both in fundamental problems of discrete mathematics
and in applied problems from very different subject areas; for particular examples of their
use, see [1,2]. Such a problem is the classification problem and well-known methods for
constructing graph trees, such as the ID3 algorithm; see, e.g., [3,4]. Note the applications of
random trees and random forests in [5].

In the present paper, we consider a specific problem of constructing the evolution of
structures along a tree or network G; G is understood as the discrete time in which the
evolution progresses. This problem naturally decomposes into two parts, the construction
of this G (Theorems 1–3) and the construction along it of the evolution of X, itself from
the given X0 at the leaves of the tree (Theorems 4 and 5). The construction of G also
requires some kind of a priori data; in particular, G is constructed as a tree/network that
is optimally coordinated with already known trees or networks P and S so that there are
optimal embeddings P→ G→ S. This problem setting is well known, and hundreds of
papers, surveys, and books are devoted to various versions of it, of which we note the
survey ([6] Section 5) and the book [7]. The present paper is not a survey and contains
proofs of the four theorems mentioned above. Algorithms for constructing the discrete

Mathematics 2023, 11, 2024. https://doi.org/10.3390/math11092024 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11092024
https://doi.org/10.3390/math11092024
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5438-6939
https://orcid.org/0000-0002-3739-9161
https://doi.org/10.3390/math11092024
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11092024?type=check_update&version=1

Mathematics 2023, 11, 2024 2 of 39

evolution of structures along a tree are often heuristic. In our purely mathematical study,
all algorithms have complete and rigorous proofs of their correctness and of low estimates
of their computational complexity.

Evolution analysis is one of the most fundamental mathematical problems, having,
at the same time, a broad practical importance. In this respect, we have considered
discrete evolution, where a rooted tree acts as time. This understanding of time is particularly
important in connection with biological evolution, although, in this paper, evolution is con-
sidered purely mathematically, without any relation to various applications. We consider
two phases of reconstruction to necessarily following each other, first, a tree acting as time
is constructed, and then evolution itself is sought for along the constructed tree. Namely,
the first problem consists of constructing a tree as the “average” between a given tree and a
given network, which reduces to minimizing a given functional defined on all trees of a
fixed size. In other words, the first problem involves creating a new tree that represents
an “average” between a tree and a network (in particular, also a tree). This is completed
by finding a tree that minimizes a given functional, which assigns a value to each possible
tree of a fixed size. The goal is to find the tree minimizing this value that will be the best
representation of the “average” between these two given graphs. The second problem
consists of describing the evolution of structures defined at leaves of a given tree. Evolu-
tion is understood as the continuation of these structures onto internal nodes of the tree,
where the continuation is the minimum of a given functional defined on all arrangements
along the tree. An arrangement is a one-to-one mapping of structures to internal nodes of
the tree, together with already fixed structures at its leaves. In other words, the second
problem aims to explain how structures that are defined at the leaves of a tree evolve over
time by continuing onto internal nodes of the tree. The continuation of these structures is
determined by finding the arrangement that minimizes a given functional, which is defined
for all possible arrangements along the tree. Essentially, the goal is to find the best possible
way for the structures to evolve along the tree. In addition to the functional, the notion of a
structure must be defined. In this paper, a structure is a loaded directed graph consisting of
paths and cycles (a path–cycle graph). Of course, both problems can be considered in the
framework of other formulations as well.

In Section 2, “Tree Construction,” we prove Theorem 1, where we construct an exact
cubic-time algorithm which, given a binary tree P, binary tree or network S, and a collection
B of sets, outputs a binary tree G minimizing the sum of costs of minimum continuations
that preserve the natural ordering of leaf mappings from P to G and from G to S, provided
that G contains only clades that belong to B. Here, a clade means the set of all leaves
below any given node g ∈ G. A continuation preserving the natural ordering, P→ G or
G→ S, is called an embedding; thus, here we minimize the sum of costs of two minimum
embeddings. Our mathematical results (Theorems 1–5), which develop the problem of
discrete optimization, are used by us, in particular, in applied biological works to construct
the evolution of genomes and genomic rearrangement. For example, the algorithm from
Theorem 1 allows us to trace the evolution of proteins with respect to the genes that encode
them, and, at the same time, the evolution of these genes with respect to the species that
contain them. The example described in Section 2.6 (and in our applied works) show
that this algorithm significantly improves the intermediate tree G compared to what the
algorithm in [8] produces for precisely the same data. That algorithm is based on building
the optimal gene tree by applying modifications on the input tree P guided by the tree S.
Thus, the algorithm in [8] is based on descending to the local minimum of a functional
starting from a tree G equal to the given tree P. The algorithm in [8] is quite different
from ours and, moreover, is heuristic; the latter also makes it drastically different from our
algorithm. In [8], no proofs or considerations about the exactness of that algorithm are
given, but only a quadratic estimate of its runtime.

In Section 2, we also construct a minimum embedding of a tree into a network taking
into account duplication, loss, and Incomplete Linear Sorting events (Theorem 3). Tran-
sition to a network S instead of a tree S significantly extends the average tree problem in

Mathematics 2023, 11, 2024 3 of 39

mathematical and applied aspects. Previously, for this problem an algorithm in [9] was
known, which took into account only one Incomplete Linear Sorting event.

In Section 3, “Reconstruction of Structures on a Tree,” we prove two theorems. In
Theorem 4, we construct an exact approximately quadratic-time algorithm which solves
the SCJ reconstruction problem on any two-star tree for arbitrary costs of SCJ operations.
In Theorem 5, we construct an exact algorithm which, on any star, for arbitrary costs of DCJ
operations, reduces a cyclic equal-content DCJ reconstruction problem to a logarithmic-
length sequence of SAT (Boolean satisfiability) problems, each of them being approximately
quadratic-size. For example, algorithms from Theorems 4 and 5 make it possible to recon-
struct genomes of ancestral organisms and genomic rearrangements. Previously, an exact
SCJ reconstruction algorithm was developed only for equal cost operations in [10] or on a
star-like tree in [11], and the DCJ reconstruction algorithm was developed as a reduction in
the reconstruction problem to an integer linear programming problem in [12].

The rest of this article is organized as follows. Section 2 contains definitions related
to the embedding of a tree into a network (Section 2.1); setting of the intermediate tree
problem and the formulation of Theorem 1 (Section 2.2); the definition of embedding a tree
into a network (Section 2.3); a description of the algorithm for constructing an intermediate
tree and a Proof of Theorem 1 (Section 2.4); a description of the choice of the main parameter
of the algorithm (Section 2.5); an example of the algorithm (Section 2.6); a description of
the algorithm for constructing an embedding of a tree into a network, taking into account
“Incomplete Linear Sorting”, along with a Proof of Theorem 3 (Section 2.7); and, finally, an
example of the operation of the algorithm (Section 2.8).

Section 3 contains a setting of the structure reconstruction problem and formulations
of Theorems 4 and 5 (Section 3.1), a description of the SCJ reconstruction algorithm on a
two-star tree (Section 3.2), a proof of the exactness of this algorithm and estimates of its
runtime (Theorem 4, Section 3.3), an example of the operation of the SCJ reconstruction
algorithm (Section 3.4), a description of the SCJ reconstruction algorithm for the cyclic case
of the problem (Section 3.5), a description of the DCJ reconstruction algorithm on a star
and a Proof of Theorem 5 (Section 3.6), an example of the DCJ reconstruction algorithm
(Section 3.7), and a description of the choice of parameters for this algorithm (Section 3.8).

Section 4 (Discussion) briefly mentions one of the possible applications of our algo-
rithms, as well as possible directions for further mathematical research related to this
work. In general, the issue of applications of these algorithms requires descriptions
of the corresponding subject areas and is far in style and content from the presented
mathematical study.

2. Tree Construction
2.1. Introduction

We consider rooted trees; a root is entered by an edge which starts at a node of degree
1, referred to as a super-root; the edge itself will be called the root edge. We will regard the
super-root of a tree, and then the root, as located “at the top,” and leaves of a tree (all of
degree 1) as located “at the bottom”, as shown in Figure 1a. Similarly, subtrees are regarded
with their root edge, which enters the root of the subtree and starts at its super-root, the
latter being of degree 1. The tail of an edge e is its endpoint located closer to the root, and
the second endpoint is the head of the edge; they are denoted by e+ and e−, respectively. An
ancestor node/edge is located closer to the root, and a descendant node/edge is farther from
the root, both lying on the same path; this relation is denoted by ≤. The nearest ancestor
is called a parent, and the nearest descendant is called a child; nodes located immediately
below the same node are said to be sibling nodes, each of them is called a sister of any other
one. In essence, a tree specifies a parent–child relation. For any set N of leaves, a node which
is the lowest among all ancestors of all leaves in N is well defined. Denote it by N′. For
two trees T1 and T2, there is a well-known canonical continuation [13,14] of any preassigned
mapping s from leaves in T1 to leaves in T2, which is denoted here by s′′. Namely, for an
interior node x in T1 with a set x< of leaves lying below it, we let s′′(x) = s(x<)′. The set x<

Mathematics 2023, 11, 2024 4 of 39

is called the clade of x, or the clade of the root edge entering x, or the clade of the subtree
defined by x.

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 39

for an interior node x in T1 with a set x< of leaves lying below it, we let s″(x) = s(x<)′. The set

x< is called the clade of x, or the clade of the root edge entering x, or the clade of the subtree

defined by x.

Figure 1. (a) All the considered trees are arranged “top to bottom”; in them, s is a super-root, r a

root, and (s,r) a root edge. (b) The mapping s; T1 → T2 is arbitrarily defined on leaves as a corre-

spondence of labels in which indices are disregarded (i.e., f1 and f2 are mapped to f). The mapping s

canonically continues onto interior nodes in T1 as s′: T1 → T2. For instance, s′(vi) = ui for 1 ≤ i ≤ 4 or i

= 6, s′(v5) = u7, and s′(v7) = s′(r) = s′(s) = t. The nodes v7, r, and s are mapped to the root edge. Images

of nodes of T1 are shown “inside” T2, so that is why we refer to edges in T2 as pipes.

If s″(e+) = s″(e−), then s′(e+) is defined as the edge entering s″(e−) from above; for in-

stance, s′ maps the super-root in T1 into the root edge in T2. Thus, s′ maps nodes in T1 into

nodes and edges in T2; see Figure 1b. This definition can be generalized to the case where

T2 is a network (see Section 2.3). We will refer to the mapping s′ as an embedding of T1 into

T2. Below, when saying “a tree T1 is mapped to a tree T2,” we always mean precisely this

mapping s′ and speak about its images and arguments. Note that in this case we have a

preassigned mapping s, which is called a leaf mapping. Of course, the mapping s′ preserves

the natural order.

The path of an edge e ∈ T1 in a tree T2 is a path consisting of nodes in T2 from s′(e+) to

s′(e−) excluding its endpoints s′(e+) and s′(e−).

The image tree of T1 in T2 is defined to be a tree isomorphic to T1 with nodes located at

nodes and in edges of T2 so that v is located either at the node s′(v) or in the pipe t = s′(v)

(see Figure 2). In this sense, edges of T2 will be referred to as pipes containing nodes and

edges of T1. Images are connected by an edge according to the parent–child relation of their

arguments. Thus, we want to consider an image tree as the T1 tree located inside T2. Our

use of mathematical interpretations in embedding is related to our inspiration from bio-

logical paradigms, such as the evolution of genomes and genomic rearrangement.

Figure 2. (a) Original tree T1, and (b) its image tree in T2; its nodes are shown in bold, and its edges

are shown as polygonal curves. The images of v1 and v2 are located at the same node u5, and the

images of v3 and v4 are in the same pipe t. For example, for the edge e′ = (v4,e), its path in T2 is u5u4u2.

Figure 1. (a) All the considered trees are arranged “top to bottom”; in them, s is a super-root, r a root,
and (s,r) a root edge. (b) The mapping s; T1 → T2 is arbitrarily defined on leaves as a correspondence
of labels in which indices are disregarded (i.e., f 1 and f 2 are mapped to f). The mapping s canonically
continues onto interior nodes in T1 as s′: T1 → T2. For instance, s′(vi) = ui for 1 ≤ i ≤ 4 or i = 6,
s′(v5) = u7, and s′(v7) = s′(r) = s′(s) = t. The nodes v7, r, and s are mapped to the root edge. Images of
nodes of T1 are shown “inside” T2, so that is why we refer to edges in T2 as pipes.

If s′′(e+) = s′′(e−), then s′(e+) is defined as the edge entering s′′(e−) from above; for
instance, s′ maps the super-root in T1 into the root edge in T2. Thus, s′ maps nodes in T1
into nodes and edges in T2; see Figure 1b. This definition can be generalized to the case
where T2 is a network (see Section 2.3). We will refer to the mapping s′ as an embedding
of T1 into T2. Below, when saying “a tree T1 is mapped to a tree T2,” we always mean
precisely this mapping s′ and speak about its images and arguments. Note that in this case
we have a preassigned mapping s, which is called a leaf mapping. Of course, the mapping s′

preserves the natural order.
The path of an edge e ∈ T1 in a tree T2 is a path consisting of nodes in T2 from s′(e+) to

s′(e−) excluding its endpoints s′(e+) and s′(e−).
The image tree of T1 in T2 is defined to be a tree isomorphic to T1 with nodes located at

nodes and in edges of T2 so that v is located either at the node s′(v) or in the pipe t = s′(v)
(see Figure 2). In this sense, edges of T2 will be referred to as pipes containing nodes and
edges of T1. Images are connected by an edge according to the parent–child relation of their
arguments. Thus, we want to consider an image tree as the T1 tree located inside T2. Our use
of mathematical interpretations in embedding is related to our inspiration from biological
paradigms, such as the evolution of genomes and genomic rearrangement.

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 39

for an interior node x in T1 with a set x< of leaves lying below it, we let s″(x) = s(x<)′. The set

x< is called the clade of x, or the clade of the root edge entering x, or the clade of the subtree

defined by x.

Figure 1. (a) All the considered trees are arranged “top to bottom”; in them, s is a super-root, r a

root, and (s,r) a root edge. (b) The mapping s; T1 → T2 is arbitrarily defined on leaves as a corre-

spondence of labels in which indices are disregarded (i.e., f1 and f2 are mapped to f). The mapping s

canonically continues onto interior nodes in T1 as s′: T1 → T2. For instance, s′(vi) = ui for 1 ≤ i ≤ 4 or i

= 6, s′(v5) = u7, and s′(v7) = s′(r) = s′(s) = t. The nodes v7, r, and s are mapped to the root edge. Images

of nodes of T1 are shown “inside” T2, so that is why we refer to edges in T2 as pipes.

If s″(e+) = s″(e−), then s′(e+) is defined as the edge entering s″(e−) from above; for in-

stance, s′ maps the super-root in T1 into the root edge in T2. Thus, s′ maps nodes in T1 into

nodes and edges in T2; see Figure 1b. This definition can be generalized to the case where

T2 is a network (see Section 2.3). We will refer to the mapping s′ as an embedding of T1 into

T2. Below, when saying “a tree T1 is mapped to a tree T2,” we always mean precisely this

mapping s′ and speak about its images and arguments. Note that in this case we have a

preassigned mapping s, which is called a leaf mapping. Of course, the mapping s′ preserves

the natural order.

The path of an edge e ∈ T1 in a tree T2 is a path consisting of nodes in T2 from s′(e+) to

s′(e−) excluding its endpoints s′(e+) and s′(e−).

The image tree of T1 in T2 is defined to be a tree isomorphic to T1 with nodes located at

nodes and in edges of T2 so that v is located either at the node s′(v) or in the pipe t = s′(v)

(see Figure 2). In this sense, edges of T2 will be referred to as pipes containing nodes and

edges of T1. Images are connected by an edge according to the parent–child relation of their

arguments. Thus, we want to consider an image tree as the T1 tree located inside T2. Our

use of mathematical interpretations in embedding is related to our inspiration from bio-

logical paradigms, such as the evolution of genomes and genomic rearrangement.

Figure 2. (a) Original tree T1, and (b) its image tree in T2; its nodes are shown in bold, and its edges

are shown as polygonal curves. The images of v1 and v2 are located at the same node u5, and the

images of v3 and v4 are in the same pipe t. For example, for the edge e′ = (v4,e), its path in T2 is u5u4u2.

Figure 2. (a) Original tree T1, and (b) its image tree in T2; its nodes are shown in bold, and its edges
are shown as polygonal curves. The images of v1 and v2 are located at the same node u5, and the
images of v3 and v4 are in the same pipe t. For example, for the edge e′ = (v4,e), its path in T2 is u5u4u2.

Mathematics 2023, 11, 2024 5 of 39

If tree leaves are assigned unique names, we may not distinguish between a leaf and
a name assigned to it. A tree with labelled leaves represents the discrete-time evolution
of a matter which is assigned to the root of the tree; the evolution goes from the root to
leaves through interior nodes of the tree. For example, this can be evolution of a gene,
protein, species, etc., from the root along the whole given tree to its leaves, which represent
up-to-date states of the initial (at the root) matter; such up-to-date states could already be
actually specified.

Evolution analysis is one of the most fundamental mathematical problems, having at
the same time a broad practical importance (see, e.g., [15–18]). Note, also, the work [19],
which describes an algorithm for solving the problem of isomorphic tree embedding in
a network and provides numerous references to articles related to this topic. A detailed
overview of topics related to evolutionary trees and numerous references are given in [6].
Issues related to phylogenetic networks are discussed in the book [7].

Let T0 be the set of all leaves of a tree or network T. The problem is as follows: given a
tree P, a set M, a tree or network S, and mappings s1: P0 →M and s2: M→ S0, find a tree G
(where G0 = M) that reconciles the evolutions s1

′ and s2
′ in the following sense. We define

costs c(s′) and c(s2
′) of the embeddings s1

′: P→ G and s2
′: G→ S, respectively, and then

minimize f (G) = c(s1
′) + c(s2

′) with respect to the argument G (see Figure 3). For the case of
a network S, the definition of the embedding cost of s2

′: G→ S is given in Section 2.7. Until
that section, S will always be a tree, and the embedding costs will be considered according
to Definitions 1 and 2 below. However, f (G) can be defined to be an easily computable
function with some properties that we will need below.

Mathematics 2023, 11, x FOR PEER REVIEW 5 of 39

If tree leaves are assigned unique names, we may not distinguish between a leaf and

a name assigned to it. A tree with labelled leaves represents the discrete-time evolution of

a matter which is assigned to the root of the tree; the evolution goes from the root to leaves

through interior nodes of the tree. For example, this can be evolution of a gene, protein,

species, etc., from the root along the whole given tree to its leaves, which represent up-to-

date states of the initial (at the root) matter; such up-to-date states could already be actu-

ally specified.

Evolution analysis is one of the most fundamental mathematical problems, having at

the same time a broad practical importance (see, e.g., [15–18]). Note, also, the work [19],

which describes an algorithm for solving the problem of isomorphic tree embedding in a

network and provides numerous references to articles related to this topic. A detailed

overview of topics related to evolutionary trees and numerous references are given in [6].

Issues related to phylogenetic networks are discussed in the book [7].

Let T0 be the set of all leaves of a tree or network T. The problem is as follows: given

a tree P, a set M, a tree or network S, and mappings s1: Р0 → M and s2: M → S0, find a tree

G (where G0 = M) that reconciles the evolutions s1′ and s2′ in the following sense. We define

costs c(s′) and c(s2′) of the embeddings s1′: P → G and s2′: G → S, respectively, and then

minimize f(G) = c(s1′) + c(s2′) with respect to the argument G (see Figure 3). For the case of

a network S, the definition of the embedding cost of s2′: G → S is given in Section 2.7. Until

that section, S will always be a tree, and the embedding costs will be considered according

to Definitions 1 and 2 below. However, f(G) can be defined to be an easily computable

function with some properties that we will need below.

Figure 3. Mappings s1 and s2 on leaves and their continuations s1′ and s2′ onto interior nodes. We

want to minimize c(s1′) + c(s2′) with respect to the gene tree G and thus find a tree G* on which c(s1′)

+ c(s2′) attains its minimum value.

We are dealing here with a general mathematical problem, so all further material is

presented independently of any applications. However, as a typical example, let us de-

scribe its content using biological terms. Let P be a tree whose leaves are assigned with

protein names (“protein evolution tree”, or, for short, protein tree), and let S be a network,

in particular a tree, whose leaves are assigned with names of species containing these pro-

teins (“species evolution network”, or, for short, species network/tree). For more details

concerning the notion of a network, see Section 2.3. At this moment, we may assume S to

be a tree. Let M be a set of genes from which proteins in leaves of P are formed, and let a

leaf mapping s1: Р0 → M be fixed where y = s1(x) is the gene from which a protein x is

formed (see Figure 3). On the other hand, a mapping s2: M → S0 is fixed where s2(y) is the

species to which a gene y belongs. The composition s2(s1): P0 → S0 defines a mapping which

specifies a species to which a protein x belongs. s1 and s2 are specified extrinsically for

applied reasons. Let G be a tree with leaf set M = G0, which is called the “gene evolution

tree”, or gene tree, or an intermediate tree with respect to P and S. Given s1 and s2, their

continuations s1′: P → G and s2′: G → S are defined. We regard s1′ as evolution of proteins

relative to genes (in the gene tree), and s2′ as evolution of genes relative to species (in the

Figure 3. Mappings s1 and s2 on leaves and their continuations s1
′ and s2

′ onto interior nodes. We
want to minimize c(s1

′) + c(s2
′) with respect to the gene tree G and thus find a tree G* on which

c(s1
′) + c(s2

′) attains its minimum value.

We are dealing here with a general mathematical problem, so all further material
is presented independently of any applications. However, as a typical example, let us
describe its content using biological terms. Let P be a tree whose leaves are assigned with
protein names (“protein evolution tree”, or, for short, protein tree), and let S be a network,
in particular a tree, whose leaves are assigned with names of species containing these
proteins (“species evolution network”, or, for short, species network/tree). For more details
concerning the notion of a network, see Section 2.3. At this moment, we may assume S to
be a tree. Let M be a set of genes from which proteins in leaves of P are formed, and let
a leaf mapping s1: P0 →M be fixed where y = s1(x) is the gene from which a protein x is
formed (see Figure 3). On the other hand, a mapping s2: M→ S0 is fixed where s2(y) is
the species to which a gene y belongs. The composition s2(s1): P0 → S0 defines a mapping
which specifies a species to which a protein x belongs. s1 and s2 are specified extrinsically
for applied reasons. Let G be a tree with leaf set M = G0, which is called the “gene evolution
tree”, or gene tree, or an intermediate tree with respect to P and S. Given s1 and s2, their
continuations s1

′: P→ G and s2
′: G→ S are defined. We regard s1

′ as evolution of proteins
relative to genes (in the gene tree), and s2

′ as evolution of genes relative to species (in the

Mathematics 2023, 11, 2024 6 of 39

species tree). The problem is to minimize c(s1
′) + c(s2

′) with respect to the gene tree G and,
as a result, to find a tree G* on which c(s1

′) + c(s2
′) attains its minimum value.

2.2. Setting of the Intermediate Tree Problem and Formulation of Theorem 1

Let the degree of every node in the trees T1 and T2 except for the super-root and
leaves be 3. All leaves are labeled with unique names, and M is the set of leaves together
with their names in T2.

The embedding s′: T1 → T2 for the trees T1 and T2 is defined above.

Definition 1. A duplication in T1 is a node of degree 3 which is mapped to a pipe. Informally, for
example, the node r ∈ T1 in Figure 4a has an image located in a pipe above the images of the children
v7 ∈ T1 and v6 ∈ T1, which is interpreted as a furcation of the node r in this pipe into v7 and v6.
A loss is a pair consisting of an edge e ∈ T1 and a node y ∈ T2 such that y belongs to the path
of e in T2 (the path does not contain the images s′(e+) and s′(e−), the extreme nodes of the path).
Informally, an edge e passes through y and has no furcation in y. A loss is said to be implicit if a
clade of one of the child pipes of y does not contain images of leaves from T1, otherwise it is said to be
explicit. We define the locus of a duplication to be its image and the locus of a loss to be the node
y. Duplications and losses will be called evolutionary events. For example, all events for the T1
tree shown in Figure 1 are presented in Figure 4. Let each event be assigned with its cost, a strictly
positive rational number. The cost c(s′) of an embedding s′ is the total cost of all its events. These
definitions can be carried over to the case where S is a network (see Section 2.3).

Mathematics 2023, 11, x FOR PEER REVIEW 6 of 39

species tree). The problem is to minimize c(s1′) + c(s2′) with respect to the gene tree G and,

as a result, to find a tree G* on which c(s1′) + c(s2′) attains its minimum value.

2.2. Setting of the Intermediate Tree Problem and Formulation of Theorem 1

Let the degree of every node in the trees T1 and T2 except for the super-root and

leaves be 3. All leaves are labeled with unique names, and M is the set of leaves together

with their names in T2.

The embedding s′: T1 → T2 for the trees T1 and T2 is defined above.

Definition 1. A duplication in T1 is a node of degree 3 which is mapped to a pipe. Informally, for

example, the node r ∈ T1 in Figure 4a has an image located in a pipe above the images of the children

v7 ∈ T1 and v6 ∈ T1, which is interpreted as a furcation of the node r in this pipe into v7 and v6. A

loss is a pair consisting of an edge e ∈ T1 and a node y ∈ T2 such that y belongs to the path of e in

T2 (the path does not contain the images s′(e+) and s′(e−), the extreme nodes of the path). Informally,

an edge e passes through y and has no furcation in y. A loss is said to be implicit if a clade of one of

the child pipes of y does not contain images of leaves from T1, otherwise it is said to be explicit. We

define the locus of a duplication to be its image and the locus of a loss to be the node y. Duplications

and losses will be called evolutionary events. For example, all events for the T1 tree shown in Figure

1 are presented in Figure 4. Let each event be assigned with its cost, a strictly positive rational

number. The cost c(s′) of an embedding s′ is the total cost of all its events. These definitions can be

carried over to the case where S is a network (see Section 2.3).

Figure 4. (a) Tree T1 given in Figure 1a above. (b) Image tree isomorphic to T1; marked in red inside

T2 (recall that its nodes are shown in bold and its edges are shown as polygonal curves). Here, two

duplications, v7 and r, are in the root pipe. Losses: in the edge (v6,f2) at node u3; in the edge (v7,v1) at

u5 and u0; in the edge (v5,v2) at u0; in the edge (v5,v3) at u6; and in the edge (r,v6) at u5. All losses are

explicit. Interior nodes in T2 are labeled by symbol u with an index. Note that the nodes r, v3, and v4

in Figure 2b are duplications.

The intermediate tree problem is as follows: given a tree P and a tree/network S

together with leaf mappings s1: Р0 → M and s2: M → S, find a tree G with leaf set M = G0

for which the sum of the costs of the embeddings s1′: P → G and s2′: G → S is minimal.

Under Definition 1, the problem consists of minimizing the total number of events that

occur in these two evolutions taking into account their costs. This number c(s1′) + c(s2′) is

called the cost of a tree G. The problem setting is not yet completed if S is a network; in

this case we also need to define the continuation s2′: G → S of the mapping s2. We define it

in Section 2.3 below, where it is called the minimum embedding; in the case of a tree, there

Figure 4. (a) Tree T1 given in Figure 1a above. (b) Image tree isomorphic to T1; marked in red inside
T2 (recall that its nodes are shown in bold and its edges are shown as polygonal curves). Here,
two duplications, v7 and r, are in the root pipe. Losses: in the edge (v6,f 2) at node u3; in the edge
(v7,v1) at u5 and u0; in the edge (v5,v2) at u0; in the edge (v5,v3) at u6; and in the edge (r,v6) at u5. All
losses are explicit. Interior nodes in T2 are labeled by symbol u with an index. Note that the nodes r,
v3, and v4 in Figure 2b are duplications.

The intermediate tree problem is as follows: given a tree P and a tree/network S
together with leaf mappings s1: P0 →M and s2: M→ S, find a tree G with leaf set M = G0
for which the sum of the costs of the embeddings s1

′: P→ G and s2
′: G→ S is minimal.

Under Definition 1, the problem consists of minimizing the total number of events that
occur in these two evolutions taking into account their costs. This number c(s1

′) + c(s2
′) is

called the cost of a tree G. The problem setting is not yet completed if S is a network; in
this case we also need to define the continuation s2

′: G→ S of the mapping s2. We define it
in Section 2.3 below, where it is called the minimum embedding; in the case of a tree, there is

Mathematics 2023, 11, 2024 7 of 39

exactly one minimum embedding, i.e., the embedding s′ defined in Section 2.1. The main
feature of a minimum embedding in the case of a network is the fact that it is not defined
uniquely; there exist many minimum embeddings.

The problem for the case of a tree S was posed in [8], where it was proved that the
problem is NP-hard. The latter means that it cannot be solved by any polynomial algorithm
if P 6= NP. However, a polynomial algorithm or even a low-complexity algorithm can be
found if we introduce some additional conditions into the problem. In [8], the problem for
a tree was solved by a heuristic (quadratic-complexity) algorithm given that the mapping
s1 is injective; moreover, that algorithm did not assume the costs of events. Instead, we
suggest another condition.

(*) The tree G contains only clades from a fixed-in-advance collection B of non-empty
subsets of M such that B contains M itself and all its one-element subsets, and any non-one-
element set A in B has a partition in B.

The latter means that A can be partitioned into two non-empty disjoint parts from
B; in particular, B does not contain the empty set. In Section 2.5, we explain how one can
construct a collection B satisfying condition (*).

Under this condition, we obtain an exact (cubic-complexity) algorithm solving this
problem for both a tree and a network S. Even for the case of a tree, our algorithm is other
than that in [8]. Additionally, for the case of a network we propose an algorithm finding
one particular minimum embedding which is denoted by s2

′: G→ S.
Thus, below, we prove the following.

Theorem 1. An exact cubic-time (in the input data size) algorithm is construct which, given a
binary tree P, binary tree S, and a collection B of subsets of M, outputs a binary tree G minimizing
the sum of costs of embeddings of P to G and of G to S provided that G contains only clades from B.

Theorem 2. An exact cubic-time (in the input data size) algorithm is constructed which, given a
binary tree P, binary network S, and a collection B of subsets of M, outputs a binary tree G and a
minimum embedding s2

′ minimizing the sum of costs of embeddings of P to G and of G to S provided
that G contains only clades from B.

To conclude this subsection, we note that the practical relevance of this problem is, in
particular, explained in [8], where extensive references to the history of the intermediate
tree problem in the context of bioinformatics are provided. The definition of a mapping
from one tree to another, known in the literature as “alpha mapping,” was proposed in the
mid-1990s in [13,14]. For the case of trees T1 and T2, linear time algorithms for constructing
a unique embedding s′: T1 → T2 are known [20,21].

2.3. Definition of an Embedding of a Tree into a Network

Definition 2. Let s′: T1 → T2 be an embedding. Recall that edges in T2 are referred to as pipes.
An edge e ∈ T1 enters a pipe t ∈ T2 if s′ maps e+ to t+ or above t+ and maps e− to t or below t.
Informally, in the image tree, the edge e persists at t+ and either becomes lost inside t or goes further
through the whole t (see Figure 5a). Similarly, an edge e leaves a pipe t ∈ T2 if s′ maps e+ to t− or
above and maps e− strictly below t−. Informally, in the image tree, the edge e arises at t− or above
and persists in one of the child pipes of t−, maybe partially (see Figure 5b). Such a description is
called an evolutionary scenario of T1 in T2.

Mathematics 2023, 11, 2024 8 of 39Mathematics 2023, 11, x FOR PEER REVIEW 8 of 39

Figure 5. (a) Edge e enters pipe t: edge e persists at t+ and either becomes lost in t (bold line) or leaves

t (dashed line). (b) Edge e leaves the pipe t: edge e arises at t− (bold line) or arises above and persists

in one of the child pipes of t−, passing through the whole t1 or through its part (dashed line).

From binary network S, we understand a directed acyclic graph with nodes divided

into four groups, one node of in-degree 0 and out-degree 1 (the super-root), nodes of in-

degree 1 and out-degree 2 (tree-type nodes, including the root), nodes of in-degree 2 and

out-degree 1 (hybrid nodes), and nodes of in-degree 1 and out-degree 0 (leaves). Thus, a

tree is a particular case of a network with no hybrid nodes. A node may have two parents,

so the notion of a nearest common ancestor is not well defined (see Figure 6). If there is a

directed path from node x to node y, then we say that x is above y and write x ≥ y or y ≤ x.

A hybrid pipe t is a pipe whose endpoint t− is a hybrid node. A tree-type pipe is defined

similarly.

Figure 6. Example of a network: nodes u3, u4, u6, u7, u9, u10, and r are tree-type; nodes u1, u2, u5, and

u8 are hybrid; and a, b, c, and d are leaves. There are four groups of nodes.

The continuation of this order onto all nodes and pipes, which is also written as x is

above y (x ≥ y) or y is below x (y ≤ x), is defined similarly. For example, pipe e is below e+ and

above e−. Sometimes, the term ancestor is used instead of above, and descendant is used in-

stead of below; a node located immediately above some node is called its parent, and a node

located immediately below some node is called its child; nodes located immediately below

the same node are said to be sibling nodes; each of them is called a sister of any other one.

A subnetwork Sx is the network consisting of a node x and everything that lies below

it, together with a root pipe (for Sx) entering x from above; if there are two such pipes,

choose any of them. The leaf set in Sx is called a clade in S or the clade of the node x, or also

Figure 5. (a) Edge e enters pipe t: edge e persists at t+ and either becomes lost in t (bold line) or leaves
t (dashed line). (b) Edge e leaves the pipe t: edge e arises at t− (bold line) or arises above and persists
in one of the child pipes of t−, passing through the whole t1 or through its part (dashed line).

From binary network S, we understand a directed acyclic graph with nodes divided
into four groups, one node of in-degree 0 and out-degree 1 (the super-root), nodes of in-
degree 1 and out-degree 2 (tree-type nodes, including the root), nodes of in-degree 2 and
out-degree 1 (hybrid nodes), and nodes of in-degree 1 and out-degree 0 (leaves). Thus, a
tree is a particular case of a network with no hybrid nodes. A node may have two parents,
so the notion of a nearest common ancestor is not well defined (see Figure 6). If there is
a directed path from node x to node y, then we say that x is above y and write x ≥ y or
y ≤ x. A hybrid pipe t is a pipe whose endpoint t− is a hybrid node. A tree-type pipe is
defined similarly.

Mathematics 2023, 11, x FOR PEER REVIEW 8 of 39

Figure 5. (a) Edge e enters pipe t: edge e persists at t+ and either becomes lost in t (bold line) or leaves

t (dashed line). (b) Edge e leaves the pipe t: edge e arises at t− (bold line) or arises above and persists

in one of the child pipes of t−, passing through the whole t1 or through its part (dashed line).

From binary network S, we understand a directed acyclic graph with nodes divided

into four groups, one node of in-degree 0 and out-degree 1 (the super-root), nodes of in-

degree 1 and out-degree 2 (tree-type nodes, including the root), nodes of in-degree 2 and

out-degree 1 (hybrid nodes), and nodes of in-degree 1 and out-degree 0 (leaves). Thus, a

tree is a particular case of a network with no hybrid nodes. A node may have two parents,

so the notion of a nearest common ancestor is not well defined (see Figure 6). If there is a

directed path from node x to node y, then we say that x is above y and write x ≥ y or y ≤ x.

A hybrid pipe t is a pipe whose endpoint t− is a hybrid node. A tree-type pipe is defined

similarly.

Figure 6. Example of a network: nodes u3, u4, u6, u7, u9, u10, and r are tree-type; nodes u1, u2, u5, and

u8 are hybrid; and a, b, c, and d are leaves. There are four groups of nodes.

The continuation of this order onto all nodes and pipes, which is also written as x is

above y (x ≥ y) or y is below x (y ≤ x), is defined similarly. For example, pipe e is below e+ and

above e−. Sometimes, the term ancestor is used instead of above, and descendant is used in-

stead of below; a node located immediately above some node is called its parent, and a node

located immediately below some node is called its child; nodes located immediately below

the same node are said to be sibling nodes; each of them is called a sister of any other one.

A subnetwork Sx is the network consisting of a node x and everything that lies below

it, together with a root pipe (for Sx) entering x from above; if there are two such pipes,

choose any of them. The leaf set in Sx is called a clade in S or the clade of the node x, or also

Figure 6. Example of a network: nodes u3, u4, u6, u7, u9, u10, and r are tree-type; nodes u1, u2, u5, and
u8 are hybrid; and a, b, c, and d are leaves. There are four groups of nodes.

The continuation of this order onto all nodes and pipes, which is also written as x is
above y (x ≥ y) or y is below x (y ≤ x), is defined similarly. For example, pipe e is below e+
and above e−. Sometimes, the term ancestor is used instead of above, and descendant is used
instead of below; a node located immediately above some node is called its parent, and a
node located immediately below some node is called its child; nodes located immediately
below the same node are said to be sibling nodes; each of them is called a sister of any
other one.

A subnetwork Sx is the network consisting of a node x and everything that lies below
it, together with a root pipe (for Sx) entering x from above; if there are two such pipes,
choose any of them. The leaf set in Sx is called a clade in S or the clade of the node x, or also

Mathematics 2023, 11, 2024 9 of 39

the clade of the root pipe entering x; we denote the clade of x by x<. A subnetwork may
contain nodes with two parents, such that one of them does not belong to Sx. Such nodes
of a subnetwork will still be referred to as hybrid nodes. Throughout what follows, by a
network we mean a rooted binary network with a root pipe, and similarly for a subnetwork.

As in the case of two trees, for a tree G and a network S we define a continuation s′′ of
a mapping s from leaves in G to leaves in S, though, on interior nodes, the value of s′′ can
also be a pipe in S. Namely, let a continuation s” from nodes in G to nodes and pipes in S
be any continuation of s preserving the natural ordering ≤ in G and having the following
properties, the super-root in G is mapped to the root pipe in S; and the image y = s′′(x) of a
node x is not a hybrid node. If s′′(x) is a tree-type node, then the paths px-x1 and px-x2 of
the child edges of x enter different child pipes of s′′(x). Moreover, the mapping s′′ for any
edge e ∈ G is complemented with pointing to a directed path pe which consists of nodes in S
leading from s′′(e+) to s′′(e−). An example in Figure 7b is the node e−, which is mapped to
t−. For the case of a tree, such a path pe is unique; above, it was called the path of the edge
e. Such a non-unique s′′ will be called an embedding of a tree G into a network S.

Mathematics 2023, 11, x FOR PEER REVIEW 9 of 39

the clade of the root pipe entering x; we denote the clade of x by x<. A subnetwork may

contain nodes with two parents, such that one of them does not belong to Sx. Such nodes

of a subnetwork will still be referred to as hybrid nodes. Throughout what follows, by a

network we mean a rooted binary network with a root pipe, and similarly for a subnetwork.

As in the case of two trees, for a tree G and a network S we define a continuation s″

of a mapping s from leaves in G to leaves in S, though, on interior nodes, the value of s″

can also be a pipe in S. Namely, let a continuation s″ from nodes in G to nodes and pipes

in S be any continuation of s preserving the natural ordering ≤ in G and having the fol-

lowing properties, the super-root in G is mapped to the root pipe in S; and the image y =

s″(x) of a node x is not a hybrid node. If s″(x) is a tree-type node, then the paths px-x1 and

px-x2 of the child edges of x enter different child pipes of s″(x). Moreover, the mapping s″

for any edge e ∈ G is complemented with pointing to a directed path pe which consists of

nodes in S leading from s″(e+) to s″(e−). An example in Figure 7b is the node e−, which is

mapped to t−. For the case of a tree, such a path pe is unique; above, it was called the path

of the edge e. Such a non-unique s″ will be called an embedding of a tree G into a network

S.

Figure 7. Example of two different minimum embeddings G → S with G = ((a1,a2),(a3,a4)) and a net-

work shown in the figure. (a) The edges e1 and e2 neither enter nor leave t. The edge e11 leaves t1. (b)

The edge e1 leaves the pipe t because s′ maps e1+ to t− and maps e1− strictly below t−, and pe1 passes

through t1. Similarly, e2 leaves t through t2.

Now we will repeat Definitions 1 and 2 for a network. An edge e ∈ G enters a pipe t

∈ S if s″ maps e+ to t+ or above t+, maps e− to t or below t, and pe passes through t, maybe

partially. Similarly, an edge e leaves a pipe t if s″ maps e+ to t− or above t−, maps e− strictly

below t−, and pe passes through ti, maybe partially, where ti is a child pipe of t.

Let us be given an embedding s″: G → S. A duplication in G is a node of degree 3

which is mapped to a pipe. A loss in G is a pair consisting of an edge e ∈ G and a tree-type

node z ∈ S, such that z lies in pe (and does not coincide with s′(e+) or s′(e−)). A loss is said to

be implicit if one of the subnetworks with a root pipe starting at z does not contain images

from G0, otherwise, it is said to be explicit. The locus of a duplication is defined to be its

image, and the locus of a loss is the node z. Duplications and losses will be called evolu-

tionary events. We assume each of them to be assigned with its cost, a strictly positive

rational number. The cost c(s″) of an embedding s″ is the total cost of all duplication and

Figure 7. Example of two different minimum embeddings G → S with G = ((a1,a2),(a3,a4)) and a
network shown in the figure. (a) The edges e1 and e2 neither enter nor leave t. The edge e11 leaves t1.
(b) The edge e1 leaves the pipe t because s′ maps e1+ to t− and maps e1− strictly below t−, and pe1

passes through t1. Similarly, e2 leaves t through t2.

Now we will repeat Definitions 1 and 2 for a network. An edge e ∈ G enters a pipe
t ∈ S if s′′ maps e+ to t+ or above t+, maps e− to t or below t, and pe passes through t, maybe
partially. Similarly, an edge e leaves a pipe t if s′′ maps e+ to t− or above t−, maps e− strictly
below t−, and pe passes through ti, maybe partially, where ti is a child pipe of t.

Let us be given an embedding s′′: G→ S. A duplication in G is a node of degree 3
which is mapped to a pipe. A loss in G is a pair consisting of an edge e ∈ G and a tree-type
node z ∈ S, such that z lies in pe (and does not coincide with s′(e+) or s′(e−)). A loss is
said to be implicit if one of the subnetworks with a root pipe starting at z does not contain
images from G0, otherwise, it is said to be explicit. The locus of a duplication is defined to
be its image, and the locus of a loss is the node z. Duplications and losses will be called
evolutionary events. We assume each of them to be assigned with its cost, a strictly positive
rational number. The cost c(s′′) of an embedding s′′ is the total cost of all duplication and loss
events in it. The notions defined in this paragraph are also well applicable to an embedding
s′′: P→ G, which leads to costs of the embeddings s1”: P→ G and s2”: G→ S. As a result,

Mathematics 2023, 11, 2024 10 of 39

we have two costs, c1(s′′) and c2(s′′), and their sum c1(s′′) + c2(s′′). The duplication and loss
events were introduced in [14] in connection with the “alpha” mapping.

Definition 3. A minimum embedding s′ of a tree G into a network S is an embedding s” with the
minimum cost.

It is easy to construct a minimum embedding s′: G → S, where S is a network (min-
imum with respect to duplication and loss events). However, there can be many such
minimum embeddings.

Such embeddings can be constructed by induction, where the induction step consists
of embedding a subtree Ge into a subnetwork St in ascending order of their size (first over
all t until we reach the root pipe, and then over all e until we reach the root edge), as is
usually performed in dynamic programming.

At a step of this induction, costs of two embedding variants may happen to be the
same; an example is shown in Figure 7, where e is a root edge and e− is mapped to either t
(then e is duplicated in t) or t− (then e forks together with t). This generates two different
minimum embeddings. Namely, for the tree G = ((a1,a2),(a3,a4)) and for the network with
leaves a, b, and c, we show two different minimum embeddings under duplication cost 2
and implicit loss cost 1. Each of them has s cost of 6; the first embedding has one duplication
and 4 implicit losses, whereas the second has two duplications and two implicit losses.

2.4. Algorithm for Constructing an Intermediate Tree

We present an algorithm for the general case where S is a network and where dupli-
cations and explicit and implicit losses have arbitrary costs. In the first reading, it might
be convenient to assume that S is a tree. Recall that M is the set of leaves of the sought-for
intermediate tree G*, see Figure 3, where G is a variable tree, the argument of the functional
over which the cost of an intermediate tree G is minimized. Let cdp and cdm denote, respec-
tively, the costs of duplications under mappings are s1 and s2; elp and elm are the costs of
explicit losses; and ilp and ilm are the costs of implicit losses.

For an arbitrary non-empty subset A ⊆ M, denote by E(A) the set of edges e ∈ P for
which the following is valid: s1(e<) ⊆ A and there is no e1 ∈ P with e1 > e for which
s1(e1<) ⊆ A. For example, for the root edge r in G (or root pipe in S and mapping s2(s1))
we have E(r<) = {r′}, where r′ is the root edge in P. It is easily seen that a non-root edge t
in the tree G is entered by precisely edges from E(t<). We will also consider the relation
s2(t<) ⊆ A ⊆ S0, where t ∈ G.

The algorithm presented below exhaustively examines all partitions of each set
A = (A1 ∪ A2) ∈ B, A ⊆M. More precisely, we exhaustively examine all pairs consisting of a
set A ∈ B and a pipe z ∈ S, where s2(A) ⊆ z<. For that, we use the following order on pairs
(A,z): ascending order of the cardinality |A| of A; for equal cardinalities, we arbitrarily fix
an order on the first coordinate; for a fixed A, we fix any order extending the relation < over
pipes z ∈ S from leaves to the root. According to this order, the algorithm constructs a final
tree G = G(A,z) with leaf set A, partition A = (A1 ∗ A2), and root edge t in G which starts in z.
The algorithm constructs a tree G so that A1 = t1< and A2 = t2<, where t1 and t2 are children
of the edge t. The algorithm also calculates C(A,z), the sum of costs of embeddings into G
over all subtrees in P with root edges e ∈ E(A) plus the cost of the minimum embedding of
G itself into the subnetwork Sz. This whole sum will be called the cost C(A,z) of the tree
G(A,z). Clearly, the tree G* = G(M,r) obtained at the output of the algorithm is a solution to
the intermediate tree problem, and its cost equals C(M,r). The flow chart of the algorithm is
shown in Figure 8.

Mathematics 2023, 11, 2024 11 of 39Mathematics 2023, 11, x FOR PEER REVIEW 11 of 39

Figure 8. The flow chart of the algorithm for Theorem 1. The cost of a partition of A is computed

based on the induction assumption that partitions of A1 and A2 and their costs are known.

The induction base for a one-element set {m} = A and a leaf pipe z ∈ S, the tree G(A,z)

consists of m and the root edge in m, then C(A,z) =
()

? | | 1)dp

x E A

c x

− .

Consider the induction step. It includes four cases, in which T denotes a candidate

for G(A,z) and C denotes a candidate for the cost C(A,z). In Cases 1 and 2 below, z ∈ S forks

in pipes z1 and z2, and in Case 2 it can also be a leaf in S.

If S is a tree, Case 4 is impossible, so only one of Cases 1–3 can be applied. Moreover,

if s2(A) ⊆ t1<, then we may only proceed with Case 1; if s2(A1) ⊆ t1<, s2(A2) ⊆ t2<, we may only

proceed with Case 3; if none of these conditions is satisfied, we proceed with Case 2. How-

ever, below we present the general algorithm assuming S to be a network.

(1) Let z− ∈ S be a tree-type node (a hybrid node is considered in Case 4), and assume

that an edge t ∈ G leaves z and enters the pipe z1, i.e., s2′(t−) ≤ z1. This is the case of a loss of

edge t at node z− with respect to the embedding s2′. Let T = G(A,z1) and C = (A,z1) + l, where

l = elm if z2< contains an element from s2(M) and l = ilm otherwise. Note that A = t< and that

for the tree S, the relation s2(A) ⊆ z1< holds in this case only. Symmetrically for t2.

(2) Let A1,A2 ∈ B be a partition of A, and assume that there is duplication in a pipe z ∈

S with respect to s2′, i.e., s2′(t−) = z ∈ S and the edge t is forked in z into t1 and t2. Let T =

G(A1,z)^G(A2,z), where ^ denotes the union of trees G(A1,z) and G(A2,z) under a common

root, i.e., t1< = A1 and t2< = A2. Denote by k the number of nodes v ∈ P, such that s1′(v) = t−,

i.e., one edge leaving v lies in E(A1) and the other is in E(A2). Let

C = C(A1,z) + C(A2,z) + {cdm + cdp·(|E(A1)| + |E(A2)| − |E(A)| − k) + elp·(|E(A1)| + |E(A2)| − 2k)}

If s1(P0) intersects with both A1 and A2, or C = C(A1,z) + C(A2,z) + {cdm + ilp·|E(A)|} oth-

erwise.

(3) Let A1,A2 ∈ B be a partition of A and assume that s2′(t−) = z−, i.e., the edge t is forked

at a furcation z− ∈ S, z1 is entered by edge t1 with clade A1, and z2 is entered by edge t2 with

clade A2. This is the case of a coordinated furcation of t and z. As in Case 2, let T =

G(A1,z1)^G(A2,z2), and let k be the number of nodes v ∈ P with s1′(v) = t−. Let

C = C(A1,z1) + C(A2,z2) + {cdp·(|E(A1)| + |E(A2)| − |E(A)| − k) + elp·(|E(A1)| + |E(A2)| − 2k)}

If s1(P) intersects with A1 and A2, and C = C(A1,z1) + C(A2,z2) + ilp·|E(A)| otherwise.

Note that the condition s2(A1) ⊆ t1< and s2(A2) ⊆ t2< on the tree S holds in this case only.

(4) Edge t leaves a hybrid node z and goes into its unique child pipe z0, i.e., s2′(t−) ≤ z0.

Then, T = G(A,z0) and C = C(A,z0).

For a final G(A,z) at step (A,z), the algorithm chooses the tree T with the minimum

value of C over all cases and all partitions of A. This number C will be the cost C(A,z) of

Figure 8. The flow chart of the algorithm for Theorem 1. The cost of a partition of A is computed
based on the induction assumption that partitions of A1 and A2 and their costs are known.

The induction base for a one-element set {m} = A and a leaf pipe z ∈ S, the tree G(A,z)
consists of m and the root edge in m, then C(A,z) = cdp· ∑

x∈E(A)
(|x<| − 1).

Consider the induction step. It includes four cases, in which T denotes a candidate for
G(A,z) and C denotes a candidate for the cost C(A,z). In Cases 1 and 2 below, z ∈ S forks in
pipes z1 and z2, and in Case 2 it can also be a leaf in S.

If S is a tree, Case 4 is impossible, so only one of Cases 1–3 can be applied. Moreover,
if s2(A) ⊆ t1<, then we may only proceed with Case 1; if s2(A1) ⊆ t1<, s2(A2) ⊆ t2<, we may
only proceed with Case 3; if none of these conditions is satisfied, we proceed with Case 2.
However, below we present the general algorithm assuming S to be a network.

(1) Let z− ∈ S be a tree-type node (a hybrid node is considered in Case 4), and assume
that an edge t ∈ G leaves z and enters the pipe z1, i.e., s2

′(t−) ≤ z1. This is the case of a loss
of edge t at node z− with respect to the embedding s2

′. Let T = G(A,z1) and C = (A,z1) + l,
where l = elm if z2< contains an element from s2(M) and l = ilm otherwise. Note that A = t<
and that for the tree S, the relation s2(A) ⊆ z1< holds in this case only. Symmetrically for t2.

(2) Let A1,A2 ∈ B be a partition of A, and assume that there is duplication in a pipe
z ∈ S with respect to s2

′, i.e., s2
′(t−) = z ∈ S and the edge t is forked in z into t1 and t2.

Let T = G(A1,z)ˆG(A2,z), where ˆ denotes the union of trees G(A1,z) and G(A2,z) under a
common root, i.e., t1< = A1 and t2< = A2. Denote by k the number of nodes v ∈ P, such that
s1
′(v) = t−, i.e., one edge leaving v lies in E(A1) and the other is in E(A2). Let

C = C(A1,z) + C(A2,z) + {cdm + cdp·(|E(A1)| + |E(A2)| − |E(A)| − k) + elp·(|E(A1)| + |E(A2)| − 2k)}

If s1(P0) intersects with both A1 and A2, or C = C(A1,z) + C(A2,z) + {cdm + ilp·|E(A)|} otherwise.
(3) Let A1,A2 ∈ B be a partition of A and assume that s2

′(t−) = z−, i.e., the edge t is
forked at a furcation z− ∈ S, z1 is entered by edge t1 with clade A1, and z2 is entered by
edge t2 with clade A2. This is the case of a coordinated furcation of t and z. As in Case 2, let
T = G(A1,z1)ˆG(A2,z2), and let k be the number of nodes v ∈ P with s1

′(v) = t−. Let

C = C(A1,z1) + C(A2,z2) + {cdp·(|E(A1)| + |E(A2)| − |E(A)| − k) + elp·(|E(A1)| + |E(A2)| − 2k)}

If s1(P) intersects with A1 and A2, and C = C(A1,z1) + C(A2,z2) + ilp·|E(A)| otherwise.
Note that the condition s2(A1) ⊆ t1< and s2(A2) ⊆ t2< on the tree S holds in this case only.

(4) Edge t leaves a hybrid node z and goes into its unique child pipe z0, i.e., s2
′(t−) ≤ z0.

Then, T = G(A,z0) and C = C(A,z0).
For a final G(A,z) at step (A,z), the algorithm chooses the tree T with the minimum

value of C over all cases and all partitions of A. This number C will be the cost C(A,z) of
this tree T; at each step (A,z), the algorithm obtains the cost C(A,z) of a final tree G(A,z). For

Mathematics 2023, 11, 2024 12 of 39

the final output tree, the algorithm chooses G* = G(M,r), where r is the root pipe in S. This
G* is a solution to the intermediate tree problem. All these facts are proved below. �

Proof of Theorem 1. The proof is constructed by induction, in the dynamic programming
style typically used for the optimization of a loss function, the latter being in our case the
cost of the tree G.

The algorithm exactness. Using induction on all pairs (A,z), let us check that for
each of the above four cases the cost c(T,A,z) of the tree T specified in this case equals
the number C given there. In particular, the cost of the final tree G* = G(M,r) is C(M,r).
The induction base, as well as induction steps of Cases 1 and 4, are obvious. Consider
Case 3 of the algorithm; Case 2 is considered similarly. Recall that c(T,A,z) = c(s1

′) + c(s2
′),

where c(s1
′) is the total cost of embeddings into T of subtrees in P with root edges from

E(A) (we call it the first part of the cost) and c(s2
′) is the cost of the embedding of T into

Sz (the second part of the cost); denote c(T,A,z) = 1(T,A,z) + 2(T,A,z). In Case 3, we obtain
1(T,A,z) = 1(T1,A1,z1) + 1(T2,A2,z2) + d, where T1 and T2 are subtrees with root edges t1
and t2, and d is the total cost of duplications in t and losses in t_ for the embedding
of subtrees from P into T. Similarly, 2(T,A,z) = 2(T1,A1,z1) + 2(T2,A2,z2). Hence, c(T,A,z)
= c(T1,A1,z1) + c(T2,A2,z2) + d. By the induction hypothesis, C(A1,z1) = c(T1,A1,z1) and
C(A2,z2) = c(T2,A2,z2). It remains to show that { . . . } = d, where { . . . } is the third term in
the expression for C. Indeed, the edge t is entered by |E(A)| edges from P, and the edges
t1 and t2 are entered, respectively, by |E(A1)| and |E(A2)| edges that are children of the
edges entering t. From the subtrees with root edges in E(A), delete everything that is below
the edges entering t1 or t2. We obtain |E(A)| trees, in total with |E(A1)| + |E(A2)| leaves.
Let I be the set of inner nodes in them. Clearly, |I| = |E(A1)| + |E(A2)| − |E(A)|. Every
node in I is either a duplication in t or a furcation in t_, and vice versa, any such duplication
or furcation corresponds to a node in I. By the definition, the number of furcations is k,
and all other nodes in I are duplications. Among the |E(A1)| + |E(A2)| edges entering
t1 or t2, exactly 2k do not generate a loss in t′−. Losses in t′− are either all explicit or all
implicit, which depends on the sets A1 = t1< and A2 = t2< only. In the first case, we obtain
the first expression for C. In the second case, we have k = 0, which implies that there are no
duplications in t; i.e., |E(A1)| + |E(A2)| = |E(A)|. This follows from the facts that P and G
are trees and from the definition of s′.

Now, following the same induction, we prove that the cost C(A,z) of the tree G(A,z)
constructed at step (A,z) is the desired minimum in the intermediate tree problem. Let X be
a minimum tree with leaf set A; by the condition, all its clades belong to some B which with
respect to P, Sz, and some embedding s2: Xt → Sz is minimal in the intermediate tree cost;
in particular, s2: Xt → Sz is a minimum embedding. For X, the conditions of one of Cases
1–4 of the algorithm are satisfied. Let, for example, the conditions of Case 3 be fulfilled; the
other cases are considered similarly. Denote by f (X) = s1

′(X) + s2
′(X) the minimized cost in

the intermediate tree problem. Denote by X1 and X2 the subtrees with root edges t1 and
t2 embedded in the subnetworks Sz1 and Sz2. Their clades are some sets A1 and A2 in B.
Repeating the arguments of the preceding paragraph, we obtain f (X) = f (X1) + f (X2) + d,
where d is the sum of duplications in t in losses in t_ when embedding the subtrees from P
into X. Then, we have

C(A,z) ≤ C(A1∪A2, z) = C(A1,z1) + C(A2,z2) + d ≤ f (X1) + f (X2) +d = f (X);

here, C(A1∪A2, z) is the value of C computed with respect to the partition A1 and A2. Hence,
f (G(A,z)) = f (X).

The algorithm runtime. We construct sets E(A) for all A ∈ B in a time of the order of
|B|·|P|. Inclusions and intersections for sets in B are computed in a time of the order
of |B|2 ·|M|. Inclusions of sets from B into clades of the network S are computed in a
time of the order of |B|·|S|·|M|. All partitions of each set A ∈ B into sets A1,A2 ∈ B are
computed in a time of the order of |B|3; for every triple A, A1, A2 of sets one checks that
A1 and A2 are disjoint and |A1| + |A2| = |A|. For every A ∈ B and every partition into

Mathematics 2023, 11, 2024 13 of 39

A1 and A2, one computes the number k of nodes v ∈ P in a time of the order of |P|. The
number of sets A and of partitions of A is no greater than |B|, so the total computation
time for all k and for all A is of the order of |B|2 ·|P|.

At each induction step when constructing the trees G(A,z), for each A ∈ B and each
pipe t we examine at most |B| partitions of A. For each partition, the cost C is computed
in a constant time. Therefore, the total construction time for all G(A,z) is of the order of
|B|2·|S|. The total runtime of the algorithm is at most of the order of |B|·(|B|·|M| +
|S|·|M| + |B|2 + |B|·|P| + |B|·|S|). �

Remark 1. If S is a tree, then the described algorithm can be generalized so that to take into account
horizontal transfers when computing the embedding of G into S. Such an event assumes that pipes
in S are divided into time layers, which often results in occurrence of nodes of degree 2 (see [22]).
A horizontal transfer consists of transferring an edge of G from one pipe of S into another pipe
lying in the same time layer. A transfer may have a furcation at the source or do not have it (in the
first case, the furcation occurs in the pipe, with one of the child edges remaining in its pipe and the
other being transferred). To obtain the corresponding algorithm, we need to add two more cases to
the described-above algorithm. These are furcation of an edge e in z with transferring one of the
child edges to another pipe in the same time layer, and transferring an edge e (without furcation) to
another pipe of the same layer. In both cases, it is not necessarily required that s2(A) ⊆ z<.

2.5. Constructing the Main Parameter of the Algorithm

Recall that M is a set of leaves in a tree G* to be constructed by the algorithm from
Section 2.4 (Theorem 1). The sought-for intermediate tree G* depends on a fixed collection
B of subsets in M; this B is called the main parameter of the algorithm. Since the intermediate
tree problem is NP-hard, any polynomial-complexity algorithm does not necessarily find an
intermediate tree G** with an absolutely minimum cost which is a solution of the original
problem in the unconditional setting (if P 6= NP).

Given an arbitrary collection B′ of subsets of M, the main parameter is a collection B
satisfying property (*), whose construction is described in Appendix A; this B contains, at
most, |M| times as many elements as the original B′.

Let us extend a given B′ by adding images (under s1) of all clades in P and inverse
images (under s2) of all clades in S; then we pass to B using the procedure described in
Appendix A. Nevertheless, execution of the algorithm from Section 2.4 with this collection
B may produce a result G* whose cost can sometimes be essentially greater than the cost of
the tree G**.

Let us present a further extension for collection B′, which could be of use in applied
computations. We first describe this extension for the case where S is a tree. Consider the
trees P and S with their embedding composition s2(s1)′. For each pipe z ∈ S, one considers
the set Oz of edges in P that leave z. For each subset O′ ⊆ Oz ⊆ P, one adds to B′ all images
s1(∪{e<|e ∈ O′}) for all O′ ⊆ Oz and all z ∈ S and then extends the obtained B′ to the
main parameter B. Simulation has shown that for such B runtime of the algorithm from
Section 2.4 remains to be cubic but the cost C* of the tree G* reduces significantly, so that
C* becomes close to the solution of the unconditional problem (simulation results are not
presented here).

If, nevertheless, the main parameter B is not sufficiently large to provide a smaller C*,
we may use another mapping of P to S, which provides the minimum of duplication clusters
(the definition and an efficient construction algorithm for this mapping are described in [23]).
For example, the two bottom duplications in Figure 2b form a cluster in the sense of [23].
That embedding differs from our embedding s′ in that duplications often occur higher than
under s′, which leads to increasing cardinalities of the sets Ot. If a main parameter B slows
down the execution of the algorithm too much, we may, vice versa, consider the tree S with
time layers, which reduces the sets Ot; in this case, the definition of the embedding and an
efficient construction algorithm for it are described in [22].

Mathematics 2023, 11, 2024 14 of 39

If S is a network, then the extension of a standard collection B0 is defined via the
embedding s′: P→ S constructed in Theorem 3 disregarding ILS events. Let us briefly recall
the construction. Exhaustively examine all pairs consisting of an edge e ∈ P and a pipe
z ∈ S with condition s2(s1)(e<) ⊆ z<. For each such pair (e,z), one constructs a minimum
embedding of the subtree Pe into a subnetwork Sz inductively; when passing to a larger pair
(e,z), one chooses the case in Section 2.4 with the smallest cost. The resulting embedding is
a mapping from P = Pr ′ to the network S = Sr, where r′ and r are the root edge and the root
pipe in P and in S.

One can also adjust collection B using an embedding which, along with duplications
and losses, takes account of Incomplete Linear Sorting events (see Section 2.7 below).

2.6. Example of the Algorithm Operation

Let us show how the algorithm works using an example from [6], where S = (((a,b),c),(f,(d,e)))
is a tree, P = (((a,f),c),(e,(b,d))), M = {a,b,c,d,e,f }; and s1 and s2 map each leaf to itself. Let
the cost of all explicit losses be 2, of all implicit losses be 1, and of all duplications be 3;
and collection B′ is as follows: {a,f }, {a,f,c}, {b,d}, {e,b,d}, {a,b}, {a,b,c}, {d,e}, {f,d,e}, the set M
itself, and all one-element sets in M. The embedding s′: P→ S is shown as an image tree
in Figure 9.

Mathematics 2023, 11, x FOR PEER REVIEW 14 of 39

If S is a network, then the extension of a standard collection B0 is defined via the

embedding s′: P → S constructed in Theorem 2 disregarding ILS events. Let us briefly

recall the construction. Exhaustively examine all pairs consisting of an edge e ∈ P and a

pipe z ∈ S with condition s2(s1)(e<) ⊆ z<. For each such pair (e,z), one constructs a minimum

embedding of the subtree Pe into a subnetwork Sz inductively; when passing to a larger

pair (e,z), one chooses the case in Section 2.4 with the smallest cost. The resulting embed-

ding is a mapping from P = Pr′ to the network S = Sr, where r′ and r are the root edge and

the root pipe in P and in S.

One can also adjust collection B using an embedding which, along with duplications

and losses, takes account of Incomplete Linear Sorting events (see Section 2.7 below).

2.6. Example of the Algorithm Operation

Let us show how the algorithm works using an example from [6], where S =

(((a,b),c),(f,(d,e))) is a tree, P = (((a,f),c),(e,(b,d))), M = {a,b,c,d,e,f}; and s1 and s2 map each leaf

to itself. Let the cost of all explicit losses be 2, of all implicit losses be 1, and of all duplica-

tions be 3; and collection B′ is as follows: {a,f}, {a,f,c}, {b,d}, {e,b,d}, {a,b}, {a,b,c}, {d,e}, {f,d,e},

the set M itself, and all one-element sets in M. The embedding s′: P → S is shown as an

image tree in Figure 9.

Figure 9. Embedding s′ of the tree P into the tree S. This embedding is constructed according to the

definition of an embedding in Section 2.1.

Construct the main parameter B. The root pipe adds to B′ the sets {a,b,f,d}, {a,f,e},

{b,c,d}, {c,e}, {a,b,c,f,d}, {a,c,f,e}, {a,b,d,e}, and {b,c,d,e}. The left-hand child pipe adds to it the

sets {a,c} and {b,c}, and the righ-hand one adds {f,d} and {f,e}. Clearly, B satisfies condition

(*).

Construct trees G(A,z) for all sets A ∈ B, z ∈ S, z being the ancestor edge for the set A

of leaves. For one-element and two-element sets A, the trees are trivial. Consider three-

element sets A. For the set A = {a,f,c}, the trees ((a,f),c) and ((a,c),f) have the same cost. For

{e,b,d}, the tree (b,(d,e)) is the one of the minimum cost among the two trees. For {a,b,c} and

{f,d,e}, the trees ((a,b),c) and (f,(d,e)) are those of the minimum costs among the three trees.

For {a,f,e} and {b,c,d}, the trees (a,(f,e)) and ((b,c),d) are those of the minimum costs among

the two trees.

Figure 9. Embedding s′ of the tree P into the tree S. This embedding is constructed according to the
definition of an embedding in Section 2.1.

Construct the main parameter B. The root pipe adds to B′ the sets {a,b,f,d}, {a,f,e}, {b,c,d},
{c,e}, {a,b,c,f,d}, {a,c,f,e}, {a,b,d,e}, and {b,c,d,e}. The left-hand child pipe adds to it the sets {a,c}
and {b,c}, and the righ-hand one adds {f,d} and {f,e}. Clearly, B satisfies condition (*).

Construct trees G(A,z) for all sets A ∈ B, z ∈ S, z being the ancestor edge for the
set A of leaves. For one-element and two-element sets A, the trees are trivial. Consider
three-element sets A. For the set A = {a,f,c}, the trees ((a,f),c) and ((a,c),f) have the same cost.
For {e,b,d}, the tree (b,(d,e)) is the one of the minimum cost among the two trees. For {a,b,c}
and {f,d,e}, the trees ((a,b),c) and (f,(d,e)) are those of the minimum costs among the three
trees. For {a,f,e} and {b,c,d}, the trees (a,(f,e)) and ((b,c),d) are those of the minimum costs
among the two trees.

Mathematics 2023, 11, 2024 15 of 39

For the set {a,b,f,d} in B, the minimum cost is given by the partition into {a,b} and {f,d};
for {a,c,f,e}, by the partition into {a,c} and {f,e}; for {a,b,d,e} and {b,c,d,e}, by the partitions into
{a,b} and {d,e} and into {b,c} and {d,e}, respectively.

For the set {a,b,c,f,d} in B, the minimum cost is given by the partition into {a,b,f,d}
and {c}. Finally, for the whole M, the minimum cost is given by {a,b,f,d} and {c,e}. Thus,
the resulting tree G* is (((a,b),(f,d)),(c,e)), the resulting cost C* = 26, and the obtained
embeddings s1

′: P→ G and s2
′: G → S are shown in Figure 10. In total, they contain

2 duplications and 11 losses. This is the global minimum G** of the cost of a tree G in the
unconditional problem.

Mathematics 2023, 11, x FOR PEER REVIEW 15 of 39

For the set {a,b,f,d} in B, the minimum cost is given by the partition into {a,b} and {f,d};

for {a,c,f,e}, by the partition into {a,c} and {f,e}; for {a,b,d,e} and {b,c,d,e}, by the partitions into

{a,b} and {d,e} and into {b,c} and {d,e}, respectively.

For the set {a,b,c,f,d} in B, the minimum cost is given by the partition into {a,b,f,d} and

{c}. Finally, for the whole M, the minimum cost is given by {a,b,f,d} and {c,e}. Thus, the

resulting tree G* is (((a,b),(f,d)),(c,e)), the resulting cost C* = 26, and the obtained embed-

dings s1′: P → G and s2′: G → S are shown in Figure 10. In total, they contain 2 duplications

and 11 losses. This is the global minimum G** of the cost of a tree G in the unconditional

problem.

Figure 10. Embeddings P → G* → S with the tree G* constructed by our algorithm for the main

parameter B specified above. These embeddings are constructed according to the definition of an

embedding in Section 2.1. (Left): the tree G* with the tree P embedded in it; (right): the tree S with

the tree G* embedded in it.

For all costs equal to 1, our algorithm outputs the same tree G*. For the same input

data, the algorithm from [8] has constructed the tree G = (((c,a),f),(b,(d,e))); the correspond-

ing embeddings are shown in Figure 11. Here, in total, there are 3 duplications and 11

losses.

Figure 11. Embeddings P → G → S with the tree G constructed by the algorithm from [8]. These

embeddings are constructed according to the definition of an embedding in Section 2.1. (Left): tree

G with tree P embedded in it; (right): tree S with tree G embedded in it.

If we confine ourselves with the main parameter B′, our algorithm constructs a tree

with a cost strictly greater than in the unconditional problem; namely, 3 duplications and

11 losses (see Figure 12). In [8], there are also 3 duplications and 11 losses, but our embed-

dings are quite different (see Figures 11 and 12).

Figure 10. Embeddings P → G* → S with the tree G* constructed by our algorithm for the main
parameter B specified above. These embeddings are constructed according to the definition of an
embedding in Section 2.1. (Left): the tree G* with the tree P embedded in it; (right): the tree S with
the tree G* embedded in it.

For all costs equal to 1, our algorithm outputs the same tree G*. For the same input data,
the algorithm from [8] has constructed the tree G = (((c,a),f),(b,(d,e))); the corresponding
embeddings are shown in Figure 11. Here, in total, there are 3 duplications and 11 losses.

Mathematics 2023, 11, x FOR PEER REVIEW 15 of 39

For the set {a,b,f,d} in B, the minimum cost is given by the partition into {a,b} and {f,d};

for {a,c,f,e}, by the partition into {a,c} and {f,e}; for {a,b,d,e} and {b,c,d,e}, by the partitions into

{a,b} and {d,e} and into {b,c} and {d,e}, respectively.

For the set {a,b,c,f,d} in B, the minimum cost is given by the partition into {a,b,f,d} and

{c}. Finally, for the whole M, the minimum cost is given by {a,b,f,d} and {c,e}. Thus, the

resulting tree G* is (((a,b),(f,d)),(c,e)), the resulting cost C* = 26, and the obtained embed-

dings s1′: P → G and s2′: G → S are shown in Figure 10. In total, they contain 2 duplications

and 11 losses. This is the global minimum G** of the cost of a tree G in the unconditional

problem.

Figure 10. Embeddings P → G* → S with the tree G* constructed by our algorithm for the main

parameter B specified above. These embeddings are constructed according to the definition of an

embedding in Section 2.1. (Left): the tree G* with the tree P embedded in it; (right): the tree S with

the tree G* embedded in it.

For all costs equal to 1, our algorithm outputs the same tree G*. For the same input

data, the algorithm from [8] has constructed the tree G = (((c,a),f),(b,(d,e))); the correspond-

ing embeddings are shown in Figure 11. Here, in total, there are 3 duplications and 11

losses.

Figure 11. Embeddings P → G → S with the tree G constructed by the algorithm from [8]. These

embeddings are constructed according to the definition of an embedding in Section 2.1. (Left): tree

G with tree P embedded in it; (right): tree S with tree G embedded in it.

If we confine ourselves with the main parameter B′, our algorithm constructs a tree

with a cost strictly greater than in the unconditional problem; namely, 3 duplications and

11 losses (see Figure 12). In [8], there are also 3 duplications and 11 losses, but our embed-

dings are quite different (see Figures 11 and 12).

Figure 11. Embeddings P→ G→ S with the tree G constructed by the algorithm from [8]. These
embeddings are constructed according to the definition of an embedding in Section 2.1. (Left): tree G
with tree P embedded in it; (right): tree S with tree G embedded in it.

If we confine ourselves with the main parameter B′, our algorithm constructs a tree
with a cost strictly greater than in the unconditional problem; namely, 3 duplications
and 11 losses (see Figure 12). In [8], there are also 3 duplications and 11 losses, but our
embeddings are quite different (see Figures 11 and 12).

Mathematics 2023, 11, 2024 16 of 39Mathematics 2023, 11, x FOR PEER REVIEW 16 of 39

Figure 12. Embeddings P → G* → S with tree G* constructed by our algorithm for the other main

parameter B. These embeddings are constructed according to the definition of an embedding in

Section 2.1. (Left): tree G* with tree P embedded in it; (Right): tree S with tree G* embedded in it.

2.7. ILS-Minimum Embedding of a Tree into a Network and Theorem 2

Let G and S be any given binary tree and binary network, respectively, and let s″: G

→ S be an embedding. The Incomplete Linear Sorting (ILS) event is an edge e ∈ G entering a

pipe t ∈ S provided that at least two edges enter t (see [9]). The locus of an ILS event is the

pipe t. The ILS-cost over a pipe t ∈ S entered by kt ≥ 1 edges from G is defined as ct = c·(kt –

1), where c is the cost of a single ILS plus the costs of all duplications and all losses in t.

The ILS-cost over S is defined as
S

t

t

c

 plus the costs of all duplications and all losses in

S, where t runs over pipes t ∈ S entered by at least one edge from G; the latter is denoted

as t ∈ S↓. Such pipes will be called non-empty, while all others are said to be empty. Clearly,

()t

t B t B

tc с k n

= − , where n is the number of non-empty pipes in S.

An ILS-minimum embedding of s′: G → S is defined to be an embedding with the total

minimum cost of ()t

t B

с k n

 − , where n is the number of non-empty pipes in s′, plus the

costs of all duplications and losses. This cost is called the ILS-minimum cost of s′; it reflects

how much s′ differs from an isomorphism.

Similarly, we define an ILS event for a given set {se: Ge → S} of embeddings of different

trees Ge into a given network S. Edges occurring in S from different se are considered

equally. The ILS-cost of a set {se} is defined by the same expression ()t

t B

с k n

 − , where n

is the number of pipes that are non-empty for at least one of the embeddings se, plus the

costs of all duplications and all losses in S. A set {se} is called an ILS-minimum set of em-

beddings if the ILS-cost of {se} is minimal as compared to any set {re: Ge → S} of embeddings

of these Ge into S with some conditions on all se and re. This cost is called the ILS-minimum

cost of {se}.

A bridge in S is a pipe t for which any path from the super-root to the clade t< contains

t. In our case, this is equivalent to the following condition: t is a pipe such that its removal

makes the undirected graph corresponding to S disconnected. A leaf pipe is always a

bridge. A block in S is an inclusion-maximal set of nodes in S for which the induced sub-

graph does not contain a bridge. Two blocks either coincide or are disjoint. For example,

in Figure 6, bridges are the pipe u7-u6 and also the root and leaf pipes; blocks are the super-

root, leaves, and two complements to the edge u7-u6 without the root or leaf pipes. Note

that blocks of a network S form a rooted, though now non-binary, tree. For a network S of

level k any block contains at most k hybrid nodes. This number k is a measure of distantness

between S and the tree.

Figure 12. Embeddings P→ G*→ S with tree G* constructed by our algorithm for the other main
parameter B. These embeddings are constructed according to the definition of an embedding in
Section 2.1. (Left): tree G* with tree P embedded in it; (Right): tree S with tree G* embedded in it.

2.7. ILS-Minimum Embedding of a Tree into a Network and Theorem 3

Let G and S be any given binary tree and binary network, respectively, and let
s′′: G→ S be an embedding. The Incomplete Linear Sorting (ILS) event is an edge e ∈ G
entering a pipe t ∈ S provided that at least two edges enter t (see [9]). The locus of an ILS
event is the pipe t. The ILS-cost over a pipe t ∈ S entered by kt ≥ 1 edges from G is defined
as ct = c·(kt –1), where c is the cost of a single ILS plus the costs of all duplications and all
losses in t. The ILS-cost over S is defined as ∑

t∈S↓
ct plus the costs of all duplications and all

losses in S, where t runs over pipes t ∈ S entered by at least one edge from G; the latter is
denoted as t ∈ S↓. Such pipes will be called non-empty, while all others are said to be empty.
Clearly, ∑

t∈B↓
ct = c · (∑

t∈B↓
kt−n), where n is the number of non-empty pipes in S.

An ILS-minimum embedding of s′: G→ S is defined to be an embedding with the total
minimum cost of c · (∑

t∈B↓
kt−n), where n is the number of non-empty pipes in s′, plus the

costs of all duplications and losses. This cost is called the ILS-minimum cost of s′; it reflects
how much s′ differs from an isomorphism.

Similarly, we define an ILS event for a given set {se: Ge→ S} of embeddings of different
trees Ge into a given network S. Edges occurring in S from different se are considered
equally. The ILS-cost of a set {se} is defined by the same expression c · (∑

t∈B↓
kt−n), where n is

the number of pipes that are non-empty for at least one of the embeddings se, plus the costs
of all duplications and all losses in S. A set {se} is called an ILS-minimum set of embeddings
if the ILS-cost of {se} is minimal as compared to any set {re: Ge → S} of embeddings of these
Ge into S with some conditions on all se and re. This cost is called the ILS-minimum cost
of {se}.

A bridge in S is a pipe t for which any path from the super-root to the clade t< contains
t. In our case, this is equivalent to the following condition: t is a pipe such that its removal
makes the undirected graph corresponding to S disconnected. A leaf pipe is always a bridge.
A block in S is an inclusion-maximal set of nodes in S for which the induced subgraph does
not contain a bridge. Two blocks either coincide or are disjoint. For example, in Figure 6,
bridges are the pipe u7-u6 and also the root and leaf pipes; blocks are the super-root, leaves,
and two complements to the edge u7-u6 without the root or leaf pipes. Note that blocks
of a network S form a rooted, though now non-binary, tree. For a network S of level k any
block contains at most k hybrid nodes. This number k is a measure of distantness between
S and the tree.

We say that pipe t enters block B if B contains its head t− but does not contain its tail
t+; such a t is unique for B and is a bridge in S. Pipe t leaves B if B contains its tail t+ but
does not contain its head t−; there can be many pipes leaving B, and all of them are bridges

Mathematics 2023, 11, 2024 17 of 39

in S. In what follows, for any pipe t ∈ S we assume a unique block Bt in S, such that t− ∈ B;
however, we consider the embedding Ge → St. The mapping t 7→ Bt between incoming
pipes t and blocks B in S (except for the super-root) is a one-to-one mapping.

For an arbitrary non-empty set A of leaves in an arbitrary network S, E(A) is defined
exactly as in the above case where S is a tree. Namely, for an edge e ∈ G the relation
e ∈ E(A) means the following: s(e<) ⊆ A and there is no e1 ∈ G for which e1 > e and s(e1<)
⊆ A. It is easily seen that for any edge e entering a pipe t ∈ S we have e ∈ E(t<) or ∃e′ > e
(e′ ∈ E(t<)). As is noted above, if S is a tree, then finally there remains only one disjunction
term e ∈ E(t<).

Let s′′: G→ S be an embedding, and introduce the following condition:
(*) each non-root pipe t which is a bridge in S is entered by precisely edges from E(t<).
We have proved the following result.

Theorem 3. Let s: G0 → S0 be an arbitrary mapping from leaves of a binary tree G to leaves of a
binary network S. The algorithm has been constructed which outputs an ILS-minimum continuation
s′: G→ S of s with the property (*). Its runtime is of the order of |G|·|S|·k·24k, where |·| is the
number of nodes in the tree or network and k is the level of the network S. It is exact if the cost of a
single ILS is not less than the sum of the duplication cost and the cost of an implicit loss.

In [9], a construction algorithm was suggested for a minimum (with respect to ILS
events only) embedding of a tree into a network of level 1. Additionally, in [9] (section
“Conclusion”), a method was outlined to generalize that algorithm to the case of a network
of any level k. Our algorithm uses the idea from [9] combined with ideas of the algorithm
of Theorem 1.

Denote by cd, el, il, and ci, respectively, the costs of duplication, explicit loss, implicit
loss, and ILS event.

Claim 1. If ci ≤ cd + el, then there exists an ILS-minimum embedding s*: G→ S such that property
(*) is valid.

Proof. Let s′ be any ILS-minimum embedding. We successively rearrange s′ to a desired
embedding s*; to this end, we exhaustively examine all non-root bridges t ∈ S in an arbitrary
order. The algorithm that we will construct now is not used in what follows; i.e., we need
Claim 1 as an existence result only. Namely, in the Proof of Theorem 3 we construct an
embedding s′: G→ S, which possesses property (*) and is minimal among the embeddings
with property (*); considering Claim 1, it will be absolutely minimal.

We perform the proof by contradiction. Assume that t ∈ S and we have the following:
(**) edge e1 ∈ G enters t, e1 /∈ E(t<), and e1 is an edge the most distant from the root

among edges satisfying these two conditions.
Let us show that a sibling edge e2 of e1 also satisfies all the three conditions, and

rearrange s′ so that again to obtain a minimum embedding s′′ such that both e1 and e2 do
not enter t, there arises one new edge entering t, and the number of edges entering all other
pipes does not increase. We repeat this rearrangement until we find an edge e1 satisfying
condition (**).

Thus, take e′ > e1 (e′ ∈ E(t<); such an e′ is unique. Consider a path ϕ from the root
through the edges e′ and e2 to some leaf and a path ψ of pipes that contain ϕ so that ψ ends
at t<. Then, ψ passes through t. Assume that some edge e3 in ϕ enters t. Then, we must
have e3 = e2. Indeed, by the choice of e1, the edge e3 on ϕ cannot lie below e2, and since e1
enters t, it cannot lie above e2. Thus, e1 and e2 enter t and are forking from some edge e,
i.e., they fork at e− ∈ G. Let z = s′(e−).

If z is a pipe, then e1 and e2 appeared in z as a result of a duplication and entered child
pipes of z, either both entered the same pipe z1 or each one entered its own. In the first case,
the duplication can be moved to z1, child of z, thus reducing the numbers of losses and ILS
events when computing the embedding cost of s′; in the second case, the duplication can
be eliminated by moving it to z−. In both cases, the cost of the resulting new embedding

Mathematics 2023, 11, 2024 18 of 39

becomes strictly less, which contradicts the minimality of s′. The case that z is a hybrid
node is impossible.

If z is a tree-type node, then the edges e1 and e2 arise in z and are continued to t.
Consider a new embedding s′′, which differs from s′ only by the fact that s′′(e−) = t, and
draw a path pe along any of the paths pe1 or pe2 (see Figure 13).

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 39

If z is a pipe, then e1 and e2 appeared in z as a result of a duplication and entered child

pipes of z, either both entered the same pipe z1 or each one entered its own. In the first

case, the duplication can be moved to z1, child of z, thus reducing the numbers of losses

and ILS events when computing the embedding cost of s′; in the second case, the duplica-

tion can be eliminated by moving it to z−. In both cases, the cost of the resulting new em-

bedding becomes strictly less, which contradicts the minimality of s′. The case that z is a

hybrid node is impossible.

If z is a tree-type node, then the edges e1 and e2 arise in z and are continued to t.

Consider a new embedding s″, which differs from s′ only by the fact that s″(e−) = t, and

draw a path pe along any of the paths pe1 or pe2 (see Figure 13).

Figure 13. (a) Fragment of a network with a given embedding s′ when there is ILS event at t+. (b)

The same fragment with the new embedding s″ when there is a loss at z and a duplication at t.

For s″, one explicit loss appears at z. In the node t+, one ILS event is replaced with a

duplication at t and loss at z. The embedding cost does not increase, but now the number

of edges e entering t is less by 1, and the number of edges entering any other pipe have

not increased. By repeating this modification, we find the desired ILS-minimum embed-

ding s*. □

Let a set D of hybrid pipes in a network S be fixed. For an embedding s″: Ge → St of a

subtree G with root edge e into a subnetwork of S with root pipe t, a block Bt ⊂ S is said to

be D-coordinated if D is the set of non-empty hybrid pipes in B. For the same embedding

s″, denote by N(t,D) the set of all non-empty pipes in Bt. The cardinality of this set will play

an important role in what follows.

For a set M = {Ge → St: e ∈ X} of embeddings of subtrees into a fixed subnetwork,

where X is a fixed set of edges of G, a block Bt ⊂ S is said to be D-coordinated if D is the set

of hybrid pipes in Bt that are non-empty for at least one embedding in M.

Claim 2. Let e ∈ G, t ∈ S and Bt be a block in S with t− ∈ Bt. We construct an algorithm which,

given any leaf mapping s: Ge → St and any set D of hybrid pipes in a block Bt ⊂ S, outputs a set Y,

such that Y = N(t,D) if there exists a continuation s″: Ge → St of s that D-coordinates Bt. The

runtime of the algorithm is if the order of |Bt|.

Proof. Let such an s″ exist. The algorithm exhaustively examines bridges that leave Bt and

records which of them are empty. For that, we use the fact that a bridge x leaving Bt is

Figure 13. (a) Fragment of a network with a given embedding s′ when there is ILS event at t+. (b) The
same fragment with the new embedding s′′ when there is a loss at z and a duplication at t.

For s′′, one explicit loss appears at z. In the node t+, one ILS event is replaced with a
duplication at t and loss at z. The embedding cost does not increase, but now the number
of edges e entering t is less by 1, and the number of edges entering any other pipe have not
increased. By repeating this modification, we find the desired ILS-minimum embedding s*. �

Let a set D of hybrid pipes in a network S be fixed. For an embedding s′′: Ge → St of a
subtree G with root edge e into a subnetwork of S with root pipe t, a block Bt ⊂ S is said to
be D-coordinated if D is the set of non-empty hybrid pipes in B. For the same embedding s′′,
denote by N(t,D) the set of all non-empty pipes in Bt. The cardinality of this set will play an
important role in what follows.

For a set M = {Ge → St: e ∈ X} of embeddings of subtrees into a fixed subnetwork,
where X is a fixed set of edges of G, a block Bt ⊂ S is said to be D-coordinated if D is the set
of hybrid pipes in Bt that are non-empty for at least one embedding in M.

Claim 2. Let e ∈ G, t ∈ S and Bt be a block in S with t− ∈ Bt. We construct an algorithm which,
given any leaf mapping s: Ge → St and any set D of hybrid pipes in a block Bt ⊂ S, outputs a set
Y, such that Y = N(t,D) if there exists a continuation s”: Ge → St of s that D-coordinates Bt. The
runtime of the algorithm is if the order of |Bt|.

Proof. Let such an s′′ exist. The algorithm exhaustively examines bridges that leave Bt
and records which of them are empty. For that, we use the fact that a bridge x leaving Bt
is empty with respect to s′′ if, and only if, the clade of x is disjoint with s′′(e<). Then, the
algorithm exhaustively examines tree-type pipes x ∈ Bt from leaves to the root and labels
x as empty, if and only if, either x = t or both child pipes of x are empty; labels of hybrid
pipes are known by the condition. �

For any embedding of leaves s0: G0 → S0, we delete from S the subnetwork of every
pipe, such that its clade is disjointed with s0(G0) and its sibling clade is not. In the resulting

Mathematics 2023, 11, 2024 19 of 39

graph S′, we combine maximum-length sequences t1 > . . . > tn of pipes (ti+1 is a child pipe
to ti) in S for each of which (for 1 ≤ i ≤ n − 1) one child subnetwork has been deleted into
a «compound» pipe t, which will be referred to as new; we again denote the resulting binary
network by S′. For every new pipe in S′, denote l(t) = n ≥ 2; for all other pipes in S′, denote
l(t) = 1. The leaf mappings s0: G0 → S0 and s0: G0 → S0

′ coincide.
For a binary network S′, we formulate a new minimum embedding problem. We

replace the search for a minimum embedding s′: G→ S with the search for a minimum
embedding s′: G→ S′. The latter is more convenient due to the fact that for every tree pipe
t ∈ S′ there are edges e1 and e2 that enter, respectively, the child pipes t1 and t2. Furthermore,
the cardinality of the network S′ is not greater (and typically less) than the cardinality of S.

Thus, we define an implicit loss in S′ to be a pair (e,t) where the edge e enters a new
pipe t ∈ S′; if a new pipe is the root pipe r ∈ S′, then e is the root edge in G. Therefore, to
several implicit losses in the former sense there corresponds a single implicit loss in the
new sense. The cost of a new implicit loss is set to be il ·(l(t) − 1), where il is the cost of a
single implicit loss equal to its former value. The locus of an implicit loss is assumed to be
the pipe t. An explicit loss and a duplication are defined as above and have the original
costs el and ed. An ILS event is defined as above; it is a pipe entered by strictly greater than
one edge. However, the cost of a new ILS event on a pipe t is ci·(kt − 1)·l(t), where kt is the
number of edges entering t. We split this cost into a sum of two terms, the first ILS term
and the second ILS term, ci·(kt − 1) and ci·(kt − 1)·(l(t) − 1). The cost of a new ILS event

on a network S is ci ·
(

∑
t

kt − n
)
+ ci ·

(
∑
t
(kt − 1)(l(t)− 1)

)
, where kt ≥ 1 and where n

is the number of non-empty pipes in S′. Here, we will also distinguish between the first
ILS term and the second ILS term. The ILS-minimum continuation and the ILS-minimum cost
are defined as above, taking into account all the above-mentioned events. Thus, the new
problem is to find an ILS-minimum continuation s′: G→ S′ of s0 with property (*). This
problem is of interest in connection with the following fact.

Claim 3. Given a solution of the new problem by a linear-time algorithm, one can construct a
solution of the original problem with property (*).

Proof. Let s′: G→ S′ be a solution of the new problem for a new network S′, and let its
ILS-minimum cost be c. Define an embedding s: G→ S for the original problem by keeping
the values s(g) = s′(g) for all s′(g) except for s′(g) = t, where t is the new pipe in S′. In the
latter case, we have s(g) = tn, where tn ∈ S is the lowermost pipe in t ∈ S′. The ILS cost of
s is also c. Assume that there exists a solution s*: G→ S of the original problem with an
ILS-minimum cost c′ < c. Then, define an embedding s**: G→ S′ by keeping the values
s**(g) = s*(g) for all s*(g) except for s*(g) = ti, where ti is a part of the new pipe t. In the latter
case, we have s**(g) = t. However, the ILS costs of s* and s** are the same. Let us check
property (*) for s. Consider edges entering pipe t with respect to s′; with respect to s, they
enter either t (if t is not new) or t1, t2, . . . , tn (otherwise). Since E(t<) = E(t1<) = . . . = E(tn<),
we conclude that any bridge t ∈ S is entered by exactly the edges from E(t<). �

We again denote the resulting network by S; its size is of the order of k·|G|, where k is
the level of the original (or equivalently, of the resulting) network.

For a given embedding s′′: Ge → St, define the B-cost of a block B to be the total
cost of all events in B plus the cost of duplications and implicit losses in the pipe t. For
a given set {se: Ge → St} of embeddings, let the B-cost of a block B be the total cost of all
events in B plus the cost of all duplications and implicit losses in t that arise from all these
embeddings se.

For an arbitrary set D of hybrid pipes in Bt, by a D-minimum embedding we call an
embedding s”: Ge → St satisfying property (*), with D coordinating the block Bt, and having
the smallest Bt-cost among all embeddings Ge → St that satisfy these two conditions. We
denote such an s′′ by s(e,t,D) and denote its Bt-cost by C(e,t,D). If there is no any such s′′, we
say that a D-minimum embedding is not defined.

Mathematics 2023, 11, 2024 20 of 39

For a set {Ge|e ∈ E(t<)}, by a D-minimum set of embeddings we call a set {se: Ge → St}
of embeddings satisfying property (*), with D coordinating the block Bt, and having the
smallest Bt-cost among all sets {re} that satisfy these two conditions. We denote this Bt-cost
by c(t,D) and denote this D-minimum set by s(t,D).

Denote by c(t) the minimum of c(t,D) over all D specified above, which is attained at
some D0, and define s(t) = s(t,D0). If |Bt| = 1, then D = ∅. If t is a bridge, then s(t) is called a
bridge set, and its elements are referred to as bridge embeddings.

The result of Theorem 3 consists of constructing a set s(r) with r a root pipe in S such
that s(r) consists of a single embedding, which is the desired ILS-minimum continuation s′:
G→ S.

Algorithm for ILS-minimum embedding of a tree G into a network S. By induction,
during a forward pass of the algorithm we construct C(e,t,D), and during its backward pass
we could construct s(e,t,D), though the latter is not needed. The usual linear order on these
pairs is fixed: pipes t from the leaves to the root, and for each fixed t we look through edges
e from the leaves to the root.

For each pair (e,t), with properties s(e<)⊆ t< (if t is not a bridge) or e ∈ E(t<) (otherwise),
and for each set D of hybrid pipes in Bt, we find a D-minimum embedding s(e,t,D) of
Ge → St and its Bt-cost, or notice that they are undefined. We denoted this Bt-cost by
C(e,t,D), and for this embedding, denote the set of non-empty pipes in Bt by N(e,t,D).
Additionally, for each pair (e,t) we compose a list D(e,t) of admissible sets D.

For an arbitrary set M of pipes, define f (M) = ∑
t∈M

l(t). By Claim 2, the set N(t,D)

can be constructed an algorithm which is linear in |S| given the set D; this allows, for
any t ∈ S and for any sets D1 and D2, to compute in time of the order of|S|2·24k the
values of f (N(t,D1) ∩ N(t,D2)) and f (N(t1,D1) ∩ N(t2,D2)), where t1 and t2 are children of
t. It is specifically these intersections that are used in what follows. The flow chart of the
algorithm is shown in Figure 14.

Mathematics 2023, 11, x FOR PEER REVIEW 20 of 39

For a given embedding s″: Ge → St, define the B-cost of a block B to be the total cost

of all events in B plus the cost of duplications and implicit losses in the pipe t. For a given

set {se: Ge → St} of embeddings, let the B-cost of a block B be the total cost of all events in

B plus the cost of all duplications and implicit losses in t that arise from all these embed-

dings se.

For an arbitrary set D of hybrid pipes in Bt, by a D-minimum embedding we call an

embedding s″: Ge → St satisfying property (*), with D coordinating the block Bt, and having

the smallest Bt-cost among all embeddings Ge → St that satisfy these two conditions. We

denote such an s″ by s(e,t,D) and denote its Bt-cost by C(e,t,D). If there is no any such s″, we

say that a D-minimum embedding is not defined.

For a set {Ge|e ∈ E(t<)}, by a D-minimum set of embeddings we call a set {se: Ge → St} of

embeddings satisfying property (*), with D coordinating the block Bt, and having the

smallest Bt-cost among all sets {re} that satisfy these two conditions. We denote this Bt-cost

by c(t,D) and denote this D-minimum set by s(t,D).

Denote by c(t) the minimum of c(t,D) over all D specified above, which is attained at

some D0, and define s(t) = s(t,D0). If |Bt| = 1, then D = ∅. If t is a bridge, then s(t) is called a

bridge set, and its elements are referred to as bridge embeddings.

The result of Theorem 2 consists of constructing a set s(r) with r a root pipe in S such

that s(r) consists of a single embedding, which is the desired ILS-minimum continuation s′:

G → S.

Algorithm for ILS-minimum embedding of a tree G into a network S. By induction,

during a forward pass of the algorithm we construct C(e,t,D), and during its backward

pass we could construct s(e,t,D), though the latter is not needed. The usual linear order on

these pairs is fixed: pipes t from the leaves to the root, and for each fixed t we look through

edges e from the leaves to the root.

For each pair (e,t), with properties s(e<) ⊆ t< (if t is not a bridge) or e ∈ E(t<) (otherwise),

and for each set D of hybrid pipes in Bt, we find a D-minimum embedding s(e,t,D) of Ge

→ St and its Bt-cost, or notice that they are undefined. We denoted this Bt-cost by C(e,t,D),

and for this embedding, denote the set of non-empty pipes in Bt by N(e,t,D). Additionally,

for each pair (e,t) we compose a list D(e,t) of admissible sets D.

For an arbitrary set M of pipes, define () ()
t M

f M l t

= . By Claim 2, the set N(t,D) can be

constructed an algorithm which is linear in |S| given the set D; this allows, for any t ∈ S

and for any sets D1 and D2, to compute in time of the order of|S|2·24k the values of f(N(t,D1)

∩ N(t,D2)) and f(N(t1,D1) ∩ N(t2,D2)), where t1 and t2 are children of t. It is specifically these

intersections that are used in what follows. The flow chart of the algorithm is shown in

Figure 14.

Figure 14. The flow chart of the algorithm for Theorem 3.

The induction base for constructing D-minimum embedding and bridge embedding
of Ge → St: for a leaf pipe t− ∈ Bt and a leaf edge e ∈ G, D(e,t) = {∅} and the embeddings
are trivial, its B-cost being C(e,t,D) = il·(l(t)–1).

The induction step for D-minimum embeddings. Consider the following four cases,
analogous to those considered in Section 2.4, where U(e,t,D), by the proof given below,
will be found to be equal to the B-costs of the embeddings defined below. In Cases 1–4
below, computations are performed if all the involved quantities are well defined and all
the required conditions are fulfilled. Recall that D is a set of hybrid pipes in B.

Mathematics 2023, 11, 2024 21 of 39

(1) Assume that edge e leaves t and “swings” to the child pipe t1 at a furcation in S,
and t1 ∈ D (if t1 is a hybrid pipe) or e ∈ E(t1<), D = ∅ (if t1 is a bridge) or D is
arbitrary (if t1 is a tree-type pipe and is not a bridge). The embedding continues
(since e+ 7→ t) an already known (D\t1)-minimum (if t1 is not a bridge) or bridge
(otherwise) embeddings of Ge → St1. Its B-cost is, respectively, U(e,t,D) = U(e,t1,D\t1)
+ el + il·(l(t)–1) if D\t1 ∈ D(e,t1), or U(e,t,D) = el + il ·(l(t)–1), symmetrically for t2. For
each e, t, and D, if, in this case or in one of the cases below, we have U(e,t,D) < ∞, then
we add D to the list D(e,t).

(2) Assume edge e forks in t into e1 and e2. Exhaustively examine all pairs (D1,D2) where D1
and D2 are any sets of hybrid pipes in B, such that D1 ∈ D(e1,t) and D2 ∈ D(e2,t). For each
D′ = D1 ∪ D2 ⊂ Bt we set the initial value of U(e,t,D′) = ∞. For every (D1,D2) compute

V = U(e1,t,D1) + U(e2,t,D2) + ci·f (N(e1,t,D1) ∩ N(e2,t,D2)) + cd + il ·(l(t) − 1).

If V is strictly less than the current value of U(e,t,D′) for D′ = D1 ∪ D2, set U(e,t,D′) = V.
In particular, we compute U(e,t,D).

(3) Assume that edge e forks at a furcation in S, t1 is entered by edge e1, and t2 is entered
by e2. For each D′ we set the initial value of U(e,t,D′) = ∞. If t1 and t2 are not bridges,
exhaustively examine all pairs (D1,D2), where D1 and D2 are sets of hybrid pipes in B,
such that D1 ∈ D(e1,t1), D2 ∈ D(e2,t2). For every (D1,D2) compute

V = U(e1,t1,D1) + U(e2,t2,D2) + ci·f (N(e1,t1,D1) ∩ N(e2,t2,D2)) + il ·(l(t) − 1).

If V is strictly less than the current value of U(e,t,D′) for D′ = D1 ∪ D2 ∪ {t1,t2}, set
U(e,t,D′) = V. Here, by the definition, the set {t1,t2} contains only hybrid pipes.

If exactly one of the pipes t1 and t2 is a bridge (assume that this is t1), exhaustively ex-
amine each sets D2 of hybrid pipes in B such that D2 ∈D(e2,t2). For D2, if e1 ∈ E(t1<) compute
V = U(e2,t2,D2) + il ·(l(t)− 1), and if V is strictly less than the current value of U(e,t,D2 ∪ {t2}),
set U(e,t,D2 ∪ {t2}) = V. Here, similarly, the set {t2} contains only hybrid pipes.

If both pipes t1 and t2 are bridges, e1 ∈ E(t1<), and e2 ∈ E(t2<), set U(e,t,∅) = il ·(l(t) − 1).
In particular, we compute U(e,t,D).

(4) Assume that edge t′ leaves t, enters its unique child pipe t1, and t1 ∈ D (if t1 is a hybrid
pipe); e ∈ E(t1<) and D = ∅ (if t1 is a bridge). Then, the embedding continues (since
e+ 7→ t) the already known (D\t1)-minimum (if t1 is not a bridge) or bridge (otherwise)
embedding Ge → St1, and U(e,t,D) = U(e,t1,D\t1) + il ·(l(t)–1) if D\t1 ∈ D(e,t1), or
U(e,t,D) = il ·(l(t)–1).

Choose an appropriate case that has the minimum B-cost U(e,t,D) and memorize it, as
well as the sets D1 and D2 in Cases 2 or 3. These will be used in the further backward pass
of the algorithm, which will result in the construction of a s(e,t,D) embeddings. There is
no need to compute U(e,t,D) for e, t, and D; these values are needed only for arguments
satisfying the given conditions, which are necessary to proceed with the next cases of the
algorithm. As is proved below, C(e,t,D) = U(e,t,D); accordingly, the backward pass of the
algorithm finds the embeddings s(e,t,D): Ge → St.

(5) The induction step for bridge embeddings after the corresponding construction step
for D-minimum embeddings. Let t be a bridge. By property (*) (see the Proof of
Theorem 3 below), t is entered by precisely the edges from E(t<). Arbitrarily order
edges e1, e2, e3, . . . ,em ∈ E(t<). Similarly to what was performed in Case 2 (but
without the cd term), by exhaustively examining pairs D1, D2 of sets of hybrid pipes
in B, where D1 ∈ D(e1,t) and D2 ∈ D(e2,t), for every D = D1 ∪ D2 we find D1

′ and
D2
′ that correspond to a D-minimum two-element set M2 = {Ge1 → St, Ge2 → St}

of embeddings. More precisely, for each D we minimize over D1 and D2, where
D = D1 ∪ D2, the quantity V in the expression from Case 2 without the cd term, i.e.,

V = U(e1,t,D1) + U(e2,t,D2) + ci·f (N(e1,t,D1) ∩ N(e2,t,D2)) + il ·(l(t) − 1.

Mathematics 2023, 11, 2024 22 of 39

Assume that the minimum of V is finite and is attained at some D1
′ and D2

′. Denote
it by U(e1,e2,t,D) and add D to the list D(e1,e2,t) of admissible sets. Note that the set
M2 = {s(e1,t,D1

′), s(e2,t,D2
′)} itself is not used here. Let D1

′ = f 21(D) and D2
′ = f 22(D). Again

examining pairs D1, D2, where D1 ∈ D(e3,t) and D2 ∈ D(e1,e2,t), for every D = D1 ∪ D2 we
find D1” and D2” that correspond to a D-minimum 3-element set M3 = {Ge1 → St, Ge2 → St,
Ge3 → St} of embeddings. More precisely, for each D we minimize over D1 and D2, where
D = D1 ∪ D2, the quantity

V = U(e3,t,D1) + U(e1,e2,t,D2) + ci·f (N(e3,t,D1) ∩ N(e1,e2,t,D2)) + il ·(l(t) − 1.

Assume that the minimum is finite and is attained at some D1” and D2”. Denote it
by U(e1,e2,e3,t,D) and add D to the list D(e1,e2,e3,t) of admissible sets. Note that the set
M3 = {s(e1,t,f 2,1(D1”)), s(e2,t,f 2,2(D1”), s(e3,t,D2”)} itself is note used here. Proceeding further
in this way with computing U(e1,e2, . . . ei,t,D), for each D we construct a D-minimum
set Mm = {Ge1 → St, Ge2 → St, . . . ,Gem → St} of embeddings, which we denote by s(t,D).
The set s(t,D) contains exactly m = |E(t<)| embeddings, where m is the number of edges
entering t.

Choose a bridge set s(t) = s(t,D0) with the minimum U(e1,e2, . . . em,t,D) over all D. For
t = r, the root pipe, this set s(r) consists of a single element, which is the desired embedding
s′: G→ S with the minimum B-cost. The ILS-minimum cost s′ equals the sum over all bridges
t ∈ S of Bt-costs of sets s(t) plus the costs of ILS events in t, where Bt corresponds to t. �

Proof of Theorem 3. To prove the exactness of the algorithm, we first show that the
expressions for computing U(e,t,D) in the algorithm output the Bt-cost of the corresponding
embeddings, which, clearly, D-coordinate the block Bt. For Cases 1 and 4, note the following,
the embedding Ge → St, as compared to the embedding Ge → St1, has one non-empty pipe
(t1) more and one entry (into t1) more. Therefore, the first ILS term is the same for both
embeddings. This is also true for the second ILS term as well, since it equals 0 at t. For
Case 3, the embedding Ge → St, as compared to the union of embeddings Ge1 → St1 and
Ge2 → St2 has two non-empty pipes (t1 and t2) more and two entries (into t1 and t2) more.
Therefore, the first ILS term of the embedding Ge → St and of the union Ge1 → St1 and
Ge2 → St2 are the same if pipes that are non-empty for both embeddings of the union are
counted once each time. Similarly, the second ILS term of the embedding Ge → St and
of the union are the same if pipes that are non-empty for the embeddings are counted
l(t)−1 times. This explains the presence of the term ci·f (N(e1,t1,D1) ∩N(e2,t2,D2)) or, in Case
2, ci·f (N(e1,t,D1) ∩ N(e2,t,D2)) in the expressions for C. Additionally, for Case 2 let us check
that in the expression for V we may use the values U(e1,t,D1) = C(e1,t,D1) and U(e2,t,D2)
= C(e2,t,D2), i.e., regard the embeddings Ge1 → St and Ge2 → St, respectively, to be D1-
minimum and D2-minimum. Indeed, the minimum Bt-cost is attained at some embedding
s: Ge → St, to which there correspond some embeddings s1: Ge1 → St and s2: Ge2 → St
with some D1 and D2. If, for example, s1 is not D1-minimum, then by replacing it with a
D1-minimum one, we strictly decrease the Bt-cost of the embedding s, a contradiction. Note
the following, here we use the fact that N(t,D1) is independent of the embedding Ge1 → St
that D1-coordinates the block Bt. Correctness of using the values U(e1,t1,D1) = C(e1,t1,D1)
and U(e2,t2,D2) = C(e2,t2,D2) in Case 3 is prove similarly. All arguments justifying Case 2
can be literally repeated to justify the fact that in the induction step for bridge embeddings,
every Mi is D-minimal and U(e1,e2, . . . ei,t,D) is its Bt-cost. In particular, this is true for a
bridge set Mm.

Using induction from leaves to the root, let us prove that for any bridge t the con-
structed bridge set s(t) is ILS minimal; then, in particular, so is s′. For leaf pipes, this is
obvious; let t be a non-leaf pipe. The total cost of events for s(t) can be represented as a sum
of three terms, the Bt-cost, the total cost of events in subnetworks St ′ for bridges t′ leaving
Bt, and the cost of the ILS event in t. The construction of s(t) implies the minimality of the
first of these terms. The induction hypothesis on the ILS minimality of bridge embeddings

Mathematics 2023, 11, 2024 23 of 39

for t′ satisfying property (*) implies the minimality of the second term. Property (*) for t
implies that the third term is constant and equals ci·(|E(t<)| − 1)·l(t).

Let us check property (*) for the embedding s′. Embedding s(e,t,D) satisfy property
(*)′: if e′ enters a bridge t′, then e′ ∈ E(t′<). Indeed, the conditions in Steps 1–4 ensure this
property for bridges leaving B. After that, it can be proved by induction on the construction
of s(e,t,D). Since any element of a bridge set is one of the s(e,t,D), property (*)′ is satisfied
for bridge sets too, in particular, for s′. Now (*) follows from the fact that for any bridge
t and any e ∈ E(t<) a path in G from the root to a leaf passing through e contains an edge
entering t.

The algorithm runtime. For each pair (e,t) in the construction of a D-minimum embed-
ding we look through at most 2k sets D, or at most 4k pairs (D1,D2). If t is a bridge pipe, it
additionally requires at most |E(t<)|·24k pairs (D1,D2), which yields the overall estimate of
the order of |G|·|S|·k·24k. �

Remark 1. The minimum embeddings of a tree into a network, taking ILS events into account or
disregarding them, can be different. For example, let a tree be G = (l1,l2), and let a network S be the
network shown in Figure 13 with the following modifications: at the bottom there is a single leaf
l, and side branches in S are continued to the root (two rhombuses are added). Then, a minimum
embedding G→ S without taking into account ILS is shown in Figure 13a (no duplications and
losses, one ILS), and a minimum embedding taking into account ILS (if the duplication cost is less
that the ILS cost) is shown in Figure 13b (no ILS and no losses, one duplication).

Remark 2. The problem of constructing a minimum embedding s′: G → S can also be posed
without the assumption that the embedding is a continuation of some leaf mapping s. If we disregard
ILS events in this problem, then such an embedding can be constructed in a standard way: by
exhaustively examining pairs (edge e, pipe t) and choosing for each pair the best of the four cases
given in Section 2.4; here, the condition s′(e<) ⊂ t< cannot be used. The authors are unaware of any
polynomial algorithm for constructing a minimum embedding s′ in this setting with taking into
account the ILS (even if S is a tree).

2.8. Example of Executing the Algorithm

Let us demonstrate the operation of the algorithm by an example of a network S
with root r and a tree G = (c,(a,d)),b) with root edge r shown in Figures 6 and 15. Let
the duplication cost be 3, loss cost be 2, and the ILS event cost be 5. Denote the blocks
B1 = {u1,u2,u3,u4,u6} and B2 = {u5,u7,u8,u9,u10,r}. The corresponding sets of hybrid pipes are
H1 = {u3-u1, u4-u1, u3-u2, u4-u2} and H2 = {u7-u5, u10-u5, u9-u8, r-u8}. In Figure 15, an ILS
minimum embedding s′: G→ S is shown. Namely, edges in G are shown in red along the
pipe in S. In particular, the edge e2 terminates with a duplication. The ILS cost of s′ is the
sum of the B1-cost, B2-cost, and the ILS cost in the pipe u7-u6, i.e., it is 8 + 9 + 1 = 18.

Mathematics 2023, 11, x FOR PEER REVIEW 24 of 39

Figure 15. Tree G and its embedding s′ (shown in red) in the network S constructed by our algorithm.

In the pipe u7 there is a duplication. The network S was shown in Figure 6.

The algorithm exhaustively examines pipes t ∈ B1. Among them, only the leaf edges

c and d in G can satisfy the condition s′(e<) ⊂ t<. For the pairs (c,t) and (d,t) there may exist

at most one set D, depending on whether this condition is satisfied. If D is well defined,

there exists an embedding s(c,t,D) or s(d,t,D). For instance, D = {u3-u1} for the pair (d,u6-u3).

Then, the algorithm constructs D-minimum embeddings for the bridge t = u7-u6. For it,

only the edges c and d satisfy condition (*). For each of the pairs, (c,t) and (d,t), there are

two sets D for which the embeddings s(c,t,D) and s(d,t,D) are well defined. For instance,

these are the sets {u3-u1} and {u4-u1} for the pair (d,t). For them, the embeddings are trivial.

The same for the pair (c,t).

Then, the algorithm constructs a bridge set for the bridge t = u7-u6. To this end, the

algorithm orders the edges in E(t<) = {c,d}. As was already noted, for each of the pairs (c,t)

and (d,t) there exist two sets D with the corresponding embeddings s(c,t,D) and s(d,t,D).

The algorithm examines four pairs (D1,D2): ({u3-u2},{u3-u1}), ({u4-u2},{u4-u1}), ({u3-u2},{u4-u1}),

and ({u4-u2},{u3-u1}). The first pair yields the pipe u6-u3, which is non-empty for both em-

beddings, s(c,t,D1) and s(d,t,D2). The second pair yields the pipe u6-u4, which is non-empty

for both embeddings s(c,t,D1) and s(d,t,D2). The third and fourth pairs do not yield pipes

that are non-empty for both embeddings. Thus, the first two pairs define a bridge set with

an ILS event, and the last two, without it. Respectively, the B1-cost of the first two bridge

sets is 13 (four losses and an ILS), and that of the last two is 8 (four losses). Of the two last

pairs, the algorithm chooses any one; in Figure 15, the pair ({u4-u2},{u3-u1}) is chosen.

The algorithm exhaustively examines pipes in B2. For pipe t in the set {u7-u5, u10-u5,

u9-u8, r-u8} and any e, the embeddings s(e,t,D) are trivial and well defined only for D = ∅ or

are not well defined. Consider the pipe t = u9-u7. For it, the edges a, c, d, e1, and e2 in G

satisfy condition s′(e<) ⊂ t<. For the first three of them, the embeddings are trivial. For e1,

the embedding is well defined only for D = {u7-u5}, and the algorithm chooses Case 3 (fork-

ing at a furcation) with the minimum B2-cost 0. For e2, the embedding is well defined only

for D = {u7-u5}, and the algorithm chooses Case 2 (duplication in t), referring to the pairs

(c,t) and (e1,t) already considered. The B2-cost of the embedding s(e2,t,D) is 2 + 0 + 3 = 5.

Consider the pipe t = u10-u9. For it, all e ∈ G satisfy the condition s′(e<) ⊂ t<. For leaf edges,

the embeddings are trivial. For e1 the embedding is well defined only for D = {u7-u5}; the

algorithm chooses Case 1 referring to the pair (e1,u9-u7) already considered; and the B2-cost

is 2. For e2, the set D and the chosen case are the same; the B2-cost is 7. For r, the only set is

D = {u7-u5,u9-u8}; the algorithm chooses Case 3 referring to the pairs (e2,u9-u7) and (b,u9-u8)

already considered; and the B2-cost is 7 + 0 = 7. Consider the pipe t = r-u10. For this, all e ∈

G satisfy the condition s′(e<) ⊂ t<. For the leaf edges b, c, and d, the embeddings are trivial.

For the edge a, we have two sets, D = {u10-u5} and D = {u7-u5}; for each of them, the embed-

ding is trivial. For e1, we have the same two sets D; for the first of them, the algorithm

chooses Case 3, and for the second, Case 1; both B2-costs are 4. For e2 we have D = {u7-u5}

Figure 15. Tree G and its embedding s′ (shown in red) in the network S constructed by our algorithm.
In the pipe u7 there is a duplication. The network S was shown in Figure 6.

Mathematics 2023, 11, 2024 24 of 39

The algorithm exhaustively examines pipes t ∈ B1. Among them, only the leaf edges c
and d in G can satisfy the condition s′(e<) ⊂ t<. For the pairs (c,t) and (d,t) there may exist
at most one set D, depending on whether this condition is satisfied. If D is well defined,
there exists an embedding s(c,t,D) or s(d,t,D). For instance, D = {u3-u1} for the pair (d,u6-u3).
Then, the algorithm constructs D-minimum embeddings for the bridge t = u7-u6. For it,
only the edges c and d satisfy condition (*). For each of the pairs, (c,t) and (d,t), there are
two sets D for which the embeddings s(c,t,D) and s(d,t,D) are well defined. For instance,
these are the sets {u3-u1} and {u4-u1} for the pair (d,t). For them, the embeddings are trivial.
The same for the pair (c,t).

Then, the algorithm constructs a bridge set for the bridge t = u7-u6. To this end, the
algorithm orders the edges in E(t<) = {c,d}. As was already noted, for each of the pairs (c,t)
and (d,t) there exist two sets D with the corresponding embeddings s(c,t,D) and s(d,t,D). The
algorithm examines four pairs (D1,D2): ({u3-u2},{u3-u1}), ({u4-u2},{u4-u1}), ({u3-u2},{u4-u1}),
and ({u4-u2},{u3-u1}). The first pair yields the pipe u6-u3, which is non-empty for both
embeddings, s(c,t,D1) and s(d,t,D2). The second pair yields the pipe u6-u4, which is non-
empty for both embeddings s(c,t,D1) and s(d,t,D2). The third and fourth pairs do not yield
pipes that are non-empty for both embeddings. Thus, the first two pairs define a bridge
set with an ILS event, and the last two, without it. Respectively, the B1-cost of the first
two bridge sets is 13 (four losses and an ILS), and that of the last two is 8 (four losses). Of
the two last pairs, the algorithm chooses any one; in Figure 15, the pair ({u4-u2},{u3-u1})
is chosen.

The algorithm exhaustively examines pipes in B2. For pipe t in the set {u7-u5, u10-u5,
u9-u8, r-u8} and any e, the embeddings s(e,t,D) are trivial and well defined only for D = ∅
or are not well defined. Consider the pipe t = u9-u7. For it, the edges a, c, d, e1, and e2
in G satisfy condition s′(e<) ⊂ t<. For the first three of them, the embeddings are trivial.
For e1, the embedding is well defined only for D = {u7-u5}, and the algorithm chooses
Case 3 (forking at a furcation) with the minimum B2-cost 0. For e2, the embedding is
well defined only for D = {u7-u5}, and the algorithm chooses Case 2 (duplication in t),
referring to the pairs (c,t) and (e1,t) already considered. The B2-cost of the embedding
s(e2,t,D) is 2 + 0 + 3 = 5. Consider the pipe t = u10-u9. For it, all e ∈ G satisfy the condition
s′(e<) ⊂ t<. For leaf edges, the embeddings are trivial. For e1 the embedding is well defined
only for D = {u7-u5}; the algorithm chooses Case 1 referring to the pair (e1,u9-u7) already
considered; and the B2-cost is 2. For e2, the set D and the chosen case are the same; the
B2-cost is 7. For r, the only set is D = {u7-u5,u9-u8}; the algorithm chooses Case 3 referring to
the pairs (e2,u9-u7) and (b,u9-u8) already considered; and the B2-cost is 7 + 0 = 7. Consider
the pipe t = r-u10. For this, all e ∈ G satisfy the condition s′(e<) ⊂ t<. For the leaf edges b,
c, and d, the embeddings are trivial. For the edge a, we have two sets, D = {u10-u5} and
D = {u7-u5}; for each of them, the embedding is trivial. For e1, we have the same two sets D;
for the first of them, the algorithm chooses Case 3, and for the second, Case 1; both B2-costs
are 4. For e2 we have D = {u7-u5} and Case 1; the B2-cost is 9. For r we have D = {u7-u5,
u9-u8} and Case 1; the B2-cost is 9. Consider the root pipe t = s-r. For it, we consider the
root edge r only. We have two sets D: D1 = {r-u8,u7-u5} and D2 = {u9-u8,u7-u5}. For D1, the
algorithm chooses Case 3 with B2-cost 9; for D2, Case 1 with B2-cost 11. Since the B2-cost for
D1 is smaller, as a resulting s′ the algorithm chooses the embedding s(r,s-r,D1); Figure 15.

3. Reconstruction of Structures along a Tree
3.1. Problem Setting and Main Results

A structure is a directed graph consisting of paths (excluding isolated nodes) and
cycles, including loops. Its edges are assigned with unique names; one may assume the
names to be positive integers. An extremity is a tail or a head of an edge. A join of two nodes
consists of identifying them, and a cut is the operation inverse to the join (see Figure 16).
Sometimes, instead of join (two nodes) they say merge, identify, or glue.

Mathematics 2023, 11, 2024 25 of 39

Mathematics 2023, 11, x FOR PEER REVIEW 25 of 39

and Case 1; the B2-cost is 9. For r we have D = {u7-u5, u9-u8} and Case 1; the B2-cost is 9.

Consider the root pipe t = s-r. For it, we consider the root edge r only. We have two sets D:

D1 = {r-u8,u7-u5} and D2 = {u9-u8,u7-u5}. For D1, the algorithm chooses Case 3 with B2-cost 9;

for D2, Case 1 with B2-cost 11. Since the B2-cost for D1 is smaller, as a resulting s′ the algo-

rithm chooses the embedding s(r,s-r,D1); Figure 15.

3. Reconstruction of Structures Along a Tree

3.1. Problem Setting and Main Results

A structure is a directed graph consisting of paths (excluding isolated nodes) and cy-

cles, including loops. Its edges are assigned with unique names; one may assume the names

to be positive integers. An extremity is a tail or a head of an edge. A join of two nodes

consists of identifying them, and a cut is the operation inverse to the join (see Figure 16).

Sometimes, instead of join (two nodes) they say merge, identify, or glue.

Figure 16. Join (from left to right) and cut (from right to left) of extremities x and y of edges i and j

in a structure. The join of the extremities x and y (as two separate nodes in the structure) consists of

identifying them as a node z, and the cut means that a node z in a structure is replaced with separate

extremities x and y of edges i and j.

There are four operations over a structure, which are called SCJ (Single-Cut-or-Join)

operations: cut of its node of degree 2, join of two its nodes of degree 1, deletion of an isolated

edge, and insertion of an isolated edge. Each operation is assigned a strictly positive ra-

tional number called the cost of the operation. The SCJ distance from a structure a to a

structure b is the minimum total cost of operations required to transform a into b. It is

easily seen that the SCJ distance equals the weighted sum of the number of pairs of ex-

tremities joined in a but not in b, joined in b but not in a, the number of edges that are

present in a but not in b, and the number of edges that are present in b but not in a. The

SCJ distance is a measure of the evolutionary distance between two structures and is used

to construct evolutionary trees and infer evolutionary relationships. The lower the SCJ

distance between two structures, the more closely related they are thought to be in terms

of their evolutionary history. The same is true for the DCJ distance. The SCJ, as well as the

DCJ (Double-Cut-and-Join), operations are well known, and many dozens of papers are

devoted to their study, see, e.g., the survey [6] (Section 3).

Additionally, there is another set of operations over a structure, now consisting of six

operations, which, in the context of the present paper, will be called DCJ operations,

though, usually, this term refers to the first four of them. These are the following opera-

tions: cut of a node of degree 2 of the structure, join of two its nodes of degree 1, double

and sesquialteral intermerging, deletion, and insertion of a connected fragment of edges. The

first two operations are the same as above. The last two are the following, deleting a whole

component of a structure (path or cycle) or adding a fragment as a separate component;

another option is as follows, such a fragment is cut at its extremities, then it is deleted, and

the remaining extremities (if they are two) are joined again; respectively, a node of degree

2 in a structure is cut (or it is a node of degree 1) and the fragment is joined by its extrem-

ities (or its extremity) to the obtained extremities (or to the existing extremity). These two

operations are generalizations of the corresponding SCJ operations. The third and fourth

operations are compositions of the first two. Double intermerging (denoted by DM) consists

of cutting a pair of nodes of degree 2 and joining the extremities thus formed with each

other. Sesquialteral intermerging (denoted by SM) consists of cutting a node of degree 2 and

joining one of the extremities thus formed with a node of degree 1. Quite similarly to the

above, each of these operations is assigned with a cost, and the DCJ distance between struc-

Figure 16. Join (from left to right) and cut (from right to left) of extremities x and y of edges i and j in
a structure. The join of the extremities x and y (as two separate nodes in the structure) consists of
identifying them as a node z, and the cut means that a node z in a structure is replaced with separate
extremities x and y of edges i and j.

There are four operations over a structure, which are called SCJ (Single-Cut-or-Join)
operations: cut of its node of degree 2, join of two its nodes of degree 1, deletion of an isolated
edge, and insertion of an isolated edge. Each operation is assigned a strictly positive rational
number called the cost of the operation. The SCJ distance from a structure a to a structure b is
the minimum total cost of operations required to transform a into b. It is easily seen that the
SCJ distance equals the weighted sum of the number of pairs of extremities joined in a but
not in b, joined in b but not in a, the number of edges that are present in a but not in b, and
the number of edges that are present in b but not in a. The SCJ distance is a measure of the
evolutionary distance between two structures and is used to construct evolutionary trees
and infer evolutionary relationships. The lower the SCJ distance between two structures,
the more closely related they are thought to be in terms of their evolutionary history. The
same is true for the DCJ distance. The SCJ, as well as the DCJ (Double-Cut-and-Join),
operations are well known, and many dozens of papers are devoted to their study, see,
e.g., the survey [6] (Section 3).

Additionally, there is another set of operations over a structure, now consisting of
six operations, which, in the context of the present paper, will be called DCJ operations,
though, usually, this term refers to the first four of them. These are the following operations:
cut of a node of degree 2 of the structure, join of two its nodes of degree 1, double and
sesquialteral intermerging, deletion, and insertion of a connected fragment of edges. The first
two operations are the same as above. The last two are the following, deleting a whole
component of a structure (path or cycle) or adding a fragment as a separate component;
another option is as follows, such a fragment is cut at its extremities, then it is deleted,
and the remaining extremities (if they are two) are joined again; respectively, a node of
degree 2 in a structure is cut (or it is a node of degree 1) and the fragment is joined by
its extremities (or its extremity) to the obtained extremities (or to the existing extremity).
These two operations are generalizations of the corresponding SCJ operations. The third
and fourth operations are compositions of the first two. Double intermerging (denoted by
DM) consists of cutting a pair of nodes of degree 2 and joining the extremities thus formed
with each other. Sesquialteral intermerging (denoted by SM) consists of cutting a node of
degree 2 and joining one of the extremities thus formed with a node of degree 1. Quite
similarly to the above, each of these operations is assigned with a cost, and the DCJ distance
between structures a and b is defined. These operations have long been studied; their
detailed description with corresponding figures and historical references can be found in
a large number of papers and surveys, e.g., in [6,24,25]. Usually, only four operations are
called DCJ operations, Double Intermerging, Sesquialteral Intermerging, and two Ordinary
Intermergings (Cut and Join). To a cyclic structure, only the Double Intermerging operation
can be applied, because only this operation, being applied to such a structure, preserves its
cyclicity and equal content property.

A structure is called cyclic if it consists of cycles only. A set of structures is said to be of
equal content of names if all structures in it have the same set of names.

For any tree, an arrangement over it is an assignment of a structure to each interior
node of the tree. Arrangements are considered to be specified at leaves; therefore, after
specifying them at interior nodes, an arrangement will be set throughout the tree.

The problem of reconstruction is to find structures at interior nodes of the tree so that
the resulting arrangement is a minimum of a given functional defined on all arrangements
over the given tree. Here, as such a functional, we consider the sum of lengths of all edges
of a tree, where the length of an edge is the distance between the structures at its endpoints.

Mathematics 2023, 11, 2024 26 of 39

As a distance, we consider the SCJ or DCJ distance; where each edge is directed from the
root to the leaves of the tree. The value of this functional is called the cost of the arrangement.
An arrangement with the lowest cost is said to be minimum, and its cost is referred to as the
minimum cost, which is also sometimes called the global minimum. An arrangement is said
to be locally minimum if replacing a structure at any interior node of the tree with any other
does not reduce the cost of the arrangement.

A star-like tree (or simply a star) is a tree consisting of a root and leaves to which the
root is connected. A two-star tree is a tree with two interior nodes (denote them by r and u),
such that the root r is connected with arbitrarily many leaves and u is connected with only
two leaves (see Figure 17).

Mathematics 2023, 11, x FOR PEER REVIEW 26 of 39

tures a and b is defined. These operations have long been studied; their detailed descrip-

tion with corresponding figures and historical references can be found in a large number

of papers and surveys, e.g., in [6,24,25]. Usually, only four operations are called DCJ op-

erations, Double Intermerging, Sesquialteral Intermerging, and two Ordinary Intermerg-

ings (Cut and Join). To a cyclic structure, only the Double Intermerging operation can be

applied, because only this operation, being applied to such a structure, preserves its cy-

clicity and equal content property.

A structure is called cyclic if it consists of cycles only. A set of structures is said to be

of equal content of names if all structures in it have the same set of names.

For any tree, an arrangement over it is an assignment of a structure to each interior

node of the tree. Arrangements are considered to be specified at leaves; therefore, after

specifying them at interior nodes, an arrangement will be set throughout the tree.

The problem of reconstruction is to find structures at interior nodes of the tree so

that the resulting arrangement is a minimum of a given functional defined on all arrange-

ments over the given tree. Here, as such a functional, we consider the sum of lengths of

all edges of a tree, where the length of an edge is the distance between the structures at its

endpoints. As a distance, we consider the SCJ or DCJ distance; where each edge is directed

from the root to the leaves of the tree. The value of this functional is called the cost of the

arrangement. An arrangement with the lowest cost is said to be minimum, and its cost is

referred to as the minimum cost, which is also sometimes called the global minimum. An

arrangement is said to be locally minimum if replacing a structure at any interior node of

the tree with any other does not reduce the cost of the arrangement.

A star-like tree (or simply a star) is a tree consisting of a root and leaves to which the

root is connected. A two-star tree is a tree with two interior nodes (denote them by r and

u), such that the root r is connected with arbitrarily many leaves and u is connected with

only two leaves (see Figure 17).

Figure 17. Two-star tree. Every edge of the tree is directed from the root to leaves.

Setting of the SCJ and DCJ reconstruction problems. Given: a rooted tree, not nec-

essarily binary, to each leaf of which there is assigned a loopless structure; and arbitrary

strictly positive costs of all SCJ or all DCJ operations. Find: an arrangement (at interior

nodes of the tree) such that the sum over all edges of the tree of SCJ or DCJ distances

between structures at the endpoints of an edge is minimum. These essentially different

reconstruction problems are referred to as, respectively, SCJ or DCJ reconstructions.

We distinguish a cyclic reconstruction problem, where all structures specified at the

leaves are cyclic, and only cyclic structures can be attributed to internal nodes (i.e., only

cyclic arrangements are considered). Such reconstruction problems will be called cyclic. In

a cyclic DCJ reconstruction, the SM, join, and cut operations cannot be applied, and, ac-

cordingly, in the set of DCJ operations there remain the DM operation and insertion/dele-

tion of a component of a structure.

Another particular case of the reconstruction problem is as follows; structures at the

leaves are of equal content, and only arrangements with the same set of names as for the

Figure 17. Two-star tree. Every edge of the tree is directed from the root to leaves.

Setting of the SCJ and DCJ reconstruction problems. Given: a rooted tree, not
necessarily binary, to each leaf of which there is assigned a loopless structure; and arbitrary
strictly positive costs of all SCJ or all DCJ operations. Find: an arrangement (at interior
nodes of the tree) such that the sum over all edges of the tree of SCJ or DCJ distances
between structures at the endpoints of an edge is minimum. These essentially different
reconstruction problems are referred to as, respectively, SCJ or DCJ reconstructions.

We distinguish a cyclic reconstruction problem, where all structures specified at the
leaves are cyclic, and only cyclic structures can be attributed to internal nodes (i.e., only
cyclic arrangements are considered). Such reconstruction problems will be called cyclic. In
a cyclic DCJ reconstruction, the SM, join, and cut operations cannot be applied, and, accord-
ingly, in the set of DCJ operations there remain the DM operation and insertion/deletion of
a component of a structure.

Another particular case of the reconstruction problem is as follows; structures at
the leaves are of equal content, and only arrangements with the same set of names as
for the structures at the leaves are considered. In this case, we speak about the equal-
content reconstruction problem. In the cyclic equal-content DCJ reconstruction, in addition,
the insertion/deletion operations cannot be applied, and accordingly, in the set of DCJ
operations there remains the DM operation only. In this case, the cost of this operation can
be omitted without loss of generality.

In the reconstruction problems, we prove the following theorems, where n is the
number of names in the structures assigned to the leaves and l is the number of leaves.

Theorem 4. An exact algorithm is constructed which solves the SCJ reconstruction problem on any
two-star tree for arbitrary costs of SCJ operations. The runtime of the algorithm is of the order of
n2·(l + log(n)).

Recall that the SAT problem for a given conjunctive normal form (CNF) is the problem
of determining whether there exist values 0 and 1 of the variables in this CNF for which
the CNF equals 1, and if they do exist, giving an example of those values.

Theorem 5. An exact algorithm is constructed which reduces the cyclic equal-content DCJ recon-
struction problem on any star to a sequence of length log(n·l) of SAT problems in which every CNF
contains of the order of n2·l2 variables and of the order of n3·l2 disjunction terms.

Mathematics 2023, 11, 2024 27 of 39

Numerous references concerning this problem can be found, e.g., in [24]. Let us present
results directly related to Theorems 4 and 5. In [10], for equal costs of SCJ operations
and equal-content structures, there was described an exact quadratic-time algorithm for
structure reconstruction on an arbitrary tree, loops at leaves being admissible. In [26],
for equal costs of SCJ operations and arbitrary content of structures, there was described
an exact quadratic-time algorithm for structure reconstruction on an arbitrary tree (loops
being admissible). In [11], for arbitrary costs of SCJ operations and arbitrary content of
structures (but with the condition that structures do not contain loops), there was described
an exact algorithm for structure reconstruction on a star. Thus, in Theorem 4 we pass from
a star to a two-star tree.

In [24], there was considered a generalization of the SCJ reconstruction problem where
each pair of extremities is assigned with a weight, and when this pair is joined, its weight
is added to the objective function. Additionally, it was proved there that this problem
is NP-hard, and an FTP-algorithm for solving it was described. Namely, there was an
algorithm described with a runtime being exponential in one variable only; this variable
reflects the number of conflicts at interior nodes of the tree when reconstructing by each
pair of extremities separately (for exact formulations; see [24]). The algorithm is based on
reduction to an integer linear programming (ILP) problem.

In Theorem 5, the cyclic equal-content DCJ reconstruction problem on a star is reduced
to a sequence of SAT problems. Note that the reduction to a SAT solver instead of reduction
to an ILP-packet is much more efficient (see [27]).

3.2. SCJ Reconstruction Algorithm

Recall that we consider structures with no loops at the leaves. We will identify a node of
a tree and a structure assigned to it. Additionally, we consider only edges contained in at
least one leaf structure, such edges will be called admissible. Both constraints do not lose the
generality of solution.

If an edge of a leaf structure is not present at some leaf (which is also a structure), we
add it there as a loop; then the SCJ reconstruction problem reduces to the case of equal-
content structures at leaves and at all interior nodes. Let the cost of joining an isolated edge
into a loop be equal to the cost of edge deletion, and the cost of cutting a loop be equal to the
cost of adding an isolated edge. Thus, there remain two operations only; join and cut of
extremities of an admissible edge, but four costs for them are defined.

Denote the names of the extremities of the ith edge by i1 (tail) and i2 (head). There
arises a one-to-one correspondence between structures and matchings on the set (later: a
graph) M of names of extremities of all admissible edges. Namely, structure a corresponds
to a matching P on M such that the extremities ik and jl are connected by an edge in P if,
and only if, ik and jl are joined in a.

Let us be given a two-star tree (Figure 17). Recall that an edge of a tree is considered
together with the direction from the root to the leaves. An event for an unordered pair
p = (ik,jl), ik 6= jl, on an edge of the tree is passing from being joined at one end of the edge to
being cut at another end of it, or vice versa. A p-scenario is a specification of being joined/cut
for a fixed pair p at all interior nodes of the tree; at the leaves, this specification is already
given. The cost of a p-scenario is the total cost of events with the pair p according to this
specification. Note that the set S of p-scenarios formed for all pairs p does not necessarily
define an arrangement (at interior nodes) on the tree; even if S defines an arrangement at
the tail i1 of an edge, it need not define a structure in i2, since at i2 one extremity can be
joined with two other extremities. Our efforts are aimed to rule out such a situation.

Let us describe the SCJ reconstruction algorithm. We say that an unordered pair p is
admissible if its extremities are joined in at least one leaf of the tree. For each admissible pair
p, independently of other pairs of edge extremities, we inductively compute (forward pass
of the proposed algorithm from the leaves to the root) two quantities, pyes and pno. In each
leaf v we set pyes(v) = 0 if p is joined, and pyes(v) = ∞ if it is not joined. Similarly, pno(v) = 0 if
p is not joined, and ∞ if it is joined.

Mathematics 2023, 11, 2024 28 of 39

In the induction step, we compute:
pyes(v), the minimum cost of all p-scenarios starting at v provided that the pair p is joined

at v, and
pno(v), a similar quantity provided that p is not joined at v.
For that, during the forward pass of the algorithm, for every next node v of the

tree we consider all its child nodes. For each child v1 of v, we know p1yes and p1no;
we compute pyes = min(p1yes, p1no + c1), where c1 is the cost of the corresponding cut,
and take the sum over all children. For instance, at node r (see Figure 17), we have
pyes(r) = ∑

vi

min(pyes(vi), pno(vi) + c1), where vi runs over all children of r. If the minimum

is attained on the first argument, we record the pointer pyes→ yes, and otherwise, pyes → no,
where the first pointer means “join” of the extremities in p at v1, and the second, “no join”
of these extremities. Similarly, we compute pno = min(p1yes + c2, p1no), where c2 is the cost of
the corresponding join, and take the sum over all children. For instance, at node r (the same
figures), we have pno(r) = ∑

vi

min(pyes(vi) + c2, pno(vi)), where vi runs over all children of

r. If the minimum is attained at the first argument, we record the pointer pno → yes, and
otherwise pno → no. Thus, a pair p at v is labeled by pyes, pno, and two pointers, one of them
beginning with pyes and the other with pno. These pointers are used in the backward pass of
the algorithm when passing from v to v1.

We consider the set M of all extremities at one leaf of the tree (or, equivalently, at all
leaves of the tree) as a loopless graph with all admissible unordered edges p. If the edges
of the graph M are assigned with weights, which are rational or even integer numbers,
then we denote by w(x) the weight of any matching x on M; here, every x is a subgraph in
M with nodes of degrees 0 or 1. In other words, a matching is a subset of edges in a given
graph where no two edges share a common vertex. To each edge p in M, we can assign
the weight pyes − pno and construct a minimum weighted matching P, which is obtained by
minimizing w(x) over all matchings x in M. Thus, at the root r, the structure Pr is defined to
be the minimum matching with weights pyes − pno obtained at the root node r of the tree as a
result of the forward pass of the algorithm.

Using the minimum matching Pr, for each edge p in M, by backward pass of the
algorithm we uniquely determine whether the pair p is joined at u. Namely, if p ∈ Pr, then
we use the pointer that begins with pyes; if p /∈ Pr, we use the pointer that begins with
pno. Namely, for pyes → yes the pair p will be joined at u, and for pyes → no it will not be
joined at u. However, unlike the Pr, it is not clear whether in this way there will be defined
a structure at u. In Lemma 1, it is shown that any extremity at u is joined with at most
one extremity; thus, the structure Pr at r defines some structure Pu at u. Therefore, there
arises an arrangement {Pr,Pu} on the tree, which is said to be final; this is the output of
the algorithm. Of course, this backward pass can be defined for any tree, but in this case
Lemma 1 need not necessarily hold. The flow chart of the algorithm is shown in Figure 18.

Denote by s(P) the set S of p-scenarios for all unordered admissible pairs p, according
to which a pair p is joined at r if, and only if, p ∈ P, and a pair p is joined or not joined at
u according to the above-mentioned backward pass. Here, we used P at r instead of Pr.
Denote by c(P) the total (over all such p) cost of p-scenarios in s(P).

Mathematics 2023, 11, 2024 29 of 39

Mathematics 2023, 11, x FOR PEER REVIEW 29 of 39

Namely, for pyes → yes the pair p will be joined at u, and for pyes → no it will not be joined

at u. However, unlike the Pr, it is not clear whether in this way there will be defined a

structure at u. In Lemma 1, it is shown that any extremity at u is joined with at most one

extremity; thus, the structure Pr at r defines some structure Pu at u. Therefore, there arises

an arrangement {Pr,Pu} on the tree, which is said to be final; this is the output of the algo-

rithm. Of course, this backward pass can be defined for any tree, but in this case Lemma

1 need not necessarily hold. The flow chart of the algorithm is shown in Figure 18.

Figure 18. The flow chart of the algorithm for Theorem 3.

Denote by s(P) the set 𝒮 of p-scenarios for all unordered admissible pairs p, according

to which a pair p is joined at r if, and only if, p ∈ P, and a pair p is joined or not joined at u

according to the above-mentioned backward pass. Here, we used P at r instead of Pr. De-

note by c(P) the total (over all such p) cost of p-scenarios in s(P).

3.3. Exactness and Runtime of the SCJ Reconstruction Algorithm

Denote by P0 the empty matching.

Lemma 1. For any structure P at the root node r we have c(P) = c(P0) + w(P). The minimum of

c(P) is attained at Pr which defines the minimum final arrangement on the tree.

Here, final means that the backward pass of the algorithm defines exactly structures,

i.e., any extremity at u is joined with at most one extremity. Thus, the algorithm defines a

structure at u.

Proof. Any minimum arrangement does not have every unordered pair p joined if p is not

joined in at least one leaf of the tree. Therefore, when finding the minimum arrangement,

it is possible—as we have done—to confine ourselves only with pairs p that are joined in

at least one leaf of the tree, i.e., to confine ourselves with admissible pairs p only.

Recall that p ∈ P means that an edge p belongs to a matching P ⊆ M, and p ∉ P means

that an edge p in M does not belong to P. The definition of pyes and pno at r implies that for

any matching P in M we have

Figure 18. The flow chart of the algorithm for Theorem 4.

3.3. Exactness and Runtime of the SCJ Reconstruction Algorithm

Denote by P0 the empty matching.

Lemma 1. For any structure P at the root node r we have c(P) = c(P0) + w(P). The minimum of
c(P) is attained at Pr which defines the minimum final arrangement on the tree.

Here, final means that the backward pass of the algorithm defines exactly structures,
i.e., any extremity at u is joined with at most one extremity. Thus, the algorithm defines a
structure at u.

Proof. Any minimum arrangement does not have every unordered pair p joined if p is not
joined in at least one leaf of the tree. Therefore, when finding the minimum arrangement, it
is possible—as we have done—to confine ourselves only with pairs p that are joined in at
least one leaf of the tree, i.e., to confine ourselves with admissible pairs p only.

Recall that p ∈ P means that an edge p belongs to a matching P ⊆M, and p /∈ P means
that an edge p in M does not belong to P. The definition of pyes and pno at r implies that for
any matching P in M we have

c(P0) = ∑
p/∈P0

pno = ∑
p∈P

pno+ ∑
p/∈P

pno, c(P) = ∑
p∈P

pyes+ ∑
p/∈P

pno.

Then, c(P) − c(P0) = ∑
p∈P

(pyes − pno) = w(P). Therefore, the minimum of c(P) is

attained at Pr, since Pr is a minimum matching.
To prove the second claim, assume that at u there are two joined pairs p1 and p2

incident to each other. At each of the three neighbors of u, at least one of the pairs p1 and p2
is not joined by the condition. Since there are exactly three neighbors, at least one of the
pairs p1 and p2 (say p1) is not joined at least at two neighbors of u. Then, by making p1 not
joined at u, one strictly reduces the cost of the p-scenario, which contradicts the minimality
of c(Pr). Thus, the backward pass defines an arrangement with cost c(Pr) over a two-star
tree. Assume that there is an arrangement with a cost strictly less than this. It defines some
matching P at r. We have c(P) < c(Pr), which contradicts the minimality of c(Pr). �

Mathematics 2023, 11, 2024 30 of 39

Proof of Theorem 4. The proposed algorithm consists of the three above-described steps:
forward pass, constructing a matching Pr, and backward pass, which defines Pu. The
exactness of the algorithm follows from Lemma 1.

The runtime of the algorithm is the sum of the computation time for the three above-
mentioned steps. Since the number of admissible p is not greater than nl, the runtime of the
first and third steps is of the order of nl. A minimum matching is constructed in a time of
the order of n′·m + (n′)2·log(n′), where n′ is the number of nodes in the graph M and m is
the number of edges in it, ([28] Chapter 11). Since n′ = 2n and m ≤ n·l, this time is of the
order of n2·(l + log(n)). �

Remark 3. The described algorithm obviously can be generalized to the case when there are several
nodes u (see Figure 17), i.e., any child of the root of the tree is a leaf or a node with exactly two
children, which are leaves. For this case, the Proof of Theorem 4 can be literally repeated.

3.4. Example of Executing the SCJ Reconstruction Algorithm

A two-star tree and structures at its leaves are shown in Figure 19. Let the cost of all
operations be 1.

Mathematics 2023, 11, x FOR PEER REVIEW 30 of 39

0

0() no no no

p P p P p P

c P p p p

= = + , () yes no

p P p P

c P p p

= + .

Then, 0() () () ()yes no

p P

c P c P p p w P

− = − = . Therefore, the minimum of c(P) is attained

at Pr, since Pr is a minimum matching.

To prove the second claim, assume that at u there are two joined pairs p1 and p2 inci-

dent to each other. At each of the three neighbors of u, at least one of the pairs p1 and p2 is

not joined by the condition. Since there are exactly three neighbors, at least one of the pairs

p1 and p2 (say p1) is not joined at least at two neighbors of u. Then, by making p1 not joined

at u, one strictly reduces the cost of the p-scenario, which contradicts the minimality of

c(Pr). Thus, the backward pass defines an arrangement with cost c(Pr) over a two-star tree.

Assume that there is an arrangement with a cost strictly less than this. It defines some

matching P at r. We have c(P) < c(Pr), which contradicts the minimality of c(Pr). □

Proof of Theorem 3. The proposed algorithm consists of the three above-described steps:

forward pass, constructing a matching Pr, and backward pass, which defines Pu. The ex-

actness of the algorithm follows from Lemma 1.

The runtime of the algorithm is the sum of the computation time for the three above-

mentioned steps. Since the number of admissible p is not greater than nl, the runtime of

the first and third steps is of the order of nl. A minimum matching is constructed in a time

of the order of n′·m + (n′)2·log(n′), where n′ is the number of nodes in the graph M and m

is the number of edges in it, ([28] Chapter 11). Since n′ = 2n and m ≤ n·l, this time is of the

order of n2·(l + log(n)). □

Remark 3. The described algorithm obviously can be generalized to the case when there are several

nodes u (see Figure 17), i.e., any child of the root of the tree is a leaf or a node with exactly two

children, which are leaves. For this case, the proof of Theorem 3 can be literally repeated.

3.4. Example of Executing the SCJ Reconstruction Algorithm

A two-star tree and structures at its leaves are shown in Figure 19. Let the cost of all

operations be 1.

Figure 19. Example of executing the SCJ reconstruction algorithm: input data at the leaves (two

components in each of the three left-hand leaves); all costs are uniform.

At node u we have pyes(u) = 0, pno(u) = 2 for p = (12,22); and similarly pyes = 1, pno = 1 for p

= (3i,11) and p = (3i,21), where i is arbitrary; pyes = 2, pno = 0 for other p. At node r we have

pyes(r) = 3, pno(r) = 1 for p = (12,22); pyes = 3, pno = 2 for p = (32,11) and p = (32,21); pyes = 4, pno = 1

for p = (31,11) and p = (31,21); pyes = 3, pno = 1 for the seven p that are joined at an r-leaf but not

at a u-leaf; and pyes = 4, pno = 0 for other p.

Figure 19. Example of executing the SCJ reconstruction algorithm: input data at the leaves
(two components in each of the three left-hand leaves); all costs are uniform.

At node u we have pyes(u) = 0, pno(u) = 2 for p = (12,22); and similarly pyes = 1, pno = 1
for p = (3i,11) and p = (3i,21), where i is arbitrary; pyes = 2, pno = 0 for other p. At node r
we have pyes(r) = 3, pno(r) = 1 for p = (12,22); pyes = 3, pno = 2 for p = (32,11) and p = (32,21);
pyes = 4, pno = 1 for p = (31,11) and p = (31,21); pyes = 3, pno = 1 for the seven p that are joined
at an r-leaf but not at a u-leaf; and pyes = 4, pno = 0 for other p.

Weights of all pairs are positive; therefore, the minimum matching is empty. Hence,
there are no joins at r; following the arrows, we obtain a structure at u. The resulting
arrangement is shown in Figure 20; its cost is 14.

Mathematics 2023, 11, x FOR PEER REVIEW 31 of 39

Weights of all pairs are positive; therefore, the minimum matching is empty. Hence,

there are no joins at r; following the arrows, we obtain a structure at u. The resulting ar-

rangement is shown in Figure 20; its cost is 14.

Figure 20. Result of executing the SCJ reconstruction algorithm (output arrangement): input data at

the leaves are shown in Figure 19; all costs are uniform.

Now assume that the cost of a cut of any pair is 1, and the cost of a join is 4. At node

u we have pyes(u) = 0, pno(u) = 2 for p = (12,22); and similarly pyes = 1, pno = 4 for p = (3i,11) and

p = (3i,21), where i is any; pyes = 8, pno = 0 for other p. At node r we have pyes(r) = 3, pno(r) = 4

for p = (12,22); pyes = 3, pno = 8 for p = (32,11) and p = (32,21); pyes = 4, pno = 4 for p = (31,11) and p =

(31,21); pyes = 3, pno = 4 for the seven p that are joined at an r-leaf but not at a u-leaf; and pyes

= 4, pno = 0 for other p; a non-zero term arises only on the edge (r,u) for the pair (12,22) when

computing pno®.

For weights of the edges in M we obtain the following: –1 for p = (12,22); –5 for p =

(32,11) and p = (32,21); 0 for p = (31,11) and p = (31,21); –1 for the seven p that are joined at an

r-leaf but not at a u-leaf; and 4 for other p. A minimum matching has weight –7 and con-

sists of the pairs (32,11), (12,21), and (22,31). The resulting arrangement is shown in Figure

21, its cost being 49.

Figure 21. Result (output arrangement) of executing the SCJ reconstruction algorithm: input data at

the leaves are shown in Figure 19, the cost of the cut is 1, and the cost of a join is 4.

Figure 20. Result of executing the SCJ reconstruction algorithm (output arrangement): input data at
the leaves are shown in Figure 19; all costs are uniform.

Mathematics 2023, 11, 2024 31 of 39

Now assume that the cost of a cut of any pair is 1, and the cost of a join is 4. At node
u we have pyes(u) = 0, pno(u) = 2 for p = (12,22); and similarly pyes = 1, pno = 4 for p = (3i,11)
and p = (3i,21), where i is any; pyes = 8, pno = 0 for other p. At node r we have pyes(r) = 3,
pno(r) = 4 for p = (12,22); pyes = 3, pno = 8 for p = (32,11) and p = (32,21); pyes = 4, pno = 4 for
p = (31,11) and p = (31,21); pyes = 3, pno = 4 for the seven p that are joined at an r-leaf but not
at a u-leaf; and pyes = 4, pno = 0 for other p; a non-zero term arises only on the edge (r,u) for
the pair (12,22) when computing pno®.

For weights of the edges in M we obtain the following: –1 for p = (12,22); –5 for
p = (32,11) and p = (32,21); 0 for p = (31,11) and p = (31,21); –1 for the seven p that are joined
at an r-leaf but not at a u-leaf; and 4 for other p. A minimum matching has weight –7 and
consists of the pairs (32,11), (12,21), and (22,31). The resulting arrangement is shown in
Figure 21, its cost being 49.

Mathematics 2023, 11, x FOR PEER REVIEW 31 of 39

Weights of all pairs are positive; therefore, the minimum matching is empty. Hence,

there are no joins at r; following the arrows, we obtain a structure at u. The resulting ar-

rangement is shown in Figure 20; its cost is 14.

Figure 20. Result of executing the SCJ reconstruction algorithm (output arrangement): input data at

the leaves are shown in Figure 19; all costs are uniform.

Now assume that the cost of a cut of any pair is 1, and the cost of a join is 4. At node

u we have pyes(u) = 0, pno(u) = 2 for p = (12,22); and similarly pyes = 1, pno = 4 for p = (3i,11) and

p = (3i,21), where i is any; pyes = 8, pno = 0 for other p. At node r we have pyes(r) = 3, pno(r) = 4

for p = (12,22); pyes = 3, pno = 8 for p = (32,11) and p = (32,21); pyes = 4, pno = 4 for p = (31,11) and p =

(31,21); pyes = 3, pno = 4 for the seven p that are joined at an r-leaf but not at a u-leaf; and pyes

= 4, pno = 0 for other p; a non-zero term arises only on the edge (r,u) for the pair (12,22) when

computing pno®.

For weights of the edges in M we obtain the following: –1 for p = (12,22); –5 for p =

(32,11) and p = (32,21); 0 for p = (31,11) and p = (31,21); –1 for the seven p that are joined at an

r-leaf but not at a u-leaf; and 4 for other p. A minimum matching has weight –7 and con-

sists of the pairs (32,11), (12,21), and (22,31). The resulting arrangement is shown in Figure

21, its cost being 49.

Figure 21. Result (output arrangement) of executing the SCJ reconstruction algorithm: input data at

the leaves are shown in Figure 19, the cost of the cut is 1, and the cost of a join is 4.
Figure 21. Result (output arrangement) of executing the SCJ reconstruction algorithm: input data at
the leaves are shown in Figure 19, the cost of the cut is 1, and the cost of a join is 4.

3.5. Heuristic Algorithm for the Cyclic Case of the SCJ Reconstruction Problem on an Arbitrary Tree

The authors are unaware of whether an exact polynomial-time SCJ reconstruction
algorithm for a structure over a two-star tree in the cyclic case is possible, even without
regard to the costs. A heuristic algorithm for this case can easily be obtained by modifying
the algorithm described in Section 3.2. Namely, for Pr we take a minimum complete
weighted matching. After that, as described in [11], we could descend to a locally minimum
arrangement by alternating replacements of complete matchings at u and at r, beginning
from u. At a current node v, a matching is replaced with a minimum complete one with
respect to the weights pc = pyes − pno of unordered pairs p (edges in M), where pyes is the
total cost of events with the pair p on edges incident to v provided that it is joined at v, and
pno is the similar cost provided that p is not joined at v.

Let all costs be uniform in the example presented in Figure 19; a minimum complete
matching Pr is shown in Figure 20. One can easily check that the descent to a local minimum
can be made in one step; the resulting arrangement is shown in Figure 22, its cost being 20.
In this case, the local minimum is also global.

Mathematics 2023, 11, 2024 32 of 39

Mathematics 2023, 11, x FOR PEER REVIEW 32 of 39

3.5. Heuristic Algorithm for the Cyclic Case of the SCJ Reconstruction Problem on an

Arbitrary Tree

The authors are unaware of whether an exact polynomial-time SCJ reconstruction

algorithm for a structure over a two-star tree in the cyclic case is possible, even without

regard to the costs. A heuristic algorithm for this case can easily be obtained by modifying

the algorithm described in Section 3.2. Namely, for Pr we take a minimum complete

weighted matching. After that, as described in [11], we could descend to a locally mini-

mum arrangement by alternating replacements of complete matchings at u and at r, be-

ginning from u. At a current node v, a matching is replaced with a minimum complete one

with respect to the weights pc = pyes − pno of unordered pairs p (edges in M), where pyes is the

total cost of events with the pair p on edges incident to v provided that it is joined at v,

and pno is the similar cost provided that p is not joined at v.

Let all costs be uniform in the example presented in Figure 19; a minimum complete

matching Pr is shown in Figure 20. One can easily check that the descent to a local mini-

mum can be made in one step; the resulting arrangement is shown in Figure 22, its cost

being 20. In this case, the local minimum is also global.

Figure 22. Result (output arrangement) of executing the heuristic cyclic SCJ reconstruction algo-

rithm; input data at the leaves are shown in Figure 19; all costs are uniform.

3.6. DCJ Reconstruction Algorithm

In the cyclic equal-content setting (with only the DM operation), the DCJ reconstruc-

tion problem becomes NP-hard even for a tree consisting of a root and three leaves [29].

In [12], a much more general problem of DCJ reconstruction has been exactly reduced to

an integer linear programming (ILP) problem.

The cyclic equal-content setting DCJ reconstruction problem considered here is ex-

actly reduced to a sequence of SAT problems. The latter way is preferable, since presently

there exist programs, called SAT solvers, which in several minutes verify the satisfiability

Figure 22. Result (output arrangement) of executing the heuristic cyclic SCJ reconstruction algorithm;
input data at the leaves are shown in Figure 19; all costs are uniform.

3.6. DCJ Reconstruction Algorithm

In the cyclic equal-content setting (with only the DM operation), the DCJ reconstruction
problem becomes NP-hard even for a tree consisting of a root and three leaves [29]. In [12],
a much more general problem of DCJ reconstruction has been exactly reduced to an integer
linear programming (ILP) problem.

The cyclic equal-content setting DCJ reconstruction problem considered here is exactly
reduced to a sequence of SAT problems. The latter way is preferable, since presently there
exist programs, called SAT solvers, which in several minutes verify the satisfiability of a
formula with tens of thousands of variables and hundreds of thousands of clauses, and if
it is satisfiable, output a satisfying assignment of variables; see, e.g., [27] and the Internet
site http://fmv.jku.at/lingeling (accessed on 24 February 2023), where references to the
corresponding programs and numerous publications can be found. In the cyclic equal-
content setting costs of any arrangements are positive integers. By an admissible edge we
call any edge in given structures assigned to leaves of a given tree in the DCJ reconstruction
problem. One name at the leaves of the tree exactly corresponds to one admissible edge.

To describe the reduction in the cyclic equal-content DCJ reconstruction problem on a
star with tree root r to a sequence of SAT problems, we consider an auxiliary problem:

(*) Does there exist an arrangement (in fact, a structure at r) with a cost no greater than
a given positive integer k?

We will decide the (*) problem by finding a SATk problem such that any of its af-
firmative solution describes a structure R at r in the (*) problem, and the thus-obtained
arrangement on a star will be a solution to the auxiliary (*) problem.

It is clear that solving this SATk problem is equivalent to solving problem (*). Because of
this, the smallest k* for which the corresponding SATk* problem has an affirmative solution
is the lowest arrangement cost in the DCJ reconstruction problem; the corresponding

http://fmv.jku.at/lingeling

Mathematics 2023, 11, 2024 33 of 39

arrangement is minimum. Below a reduction in the (*) problem to a SATk problem is
described for every k.

Being able to solve the (*) problem for various k, we can trivially solve the original
DCJ reconstruction problem. Let k1 and k2 be such that k1 ≤ k* ≤ k2. For example, we
may set k1 = 0 (in Section 3.8 we present a way to obtain a nontrivial lower estimate for
k*) and k2 = nl, where n is the number of names in leaves and l is the number of leaves in a
given tree. Given these bounds, k1 and k2, for k we take the integral part [(k1 + k2)/2], and
then solve the SATk problem. If the solution is affirmative, we pass to the left-hand part of
the segment [k1, k2]; otherwise, to the right-hand one. We again denote this next segment
by [k1, k2], and so on. In [log2(k2 − k1)] + 1 steps, we arrive at a segment k1 = k2 and the
desired k* = k1.

Now we describe the conjunctive normal form CNFk, form for any given k. However,
first, we describe an important general construction. For two structures, a and b, there
was defined a graph a + b, called the breakpoint graph. For equal-content structures, a and
b, the breakpoint graph can equivalently be defined simpler, as follows. Consider the set
M of extremities of all edges in a (or, equivalently, in b), and in the two matchings on M
corresponding to the structures a and b. Then, a + b is defined to be the set of edges in M
consisting of the edges belonging to one of these matchings. The minimum number of
DM operations required to transform one cyclic equal-content structure a into another b is
n − x, where n is the number of names in a (or, the same thing, in b), and x is the number of
cycles in a + b. This can easily be proved directly. Every edge in a + b corresponds to a pair
of joined extremities in a or in b, and, at the same time, corresponds to an edge of one of
the two matchings in M corresponding to a and b. In the graph a + b, edges are labeled by
successively alternating symbols a or b according to whether this edge belongs, as a joined
pair, to a or to b. If a and b are cyclic structures, then a + b is a cyclic graph.

Because of this, the cost y of an arrangement along a star is equal to y = nl − x, where
x is the total number of cycles (over all leaves s) in all breakpoint graphs R + s, where R is a
structure at the root r, and s is the given structure at a leaf s, as well as n is the number of
names in leaves and l is the number of leaves in the given tree. Therefore, the existence of
an arrangement with cost y ≤ k, ref. to (*), is equivalent to the existence of a structure R
in r with the total number x of cycles satisfying nl − k ≤ x. Thus, to reduce the auxiliary
problem (*) to a SATk problem, we have to construct a conjunctive normal form CNFk which
is satisfiable if, and only, if there exists a matching R on M at r, such that nl − k ≤ x. Now
we construct this CNFk that describes such R on M and estimates the total number of cycles
in all R + s from below.

For every unordered pair p = (ik,jl), ik 6= jl, of different extremities in M, we introduce
a variable, also denoted by p = (ik,jl), such that at r we have the following, p = 1 if p is
joined and p = 0 otherwise. A set of these variables describes the subgraph in M; it can be
a matching on M and the desired structure R at r. For each leaf s, for each p joined at s,
and for each positive integer m, 1 ≤ m ≤ nl − k, we introduce a variable psm such that psm
= 1 if p belongs to the mth cycle in the set of all cycles in all R + s, where to each m there
corresponds a least one cycle different from those corresponding to other m1 6= m; and psm
= 0 otherwise. In the first case, m will be called the cycle number of the pair p. If psm = 1, the
extremities in p are neighboring in the corresponding cycle.

Let us express the fact that each extremity ij ∈M is joined with exactly one extremity,
i.e., values of the variables p on which CNFk takes the value 1 define a partition of M into
cycles. For instance, in M there are 4 nodes, denoted by 1, 2, 3, and 4, and for node 1
we write

((1, 2) ∧ ¬(1, 3) ∧ ¬(1, 4)) ∨ ((1, 3) ∧ ¬(1, 2) ∧ ¬(1, 4)) ∨ ((1, 4) ∧ ¬(1, 2) ∧ ¬(1, 3)). (1)

In general, we obtain a part of a CNF of the form ∨i ((1,i) ∧ ∧i ′ ¬(1,i′)), where i runs
over all nodes in M except for 1, and i′ runs over all nodes in M except for 1 and i. We
conjunctively combine these formulae for all other nodes in M except for 1.

Mathematics 2023, 11, 2024 34 of 39

The next three parts of CNFk depend on the parameter k. We express the fact that at
every leaf s, every joined pair p is assigned with a unique number m. For instance, at leaf s,
node 1 is joined with 2 and nl − k = 3; i.e., 1 ≤ m ≤ 3. Then, we write a part of the CNF:

((1, 2)s1 ∧ ¬(1, 2)s2 ∧ ¬(1, 2)s3) ∨ ((1, 2)s2 ∧ ¬(1, 2)s1 ∨ ¬(1, 2)s3) ∨ ((1, 2)s3 ∧ ¬(1, 2)s1 ∧ ¬(1, 2)s2). (2)

In general, we have ∨m ((i,j)sm ∧ ∧m ′ ¬(i,j)sm ′), where i and j are joined extremities
in s, m running over all cycle numbers and m′ running over all numbers except m. By
conjunctively combining such formulae for all other joined p = (i,j) and all leaves s, we
obtain ∧ps∨m (i,j)sm ∧ ∧m ′ ¬(i,j)sm ′ . Here, and in what follows, we use structures defined at
the leaves. Note that some other qs in the same leaf s (or even in another leaf; see below)
may be given the same number m.

Now we express the fact that for every cycle number m (1 ≤ m ≤ nl − k), at some leaf
there exists a joined pair p having this number. For example, there are two leaves; the pairs
p joined at leaf 1 are (1,2) and (3,4), and those joined at leaf 2 are (1,3) and (2,4). Then, for
every cycle number m we write

(1, 2)1m ∨ (3, 4)1m ∨ (1, 3)2m ∨ (2, 4)2m.

In general, this will be the disjunction of the variables psm over all joined p and all
s, for each m separately, ∨ps psm. By conjunctively combining such formulae for all cycle
numbers m, we obtain ∧m ∨ps psm.

Now let us ensure equality of cycle numbers of all pairs p in each cycle in R + s, for any
given leaf s. It suffices to ensure the equality of numbers for neighboring pairs, i.e., for those
separated by some joined pair x in R. In other words, we have to ensure the implication
that if two joined pair p and q at one leaf s are connected by a joined pair from R, then p
and q have the same cycle number m. This is written separately for every cycle number m.
For instance, for any joined pairs p = (1,2) and q = (3,4) at the same leaf s, we write (in the
parentheses, there are all possible joined pairs in R)

((1, 3) ∨ (1, 4) ∨ (2, 3) ∨ (2, 4))→ (psm ↔ qsm). (3)

Here, psm can be equal to 0; recall that a joined pair x ∈ R is an edge in R + s. By
conjunctively adding such formulae for all cycle numbers m, all leaves s, and joined pairs p
= (p1,p2), q = (q1,q2) in s, we obtain

∧mspq((p1, q1) ∨ (p1, q2) ∨ (p2, q1) ∨ (p2, q2))→ (psm ↔ qsm).

It may seem that we also need to ensure that joined pairs in different cycles have
different cycle numbers. However, this is not necessary: if different cycles have the same
numbers, the number of cycles will be greater than nl− k, which also satisfies the conditions
of problem (*). The flow chart of the algorithm is shown in Figure 23.

Proof of Theorem 5. The description of CNFk expresses the condition nl − k ≤ x, and
the trivial bounds for k* (from 0 to nl) imply the exactness of the reduction. Let us check
the estimate for the size of CNFk; in respect of the number of variables, it is obvious. To
obtain an estimate for the number of disjunctions, note that Equation (1) is equivalent to a
conjunction of four disjunctions:

((1, 2) ∨ (1, 3) ∨ (1, 4)) ∧ (¬(1, 2) ∨ ¬(1, 3)) ∧ (¬(1, 2) ∨ ¬(1, 4)) ∧ (¬(1, 3) ∨ ¬(1, 4)).

Equation (2) is equivalent to an analogous conjunction. Equation (3) is equivalent to a
conjunction of four disjunctions:

(¬(1, 3) ∨ ¬ps1 ∨ qs1) ∨ (¬(1, 3) ∨ ps1 ∨ ¬qs1)

∧(¬(1, 4) ∨ ¬ps1 ∨ qs1) ∨ (¬(1, 4) ∨ ps1 ∨ ¬qs1)

Mathematics 2023, 11, 2024 35 of 39

∧(¬(2, 3) ∨ ¬ps1 ∨ qs1) ∨ (¬(2, 3) ∨ ps1 ∨ ¬qs1)

∧(¬(2, 4) ∨ ¬ps1 ∨ qs1) ∨ (¬(2, 4) ∨ ps1 ∨ ¬qs1).

Here, at each leaf there are of the order of n2 pairs (p,q), which in total, over all leaves,
gives ln2; this is multiplied by the number nl of cycle numbers. �

Mathematics 2023, 11, x FOR PEER REVIEW 35 of 39

∧mspq 1 1 1 2 2 1 2 2((,) (,) (,) (,)) ()sm smp q p q p q qpp q → .

It may seem that we also need to ensure that joined pairs in different cycles have

different cycle numbers. However, this is not necessary: if different cycles have the same

numbers, the number of cycles will be greater than nl − k, which also satisfies the condi-

tions of problem (*). The flow chart of the algorithm is shown in Figure 23.

Figure 23. The flow chart of the algorithm for Theorem 4.

Proof of Theorem 4. The description of CNFk expresses the condition nl − k ≤ x, and the

trivial bounds for k* (from 0 to nl) imply the exactness of the reduction. Let us check the

estimate for the size of CNFk; in respect of the number of variables, it is obvious. To obtain

an estimate for the number of disjunctions, note that Equation (1) is equivalent to a con-

junction of four disjunctions:

((1,2) (1,3) (1,4)) ((1,2) (1,3)) ((1,2) (1,4)) ((1,3) (1,4)) .

Equation (2) is equivalent to an analogous conjunction. Equation (3) is equivalent to

a conjunction of four disjunctions:

1 1 1 1((1,3)) ((1,3))s s s sp q p q

1 1 1 1((1,4)) ((1,4))s s s sp q p q

1 1 1 1((2,3)) ((2,3))s s s sp q p q

1 1 1 1((2,4)) ((2,4))s s s sp q p q
.

Here, at each leaf there are of the order of n2 pairs (p,q), which in total, over all leaves,

gives ln2; this is multiplied by the number nl of cycle numbers. □

3.7. Example of the DCJ Reconstruction

It is often reasonable to confine ourselves with a reduced version of the problem: a root

structure is sought for among the structures in which any joined pair p of extremities oc-

curs at least at one of the leaves. Our simulation (results are not presented here) shows

that a root structure appearing in the DCJ reconstruction usually possesses this property.

Figure 23. The flow chart of the algorithm for Theorem 5.

3.7. Example of the DCJ Reconstruction

It is often reasonable to confine ourselves with a reduced version of the problem: a root
structure is sought for among the structures in which any joined pair p of extremities occurs
at least at one of the leaves. Our simulation (results are not presented here) shows that a
root structure appearing in the DCJ reconstruction usually possesses this property. Then,
the number of variables and disjunctions in the corresponding CNFk considerably reduces.

Let us perform the DCJ reconstruction with a reduced version for the input data shown
in Figure 24.

For the upper and lower bounds for the parameter k, we take the trivial values k1 = 0
and k2 = nl = 9, where n = 3 is the number of names in leaves and l = 3 is the number of
leaves. According to the algorithm in Section 3.6, we construct CNF2, which has nl − k = 7,
and obtain that it has no affirmative solution; therefore, a structure R is not well defined.
Then, we construct CNF3, which has nl − k = 6, and obtain that it does have an affirmative
solution. The satisfying collection of variables is as follows (we present those equal to
1 only): (12,21), (22,31), (32,11); (12,21)l1, (22,11)l2, (31,32)l2, (22,31)m3, (32,21)m4, (11,12)m4,
(12,31)r5, (32,11)r6, (21,22)r6, where the indices l, m, and r indicate, respectively, the left,
middle, and right leaves. The first three variables determine a corresponding structure
R with six cycles (in total) in all graphs R + s. The resulting arrangement is shown in
Figure 25a, and these breakpoint graphs R + s, each of them consisting of two cycles, are
shown in Figure 25b.

Mathematics 2023, 11, 2024 36 of 39

Mathematics 2023, 11, x FOR PEER REVIEW 36 of 39

Then, the number of variables and disjunctions in the corresponding CNFk considerably

reduces.

Let us perform the DCJ reconstruction with a reduced version for the input data shown

in Figure 24.

Figure 24. Input data at leaves (two cycles at each leaf) for the DCJ reconstruction with a reduced

version: reduction to SAT problems.

For the upper and lower bounds for the parameter k, we take the trivial values k1 = 0

and k2 = nl = 9, where n = 3 is the number of names in leaves and l = 3 is the number of

leaves. According to the algorithm in Section 3.6, we construct CNF2, which has nl − k = 7,

and obtain that it has no affirmative solution; therefore, a structure R is not well defined.

Then, we construct CNF3, which has nl − k = 6, and obtain that it does have an affirmative

solution. The satisfying collection of variables is as follows (we present those equal to 1

only): (12,21), (22,31), (32,11); (12,21)l1, (22,11)l2, (31,32)l2, (22,31)m3, (32,21)m4, (11,12)m4, (12,31)r5,

(32,11)r6, (21,22)r6, where the indices l, m, and r indicate, respectively, the left, middle, and

right leaves. The first three variables determine a corresponding structure R with six cycles

(in total) in all graphs R + s. The resulting arrangement is shown in Figure 25a, and these

breakpoint graphs R + s, each of them consisting of two cycles, are shown in Figure 25b.

Figure 24. Input data at leaves (two cycles at each leaf) for the DCJ reconstruction with a reduced
version: reduction to SAT problems.

Mathematics 2023, 11, x FOR PEER REVIEW 36 of 39

Then, the number of variables and disjunctions in the corresponding CNFk considerably

reduces.

Let us perform the DCJ reconstruction with a reduced version for the input data shown

in Figure 24.

Figure 24. Input data at leaves (two cycles at each leaf) for the DCJ reconstruction with a reduced

version: reduction to SAT problems.

For the upper and lower bounds for the parameter k, we take the trivial values k1 = 0

and k2 = nl = 9, where n = 3 is the number of names in leaves and l = 3 is the number of

leaves. According to the algorithm in Section 3.6, we construct CNF2, which has nl − k = 7,

and obtain that it has no affirmative solution; therefore, a structure R is not well defined.

Then, we construct CNF3, which has nl − k = 6, and obtain that it does have an affirmative

solution. The satisfying collection of variables is as follows (we present those equal to 1

only): (12,21), (22,31), (32,11); (12,21)l1, (22,11)l2, (31,32)l2, (22,31)m3, (32,21)m4, (11,12)m4, (12,31)r5,

(32,11)r6, (21,22)r6, where the indices l, m, and r indicate, respectively, the left, middle, and

right leaves. The first three variables determine a corresponding structure R with six cycles

(in total) in all graphs R + s. The resulting arrangement is shown in Figure 25a, and these

breakpoint graphs R + s, each of them consisting of two cycles, are shown in Figure 25b.

Figure 25. (a) Resulting arrangement in the DCJ reconstruction for the data given in Figure 20,
obtained by a reduction to SAT problems. (b) Three corresponding breakpoint graphs R+s, each of
them containing two cycles of lengths 2 and 4.

3.8. Lower Bound on the Parameter k in the Conjunctive Normal Form CNFk and Final Form of a
Common Graph

One can improve the lower bound on k* by constructing a common graph G of all leaf
structures. This is a graph with node set M, and an edge connects two extremities if they
are joined in some leaf structure; the edge is labeled with the name of the corresponding
leaf. The common graph of structures a and b is their breakpoint graph. Thus, two nodes
can be connected by several (up to l) edges, and the degree of any node of the graph is l,
since all the structures are cyclic. A common graph G is said to be of a final form if every
one of its connected components is two nodes connected by l edges. This graph G is of a
final form if, and only if, it is obtained from identical leaf structures. In a common graph G
of a final form there are n connected components where n is the number of names in leaves
of the tree. A DM operation over G consists of replacing two edges having the same name
with other two edges having the same name and the same four extremities.

Mathematics 2023, 11, 2024 37 of 39

A DM operation is invertible, and its inverse is also a DM operation. Therefore, the
total number of DM operations in transformations of a root structure r to leaf structures s
equals the total number of DM operations in transformations of leaf structures to a root one.
Additionally, the latter equals the number of DM operations in the shortest transformation
(commonly called reduction) of G to a final form. A cycle in G is said to be alternating if
each edge in it is labeled by one of two names and these labels alternate. In a graph of a
final form there are nl·(l − 1)/2 alternating cycles (all of length 2). Note the following, any
alternating cycle in G is contained in precisely one si + sj where si and sj are any two leaves
of the tree. Therefore, the number of alternating cycles in an arbitrary G is not greater than
in a final one, and a DM can increase this number by at most l–1. Hence, we obtain a lower
estimate of nl

2 −
d

l−1 for the SAT bound, where d is the number of alternating cycles in G.
This is a lower bound for k*.

An upper bound for k* can be obtained by exhaustively examining the arrangements
in which r is a structure coinciding with a structure at some leaf and by computing the
minimum cost among all these arrangements.

4. Discussion

We have described an algorithm for constructing an intermediate tree, which, in
particular, makes it possible to determine coordinated evolution of proteins with respect
to the genes that encode them, and of these genes themselves with respect to the species
that contain them. This has also been performed for an important case where the species
tree is represented by a network. We have described algorithms for reconstructing the
evolution of structures along the tree, which, in particular, allow the reconstruction of
genomic structures along a given tree.

Let us outline possible directions for further research. In the problem of constructing
an intermediate tree G, we have proposed a way to construct a collection B of clades for
which our algorithm outputs the best reconciliation of G with a preassigned tree P and
network S. Further research can be aimed at finding other ways to construct collection B.
Additionally, of interest is the case where P is a non-binary tree, along with the problem of
optimal binarization of P. A binarization method is described and can easily be adapted
for our algorithm, but the problem of choosing an optimal binarization still remains. The
question of whether it is possible to remove the constraints on costs of the events in the
statement of Theorem 3 so that the described algorithm is still exact also remains open.

The questions of an exact efficient algorithm for SCJ reconstruction on an arbitrary
tree for arbitrary costs of SCJ operations and of for DCJ reconstruction even on a two-star
tree in the cyclic case remain open.

Author Contributions: Conceptualization, V.L. and K.G.; proof, K.G. and V.L.; writing—original
draft preparation, K.G.; writing—review and editing, V.L.; supervision, V.L.; project administration,
V.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by RFBR grant 20-01-00670.

Data Availability Statement: Not Applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. The Procedure to Construct the Main Parameter of the Algorithm

Given collection B′, exhaustively examining sets from B′ in ascending order of their
cardinality (in the case of equal cardinalities, in an arbitrary order). For each successive set
A, we perform the first feasible step out of the following five (Steps 1–5).

(1) If there exists a partition of A into two sets A1 and A2 in B′, then procced with the next
set A.

(2) If there exist two sets, A1 and A2, in the current B′ such that the sets A1 ∩ A and
A2 ∩ A form a partition of A, consider both of the cases A = Ai ∩ A with i = 1 and i = 2,

Mathematics 2023, 11, 2024 38 of 39

and so on over all steps until we obtain one-element sets A. At each step, we add to B′

the sets forming the partition of A; the same in all the following steps.
(3) If there exists a set A1 in the current B′ such that A1 ⊂ A (take A1 for which |A1| is

the largest), consider both of the sets A = A1 and A = A\A1, and so on over all steps
until one-element sets for A are obtained.

(4) If there exists a set A1 in the current B′, such that A1 ∩ A and A\(A1 ∩ A) is a partition
(take A1 for which |A1 ∩ A| is the largest), then consider both sets, and so on over all
steps until one-element sets are obtained.

(5) Take any partition of A into two sets A1 and A2 of the same cardinality (with accuracy
to 1) and so on over all steps until one-element sets are obtained.

Let us estimate the procedure time for the main parameter B. We consider at most
|B′| sets A from the original B′, and for each of them we construct a binary tree with at
most |M| nodes. At each node, we consider five cases; the time required to check the
conditions of the cases is of the order of at most (|B′|·|M|)2·|M|. Thus, the total time
required to construct the collection B is of the order of |B′|3·|M|4. Additionally, a fast
version of constructing collection B is possible where, in the conditions of Steps 1–4, we
use not the current B′ but rather the original B′. Then, the runtime of the procedure is of
the order of |B′|3·|M|2. �

References
1. Li, T.; Yang, B.; Liu, H.; Ju, J.; Tang, J.; Subramanian, S.; Zhang, Z. GMDL: Toward precise head pose estimation via Gaussian

mixed distribution learning for students’ attention understanding. Infrared Phys. Technol. 2022, 122, 104099. [CrossRef]
2. Liu, H.; Fang, S.; Zhang, Z.; Li, D.; Lin, K.; Wang, J. MFDNet: Collaborative Poses Perception and Matrix Fisher Distribution for

Head Pose Estimation. IEEE Trans. Multimed. 2021, 24, 2449–2460. [CrossRef]
3. Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
4. Witten, I.H.; Frank, E. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations; Morgan

Kaufmann: San Francisco, CA, USA. Available online: http://www.cs.waikato.ac.nz/~ml/weka/book.html (accessed on
24 February 2023).

5. Moayedi, H.; Bui, D.T.; Kalantar, B.; Foong, L.K. Machine-Learning-Based Classification Approaches toward Recognizing Slope
Stability Failure. Appl. Sci. 2019, 9, 4638. [CrossRef]

6. Bulteau, L.; Weller, M. Parameterized Algorithms in Bioinformatics: An Overview. Algorithms 2019, 12, 256. [CrossRef]
7. Huson, D.H.; Rupp, R.; Scornavacca, C. Phylogenetic Networks—Concepts, Algorithms and Applications; Cambridge University Press:

Cambridge, UK, 2010.
8. Kuitche, E.; Lafond, M.; Ouangraoua, A. Reconstructing protein and gene phylogenies using reconciliation and soft-clustering.

J. Bioinform. Comput. Biol. 2017, 15, 1740007. [CrossRef]
9. LeMay, M.; Libeskind-Hadas, R.; Wu, Y.-C. A Polynomial-Time Algorithm for Minimizing the Deep Coalescence Cost for Level-1

Species Nets. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 19, 2642–2653. [CrossRef]
10. Feijao, P.; Meidanis, J. SCJ: A Breakpoint-Like Distance that Simplifies Several Rearrangement Problems. IEEE/ACM Trans.

Comput. Biol. Bioinform. 2011, 8, 1318–1429. [CrossRef]
11. Gorbunov, K.Y.; Lyubetsky, V.A. Multiplicatively exact algorithms for transformation and reconstruction of directed path-cycle

graphs with repeated edges. Mathematics 2021, 9, 2576. [CrossRef]
12. Lyubetsky, V.A.; Gershgorin, R.A.; Gorbunov, K.Y. Chromosome structures: Reduction of certain problems with unequal gene

content and gene paralogs to integer linear programming. BMC Bioinform. 2017, 18, 537. [CrossRef]
13. Page, R.D.M. Maps between trees and cladistic analysis of historical associations among genes, organisms and areas. Syst. Biol.

1994, 43, 58–77.
14. Guigo, R.; Muchnik, I.; Smith, T. Reconstruction of ancient molecular phylogeny. Mol. Phylogenet. Evol. 1996, 6, 189–213.

[CrossRef]
15. Li, D.; Liu, H.; Zhang, Z.; Lin, K.; Xiong, N. CARM: Confidence-aware recommender model via review representation learning

and historical rating behavior. Neurocomputing 2021, 455, 283–296. [CrossRef]
16. Liu, H.; Nie, H.; Zhang, Z.; Li, Y.-F. Anisotropic angle distribution learning for head pose estimation. Neurocomputing 2020, 433,

310–322. [CrossRef]
17. Liu, T.; Liu, H.; Li, Y.-F.; Zengzhao, C.; Zhang, Z.; Liu, S. Flexible FTIR Spectral Imaging Enhancement for Industrial Robot

Infrared Vision Sensing. IEEE Trans. Ind. Inform. 2019, 16, 544–554. [CrossRef]
18. Liu, H.; Zheng, C.; Li, D.; Shen, X.; Lin, K.; Wang, J.; Zhang, Z.; Zhang, Z.; Xiong, N. EDMF: Efficient Deep Matrix Factorization

with Review Feature Learning for Industrial Recommender System. IEEE Trans. Ind. Inform. 2021, 18, 4361–4371. [CrossRef]
19. Van Iersel, L.; Jones, M.; Weller, M. Embedding Phylogenetic Trees in Networks of Low Treewidth. In Proceedings of the 30th

Annual European Symposium on Algorithms (ESA 2022), Berlin/Potsdam, Germany, 5–9 September 2022; pp. 69:1–69:14.

https://doi.org/10.1016/j.infrared.2022.104099
https://doi.org/10.1109/TMM.2021.3081873
https://doi.org/10.1007/BF00116251
http://www.cs.waikato.ac.nz/~ml/weka/book.html
https://doi.org/10.3390/app9214638
https://doi.org/10.3390/a12120256
https://doi.org/10.1142/S0219720017400078
https://doi.org/10.1109/TCBB.2021.3105922
https://doi.org/10.1109/TCBB.2011.34
https://doi.org/10.3390/math9202576
https://doi.org/10.1186/s12859-017-1944-x
https://doi.org/10.1006/mpev.1996.0071
https://doi.org/10.1016/j.neucom.2021.03.122
https://doi.org/10.1016/j.neucom.2020.09.068
https://doi.org/10.1109/TII.2019.2934728
https://doi.org/10.1109/TII.2021.3128240

Mathematics 2023, 11, 2024 39 of 39

20. Zhang, L. On a Mirkin-Muchnik-Smith conjecture for comparing molecular phylogenies. J. Comput. Biol. 1997, 4, 177–187.
[CrossRef] [PubMed]

21. Ma, B.; Li, L.; Zhang, L. From gene trees to species trees. SIAM J. Comput. 2000, 30, 729–752. [CrossRef]
22. Rusin, L.Y.; Lyubetskaya, E.V.; Gorbunov, K.Y.; Lyubetsky, V.A. Reconciliation of Gene and Species Trees. BioMed Res. Int. 2014,

2014, 642089. [CrossRef]
23. Van Iersel, L.; Janssen, R.; Jones, M.; Murakami, Y.; Zeh, N. Polynomial-Time Algorithms for Phylogenetic Inference Problems

Involving Duplication and Reticulation. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 17, 14–26. [CrossRef]
24. Luhmann, N.; Lafond, M.; Thevenin, A.; Ouangraoua, A.; Wittler, R.; Chauve, C. The SCJ Small Parsimony Problem for Weighted

Gene Adjacencies. IEEE/ACM Trans. Comput. Biol. Bioinform. 2019, 16, 1364–1373. [CrossRef] [PubMed]
25. Gorbunov, K.Y.; Lyubetsky, V.A. Linear time additively exact algorithm for transformation of chain-cycle graphs for arbitrary

costs of deletions and insertions. Mathematics 2020, 8, 2001. [CrossRef]
26. Gorbunov, K.Y.; Gershgorin, R.A.; Lyubetsky, V.A. Rearrangement and inference of chromosome structures. Mol. Biol. 2015, 49,

327–338. [CrossRef]
27. Sohanghpurwala, A.A.; Hassan, M.W.; Athanas, P. Hardware accelerated SAT solvers—A survey. J. Parallel Distrib. Comput. 2017,

106, 170–184. [CrossRef]
28. Korte, B.; Vigen, J. Combinatorial Optimization. Theory and Algorithms, 6th ed.; Springer: Bonn, Germany, 2018.
29. Tannier, E.; Zheng, C.; Sankoff, D. Multichromosomal median and halving problems under different genomic distances. BMC

Bioinform. 2009, 10, 120. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1089/cmb.1997.4.177
https://www.ncbi.nlm.nih.gov/pubmed/9228616
https://doi.org/10.1137/S0097539798343362
https://doi.org/10.1155/2014/642089
https://doi.org/10.1109/TCBB.2019.2934957
https://doi.org/10.1109/TCBB.2017.2661761
https://www.ncbi.nlm.nih.gov/pubmed/28166504
https://doi.org/10.3390/math8112001
https://doi.org/10.1134/S0026893315030073
https://doi.org/10.1016/j.jpdc.2016.12.014
https://doi.org/10.1186/1471-2105-10-120
https://www.ncbi.nlm.nih.gov/pubmed/19386099

	General Introduction
	Tree Construction
	Introduction
	Setting of the Intermediate Tree Problem and Formulation of Theorem 1
	Definition of an Embedding of a Tree into a Network
	Algorithm for Constructing an Intermediate Tree
	Constructing the Main Parameter of the Algorithm
	Example of the Algorithm Operation
	ILS-Minimum Embedding of a Tree into a Network and Theorem 3
	Example of Executing the Algorithm

	Reconstruction of Structures along a Tree
	Problem Setting and Main Results
	SCJ Reconstruction Algorithm
	Exactness and Runtime of the SCJ Reconstruction Algorithm
	Example of Executing the SCJ Reconstruction Algorithm
	Heuristic Algorithm for the Cyclic Case of the SCJ Reconstruction Problem on an Arbitrary Tree
	DCJ Reconstruction Algorithm
	Example of the DCJ Reconstruction
	Lower Bound on the Parameter k in the Conjunctive Normal Form CNFk and Final Form of a Common Graph

	Discussion
	Appendix A
	References

