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Abstract: We first study the error performances of the Vector Weak Rescaled Pure Greedy Algorithm
for simultaneous approximation with respect to a dictionary D in a Hilbert space. We show that the
convergence rate of the Vector Weak Rescaled Pure Greedy Algorithm on A1(D) and the closure of
the convex hull of the dictionary D is optimal. The Vector Weak Rescaled Pure Greedy Algorithm
has some advantages. It has a weaker convergence condition and a better convergence rate than
the Vector Weak Pure Greedy Algorithm and is simpler than the Vector Weak Orthogonal Greedy
Algorithm. Then, we design a Vector Weak Rescaled Pure Greedy Algorithm in a uniformly smooth
Banach space setting. We obtain the convergence properties and error bound of the Vector Weak
Rescaled Pure Greedy Algorithm in this case. The results show that the convergence rate of the
VWRPGA on A1(D) is sharp. Similarly, the Vector Weak Rescaled Pure Greedy Algorithm is simpler
than the Vector Weak Chebyshev Greedy Algorithm and the Vector Weak Relaxed Greedy Algorithm.

Keywords: greedy algorithm; vector approximation; Hilbert spaces; modulus of smoothness; uniformly
smooth Banach spaces; convergence; error bound
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1. Introduction

Approximation using a sparse linear combination of elements from a fixed redundant
family is actively used because of its concise representations and increased computational
efficiency. It has been applied widely to signal processing, image compression, machine
learning and PDE solvers (see [1–10]). Among others, simultaneous sparse approximation
has been utilized in signal vector processing and multi-task learning (see [11–14]). It is
well known that the greedy-type algorithms are powerful tools for generating such sparse
approximations (see [15–19]). In particular, vector greedy algorithms are very efficient at
approximating a given finite number of target elements simultaneously( see [20–23]). In
this article, we propose a new vector greedy algorithm—the Vector Weak Rescaled Pure
Greedy Algorithm (VWRPGA)—for simultaneous approximation. We estimate the error
of the VWRPGA and show that its convergence rate on the convex hull of the dictionary
is optimal.

Let X be a real Banach space with norm ‖ · ‖. We say a set of elements D ⊂ X is a
dictionary, if ‖ϕ‖ = 1 for each ϕ ∈ D and span(D) = X. We assume that every dictionary
D is symmetric, i.e.,

ϕ ∈ D implies −ϕ ∈ D.

If fm is the output of a greedy algorithm after m iterations, then the efficiency of the
approximation can be measured by the decay of the error ‖ f − fm‖ as m → ∞. We are
mainly concerned with the error ‖ f − fm‖. We want to know whether it tends to zero, as
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m→ ∞. If it indeed converges to zero, then what is the convergence rate? To solve these
problems, we need the following classes of elements.

For a general dictionary D, we define the class of elements

Ao
1(D, M) :=

{
f : f = ∑

k∈Λ
ck( f )ϕk, ϕk ∈ D, |Λ| < ∞, ∑

k∈Λ
|ck( f )| ≤ M

}

and A1(D, M) as the closure of Ao
1(D, M). Let A1(D) be the union of the classes A1(D, M)

over all M > 0. Denote A1(D) := A1(D, 1). For f ∈ A1(D), we define its norm as

‖ f ‖A1(D) := inf{M : f ∈ A1(D, M)}.

We recall some related results in a Hilbert space for the reason that this kind of space
has priority in geometric features and practical applications. Let H be a real Hilbert space
with an inner product 〈·, ·〉 and the norm ‖x‖ := 〈x, x〉1/2.

The most natural greedy algorithm in a Hilbert space is the Pure Greedy Algorithm
(PGA). This algorithm is also known as the Matching Pursuit in signal processing [24]. We
recall its definition from [15].

PGA(H, D):
• Step 0: Define f0 = 0.
• Step m:
- If f = fm−1, stop the algorithm and define fk = fm−1 = f for k ≥ m.
- If f 6= fm−1, choose an element ϕm ∈ D such that

|〈 f − fm−1, ϕm〉| = sup
ϕ∈D
|〈 f − fm−1, ϕ〉|.

Define the next approximant to be

fm = fm−1 + 〈 f − fm−1, ϕm〉ϕm,

and proceed to Step m + 1.
The first upper bound on the rate of convergence of the PGA for f ∈ A1(D) was

obtained in [15] as follows:

‖ f − fm‖ ≤ ‖ f ‖A1(D)m
− 1

6 , m = 1, 2, · · · .

Later, the above estimate of the PGA was improved in [25,26] to O(m− 11
62 ) and

O(m−
s

2(s+2) ), where s is the root of the equation

(1 + x)
1

2+x

(
1 +

1
1 + x

)
− 1− 1

x
= 0

on the closed interval [1, 1.5]. It is known that s
2(s+2) >

11
62 .

Note that when D is an ortho-normal basis of H, it is not difficult to prove that for any
f ∈ A1(D), there holds

‖ f − fm‖ ≤ c‖ f ‖A1(D)m
− 1

2 , m = 1, 2, · · · . (1)

In addition, there exists an element f ∗ ∈ A1(D) (see [27]) such that

‖ f ∗ − f ∗m‖ = c ·m−
1
2 , m = 1, 2, · · · .

Thus, inequality (1) cannot be improved for ortho-normal bases. A natural question
arises: does inequality (1) hold for any dictionary D ⊂ H? Unfortunately, the answer
is negative.
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In fact, Livshitz and Temlyakov [28] proved that there exists a dictionary D ⊂ H, a
positive constant C and an element f ∈ A1(D) such that

‖ f − fm‖ ≥ Cm−0.27, m = 1, 2, · · · .

This lower bound on the convergence rate of the PGA indicates that this algorithm
does not attain the rate O(m−

1
2 ) for all D.

In [15], the idea of the best approximation was introduced into the greedy algorithm,
which formed the original idea of the Orthogonal Greedy Algorithm (OGA). In order to
construct an approximation, the OGA takes the orthogonal projection of f on the subspace
generated by all the chosen ϕ1, . . . , ϕm. We recall its definition from [15].

OGA(H, D):
• Step 0: Define f0 = 0.
• Step m:
- If f = fm−1, stop the algorithm and define fk = fm−1 = f for k ≥ m.
- If f 6= fm−1, choose an element ϕm ∈ D such that

|〈 f − fm−1, ϕm〉| = sup
ϕ∈D
|〈 f − fm−1, ϕ〉|.

Define the next approximant to be

fm = Pm( f ),

and proceed to Step m + 1, where Pm is the orthogonal projection onto
Vm := span{ϕ1, ϕ2, · · ·, ϕm}

In [15], it is shown that for any D, the output of the OGA(H, D) satisfies

‖ f − fm‖ ≤ c‖ f ‖A1(D)m
− 1

2 , m = 1, 2, · · · .

Note that when D is an ortho-normal basis of H, the OGA(H, D) coincides with the
PGA(H, D). So, the rate O(m− 1

2 ) is sharp.
The Relaxed Greedy Algorithm (RGA) is also a modification of PGA. We recall its

definition from [15].

RGA(H, D):
• Step 0: Define f0 = 0.
• Step m:
- If f = fm−1, stop the algorithm and define fk = fm−1 = f for k ≥ m.
- If f 6= fm−1, choose an element ϕm ∈ D such that

|〈 f − fm−1, ϕm〉| = sup
ϕ∈D
|〈 f − fm−1, ϕ〉|.

For m = 1, define
f1 = 〈 f , ϕ1〉ϕ1.

For m ≥ 2, define the next approximant to be

fm =

(
1− 1

m

)
fm−1 +

1
m

ϕm,

and proceed to Step m + 1.
It is shown in [15] that the RGA also achieves the rate O(m−

1
2 ) on A1(D).
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The Rescaled Pure Greedy Algorithm (RPGA) [17] is another kind of greedy algorithm
which makes a modification to the rescaling process to replace the original output of the
PGA with fm = sm ˆfm at each iteration. It is defined as follows.

RPGA(H, D):
• Step 0: Define f0 = 0.
• Step m:
- If f = fm−1, stop the algorithm and define fk = fm−1 = f for k ≥ m.
- If f 6= fm−1, choose an element ϕm ∈ D such that

|〈 f − fm−1, ϕm〉| = sup
ϕ∈D
|〈 f − fm−1, ϕ〉|.

With

λm = 〈 f − fm−1, ϕm〉, f̂m := fm−1 + λm ϕm, sm =
〈 f , f̂m〉
‖ f̂m‖2

,

define the next approximant to be
fm = sm f̂m,

and proceed to Step m + 1.
In [17], the convergence rate of the RPGA was obtained as follows:

‖ f − fm‖ ≤ ‖ f ‖A1(D)(m + 1)−
1
2 , m = 0, 1, 2, · · · .

It is worth noting that the supremum of the inner product might not be attainable. To
remedy this problem, the original condition on the selection of ϕm is replaced by

|〈 f − fm−1, ϕm〉| ≥ tm sup
ϕ∈D
|〈 f − fm−1, ϕ〉|,

where 0 < tm ≤ 1. This is often referred to as the “weak” condition. The study on the weak
version of the above algorithms can be found in [15,25,29,30].

Meanwhile, building simultaneous approximations for a given vector of elements
brings about the so-called vector-type greedy algorithms. Instead of running the algorithm
for a finite collection of elements f 1, . . . , f N each time separately, the vector greedy algo-
rithm manages to obtain a simultaneous approximation of all elements with a single run.
Hence, the complexity of calculation and the storage of information can be reduced greatly.
Now, it comes to the question of how well this type of algorithm can perform. Namely, we
need to measure its efficiency via its error bound. The Vector Weak Pure Greedy Algorithm
(VWPGA, which is also referred to as the Vector Weak Greedy Algorithm (VWGA)) and the
Vector Weak Orthogonal Greedy Algorithm (VWOGA) have been introduced and studied
in [21–23].

We recall the definitions of the VWPGA and VWOGA from [23] as follows. Let
τ = {tm}∞

m=1 and 0 < tm ≤ 1 be a given sequence.

VWPGA(H, D): f i ∈ H, i = 1, . . . , N is the target element.
• Step 0: Define f i

0 := 0, i = 1, . . . N.
• Step m:
- If f i = f i

m−1, stop the algorithm and define f i
k = f i

m−1 = f for k ≥ m.
- If f 6= fm−1, choose an element ϕm ∈ D such that

max
i
|〈 f i − f i

m−1, ϕm〉| ≥ tm max
i

sup
ϕ∈D
|〈 f i − f i

m−1, ϕ〉|.

Define the next approximant to be

f i
m := f i

m−1 + 〈 f i − f i
m−1, ϕm〉ϕm, i = 1, 2, . . . , N,
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and proceed to Step m + 1.

VWOGA(H, D): f i ∈ H, i = 1, . . . , N is the target element.
• Step 0: Define f i

0 := 0, i = 1, . . . N.
• Step m:
- If f i = f i

m−1, stop the algorithm and define f i
k = f i

m−1 = f for k ≥ m.
- If f i 6= f i

m−1. Let im be such that

‖ f im − f im
m−1‖ ≥ ‖ f i − f i

m−1‖, i = 1, . . . N.

Choose an element ϕm ∈ D such that

|〈 f im − f im
m−1, ϕm〉| ≥ tm sup

ϕ∈D
|〈 f im − f im

m−1, ϕ〉|.

Define the next approximant to be

f i
m = Pm( f i), i = 1, 2, . . . , N,

and proceed to Step m + 1, where Pm is the orthogonal projection onto
Vm := span{ϕ1, ϕ2, · · ·, ϕm}.

We list the results on the convergence rate of the VWPGA and VWOGA in [23]
as follows.

Theorem 1. Let τ := {tk}∞
k=1, tk = t, 0 < t ≤ 1 be a given real sequence. Then, for any

f 1, . . . , f N , f i ∈ A1(D), the output { f i
m}m≥0 of the VWPGA satisfies

N

∑
i=1
‖ f i − f i

m‖2 ≤
(

1 +
mt2

N

)−t/(2N+t)

N
2N+2t
2N+t .

Theorem 2. Let τ := {tk}∞
k=1, tk = t, 0 < t ≤ 1 be a given real sequence. Then, for any

f i ∈ A1(D), the output { f i
m}m≥0 of the VWOGA satisfies

‖ f i − f i
m‖ ≤ min

{
1,
(

N
mt2

)1/2
}

, i = 1, . . . , N.

Improvements to the above estimates are made in [19,21,22]. The results indicate that
the VWOGA achieves a better convergence rate on A1(D) than that of the VWPGA.

In [23], the authors gave a sufficient condition of convergence for the VWPGA.

Theorem 3. Assume that
∞

∑
m=1

tm

m
= ∞. Then, for any dictionary and any finite elements f i ∈

H, i = 1, . . . , N, the VWPGA satisfies

lim
m→∞

‖ f i − f i
m‖ = 0.

Motivated by these studies, we design the Vector Weak Rescaled Pure Greedy Al-
gorithm (VWRPGA) and study its efficiency. The remainder of the paper is organized
as follows. In Section 2, we deal with the case of Hilbert spaces. In Section 3, we deal
with the case of Banach spaces. In Section 4, we draw the conclusions. Below, we provide
more details.

In Section 2, we define the VWRPGA in Hilbert spaces and study its approximation
properties. We first prove that

∞

∑
m=1

t2
m = ∞
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is the sufficient convergence condition of the VWRPGA for any f i ∈ H and D ⊂ H,
i = 1, · · · , N. This convergence condition is weaker than that of the VWPGA. Then, we
prove that the error bound of the VWRPGA on A1(D) satisfies

‖ f i − f i,v,τ,r
m ‖ ≤ min

1,

(
1
N

m

∑
k=1

t2
k

)− 1
2
.

When t1 = t2 = · · · = tm = 1, we show that convergence rate of the VWRPGA on
A1(D) is O(m−

1
2 ), which is sharp. This convergence rate is better than that of the VWPGA.

In particular, this advantage is more obvious when N is large. The VWRPGA is more
efficient than VWOGA from the viewpoint of computational complexity. This is because,
for N target elements, the VWRPGA only needs to solve N one-dimensional optimization
problems, while the VWOGA involves N m-dimensional optimization problems.

In Section 3, we define the VWRPGA for some uniformly smooth Banach spaces. The
sufficient condition of the convergence of the VWRPGA is obtained in this case. It seems
that this is the first result on the convergence analysis of the vector greedy algorithms in
the Banach space setting. Then, we derive the error bound of the VWRPGA. The results
show that the convergence rate of the VWRPGA on A1(D) is sharp. We compare the
approximation properties of the VWRPGA with those of the Vector Weak Chebyshev
Greedy Algorithm (VWCGA) and the Vector Weak Relaxed Greedy Algorithm (VWRGA).
We show that the VWRPGA has better convergence properties than the VWRGA. Similarly,
the computational complexity of the VWRPGA is essentially smaller than those of the
VWCGA and VWRGA.

In Section 4, we draw the conclusions of our study. Our results show that the VWRPGA
is the simplest vector greedy algorithm for simultaneous approximation with the best
convergence property and the optimal convergence rate. We also discuss the possible
applications of the VWRPGA in multi-task learning and signal vector processing.

2. The VWRPGA for Hilbert Spaces

In this section, we define the VWRPGA in Hilbert spaces and obtain its sufficient
condition of convergence together with an estimate of its error bound. Based on these
results, we compare the VWRPGA with the VWPGA and the VWOGA.

Firstly, we recall the definition of the Weak Rescaled Pure Greedy Algorithm (WRPGA)
in Hilbert spaces from [17]. Let τ = {tm}∞

m=1, 0 < tm ≤ 1 be a given sequence. The WRPGA
consists of the following stages:

WRPGA(H, D):
• Step 0: Define f0 = 0.
• Step m:
- If f = fm−1, stop the algorithm and define fk = fm−1 = f for k ≥ m.
- If f 6= fm−1, choose an element ϕm ∈ D such that

|〈 f − fm−1, ϕm〉| ≥ tm sup
ϕ∈D
|〈 f − fm−1, ϕ〉|.

With

λm = 〈 f − fm−1, ϕm〉, ˆfm := fm−1 + λm ϕm, sm =
〈 f , ˆfm〉
‖ ˆfm‖2

,

define the next approximation to be

fm = sm ˆfm,

and proceed to Step m + 1.
The error bound of the WRPGA has been obtained as follows.
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Theorem 4 (see Theorem 4.1 in [17]). If f ∈ A1(D) ⊂ H, then the output { fm}m≥0 of the
WRPGA satisfies the error estimate

‖ f − fm‖ ≤ ‖ f ‖A1(D)

(
m

∑
k=1

t2
k

)− 1
2

.

Based on the WRPGA, we can define the VWRPGA. Let τ = {tm}∞
m=1, 0 < tm ≤ 1 be

a given sequence. Now, we define the VWRPGA using the following steps:

VWRPGA(H, D): Given f i ∈ H, i = 1, . . . , N.
• Step 0: Define f i,v,τ,r

0 := 0, i = 1, . . . N.
• Step m:
- If f i = f i,v,τ,r

m−1 , stop the algorithm and define f i,v,τ,r
k = f i,v,τ,r

m−1 = f for k ≥ m.
- If f i 6= f i,v,τ,r

m−1 , let im be such that

‖ f im − f im ,v,τ,r
m−1 ‖ = max

1≤i≤N
‖ f i − f i,v,τ,r

m−1 ‖.

Choose an element ϕm ∈ D such that

〈 f im − f im ,v,τ,r
m−1 , ϕm〉 ≥ tm sup

ϕ∈D
〈 f im − f im ,v,τ,r

m−1 , ϕ〉.

With

λi
m = 〈 f i − f i,v,τ,r

m−1 , ϕm〉, ˆf i
m := f i,v,τ,r

m−1 + λi
m ϕm, si

m =
〈 f i, ˆf i

m〉
‖ ˆf i

m‖2
,

define the next approximation to be

f i,v,τ,r
m := si

m
ˆf i
m,

and proceed to Step m + 1.
We establish in this section two typical results on the approximation properties of

the VWRPGA (H, D). We first give the sufficient condition for the convergence of the
VWRPGA for any dictionary D and any f i, i = 1, · · · , N.

Theorem 5. Assume
∞

∑
m=1

t2
m = ∞. Then, the VWRPGA converges for any dictionary D and any

f i ∈ H, i = 1, . . . , N.

In the proof of Theorem 5, we will reduce the approximation of the general element to
that of the element from A1(D). To this end, we recall from [31] the following lemmas on
the approximation properties of A1(D).

Lemma 1. Let X be a Banach space and D ⊂ X be a dictionary. Then, for any ε > 0 and any
f ∈ X, there exists f ε ∈ X such that

‖ f − f ε‖ < ε

and
f ε

A(ε)
∈ A1(D) ,

with some number A(ε) > 0.

Lemma 2. For any f ∈ H and any dictionary D, we have
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sup
ϕ∈D
〈 f , ϕ〉 = sup

g∈A1(D)
〈 f , g〉.

Proof of Theorem 5. Note that f i,v,τ,r
m is the orthogonal projection of f i onto the one-

dimensional space span{ ˆf i
m}. Thus, it is the best approximation of f i,v,τ,r

m from span{ ˆf i
m}.

Let ri
m := ‖ f i − f i,v,τ,r

m ‖, i = 1, · · · , N, be the residual of f i,v,τ,r
m . By the definition of ˆf i

m
and the choice of λi

m, we have

‖ri
m‖2 = ‖ f i − f i,v,τ,r

m ‖2

= ‖ f i − si
m

ˆf i
m‖2

≤ ‖ f i − ˆf i
m‖2

≤ 〈 f i − f i,v,τ,r
m−1 − λi

m ϕm, f i − f i,v,τ,r
m−1 − λi

m ϕm〉

= ‖ f i − f i,v,τ,r
m−1 ‖

2 − 2λi
m〈 f i − f i,v,τ,r

m−1 , ϕm〉+ (λi
m)

2

= ‖ri
m−1‖2 − 〈 f i − f i,v,τ,r

m−1 , ϕm〉2. (2)

The latter inequality implies that {‖ri
m‖}∞

m=0 is a decreasing sequence. According to
the Monotone Convergence Theorem, we know that lim

m→∞
‖ri

m‖ exists, i = 1, . . . , N.

We prove that lim
m→∞

‖ri
m‖ = 0 by contradiction. Assume lim

m→∞
‖ri

m‖ ≥ a > 0, i =

1, . . . , N. Then, for any m, we have ‖ri
m‖ ≥ a. By (2), we obtain that

N

∑
i=1
‖ri

m‖2 ≤
N

∑
i=1
‖ri

m−1‖2 −
N

∑
i=1
〈 f i − f i,v,τ,r

m−1 , ϕm〉2

=
N

∑
i=1
‖ri

m−1‖2

1−

N

∑
i=1
〈 f i − f i,v,τ,r

m−1 , ϕm〉2

N

∑
i=1
‖ri

m−1‖2


≤

N

∑
i=1
‖ri

m−1‖2

(
1−
〈 f im − f im ,v,τ,r

m−1 , ϕm〉2

N‖rim
m−1‖2

)

≤
N

∑
i=1
‖ f i‖2

m

∏
j=1

1−
〈 f ij − f

ij ,v,τ,r
j−1 , ϕj〉2

N‖rij
j−1‖2

.

Denote

xj =
〈 f ij − f

ij ,v,τ,r
j−1 , ϕj〉2

N‖rij
j−1‖2

.

By the inequality 1− x ≤ 1
1+x , 0 ≤ x ≤ 1, we obtain that

N

∑
i=1
‖ri

m‖2 ≤
N

∑
i=1
‖ f i‖2

m

∏
j=1

(
1

1 + xj
)

≤
N

∑
i=1
‖ f i‖2 1

1 +
m

∑
j=1

xj

. (3)

Then, we come to obtain a lower estimate for xj, j = 1, . . . , m.
Set ε = a

2 . In view of Lemma 1, we can find f ε
j such that

‖ f ij − f ε
j ‖ < ε
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and
f ε
j

A(ε)
∈ A1(D),

with some number A(ε) > 0.
Using Lemma 2, we have

〈 f ij − f
ij ,v,τ,r
j−1 , ϕj〉 ≥ tj sup

ϕ∈D
〈 f ij − f

ij ,v,τ,r
j−1 , ϕ〉

= tj sup
g∈A1(D)

〈 f ij − f
ij ,v,τ,r
j−1 , g〉

≥ tj A(ε)−1〈 f ij − f
ij ,v,τ,r
j−1 , f ε

j 〉. (4)

Since f i,v,τ,r
m is the orthogonal projection of f i onto span{ ˆf i

m}, we have

〈 f i − f i,v,τ,r
m , f i,v,τ,r

m 〉 = 0.

Then,

〈 f ij − f
ij ,v,τ,r
j−1 , f ε

j 〉 = 〈r
ij
j−1, f ij + f ε

j − f ij〉

= 〈rij
j−1, r

ij
j−1 + f

ij ,v,τ,r
j−1 〉 − 〈rij

j−1, f ij − f ε
j 〉

> ‖rij
j−1‖

2 − ‖rij
j−1‖ · ε. (5)

Combining (4) and (5) with ε = a
2 , we obtain

xj ≥
1

N‖rij
j−1‖2

·

 〈 f ij − f
ij ,v,τ,r
j−1 , f ε

j 〉
A(ε)

tj

2

≥ 1
N
·

‖rij
j−1‖ − ε

A(ε)
tj

2

≥ a2

4NA(ε)2 t2
j . (6)

Combining (3) with (6), we can obtain that

N

∑
i=1
‖ri

m‖2 ≤
N

∑
i=1
‖ f i‖2 1

1 +
a2

4NA(ε)2

m

∑
j=1

t2
j

.

The assumption
∞

∑
m=1

t2
m = ∞ implies that

N

∑
i=1
‖ri

m‖2 → 0 as m→ ∞.

It is obvious that lim
m→∞

‖ri
m‖ = 0 for i = 1, . . . , N. Hence, we obtain a contradiction,

which proves this theorem.

Remark 1. It is known from Theorem 2.1 in [32] that
∞

∑
m=1

t2
m = ∞ is also the necessary condition

for the convergence of the VWRPGA.

Remark 2. According to the Cauchy–Schwartz inequality, we know that
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∞

∑
m=1

tm

m
≤
(

∞

∑
m=1

t2
m

) 1
2
(

∞

∑
m=1

1
m2

) 1
2

.

Hence,
∞

∑
m=1

tm

m
= ∞ implies

∞

∑
m=1

t2
m = ∞.

On the other hand, taking tm = m−
1
2 , m = 1, 2, · · ·, we notice that

∞

∑
m=1

t2
m = ∞,

∞

∑
m=1

tm

m
< ∞.

Therefore, the convergence condition of the VWPRGA is weaker than that of the VWPGA.

The following theorem gives the error bound of the VWRPGA (H,D) for f i ∈
A1(D), i = 1, . . . , N.

Theorem 6. Let τ := {tk}∞
k=1, 0 < tk ≤ 1 be a weakness sequence. If f i ∈ A1(D) ⊂ H, i =

1, . . . , N. Then, we have for the VWRPGA (H,D)

‖ f i − f i,v,τ,r
m ‖ ≤ min

1,

(
1
N

m

∑
k=1

t2
k

)− 1
2
.

Proof. We establish the approximation error of the VWRPGA based on the methods of [25].
The main idea of this proof is that the VWRPGA can be seen as a realization of the WRPGA
with a particular weakness sequence.

Let i ∈ {1, . . . , N}. Under the assumption that f i ∈ A1(D) and the fact that the
sequence {‖ f i − f i,v,τ,r

m ‖}∞
m=0 is decreasing, we have

‖ f i − f i,v,τ,r
m ‖ ≤ 1.

Thus, we only need to prove the estimate below:

‖ f i − f i,v,τ,r
m ‖ ≤

(
1
N

m

∑
k=1

t2
k

)− 1
2

, i = 1, . . . , N.

At step k, the VWRPGA chooses ϕk from the D in terms of only one remainder from
{r1

k−1, . . . , rN
k−1}. Then, each f i, i = 1, · · · , N has been used different times to choose ϕk

when the VWRPGA carries on to step m. Now, we record the usage of f i, i = 1, . . . , N.
For every l, l = 1, . . . , N, denote El := {k|ik = l, 1 ≤ k ≤ m} ( ik is defined in the

definition of VWRPGA ). Then, we have

E1 ∪ E2 ∪ . . . ∪ EN = {1, . . . , m}, Ei ∩ Ej = ∅ if i 6= j.

Hence,

‖ f l − f l,v,τ,r
k−1 ‖ = ‖ f ik − f ik ,v,τ,r

k−1 ‖ = max
1≤i≤N

‖ f i − f i,v,τ,r
k−1 ‖, k ∈ El .

Using
m

∑
k=1

t2
k =

N

∑
l=1

∑
k∈El

t2
k , we can find l0 ∈ [1, N] such that

∑
k∈El0

t2
k ≥

1
N

m

∑
k=1

t2
k .
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Next, let k0 = max{k|k ∈ El0}, k0 ≤ m. We have

max
1≤i≤N

‖ f i − f i,v,τ,r
m ‖ ≤ max

1≤i≤N
‖ f i − f i,v,τ,r

k0−1 ‖ = ‖ f l0 − f l0,v,τ,r
k0−1 ‖. (7)

Now, we only consider element f l0 ∈ H. For f l0 ∈ H, we can obtain f l0,v,τ,r
1 , . . . , f l0,v,τ,r

m

as an application of the WRPGA with the weakness sequence τl0 := {tl0
k } given by

tl0
k =

{
tk , k ∈ El0
0 , otherwise.

Therefore, by Theorem 4, we obtain

‖ f l0 − f l0,v,τ,r
k0−1 ‖ ≤

1 + ∑
k∈El0

−{k0}
t2
k

− 1
2

≤

1 + ∑
k∈El0

t2
k − 1

− 1
2

≤
(

1
N

m

∑
k=1

t2
k

)− 1
2

.

Together with (7), we complete the proof of Theorem 6.

We recall the theorem in [21] about the error estimate of the VWPGA.

Theorem 7. Let τ := {tk}∞
k=1, 0 < tk ≤ 1 be a decreasing sequence. Then, for any f 1, . . . , f N , f i ∈

A1(D), the output { f i
m}m≥0 of the VWPGA satisfies

N

∑
i=1
‖ f i − f i

m‖2 ≤ N2

(
1 +

1
N

m

∑
i=1

tk
2

) −tm
2N1/2+tm

.

We observe from Theorem 7, for a fixed m, the error of the VWPGA increases as the
number of the target elements increases. The exponent is close to zero as long as N is
sufficiently large.

Taking tk = 1, k = 1, 2, . . . in Theorem 7, we yield the following theorem, which gives
the convergence rate of the VWPGA.

Theorem 8. Let τ := {tk}∞
k=1, tk = 1. Then, for any f 1, . . . , f N , f i ∈ A1(D), the output

{ f i
m}m≥0 of the VWPGA satisfies

N

∑
i=1
‖ f i − f i

m‖ ≤ N2
(

1 +
m
N

)− 1
2N1/2+1 .

Again, by taking tk = 1, k = 1, 2, . . . in Theorem 6, we obtain the following theorem.

Theorem 9. Let τ := {tk}∞
k=1, tk = 1. If f i ∈ A1(D) ⊂ H, i = 1, . . . , N. Then, for the

VWRPGA (H,D),

‖ f i − f i,v,τ,r
m ‖ ≤ min

{
1,
(m

N

)− 1
2

}
.

Remark 3. From Theorems 8 and 9, we see that the VWRPGA provides a significantly better
convergence rate than the VWPGA. In particular, this advantage is more obvious when N is large.
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Remark 4. It is known from Theorems 2 and 9 that the approximation property of the VWRPGA
is almost the same as that of the VWOGA. While the VWRPGA is simpler than the VWOGA
from the viewpoint of computational complexity. For N target elements, from the definitions of the
algorithms, one can see that the VWOGA needs to solve N m-dimensional optimization problems.
However, the VWRPGA only needs to solve N one-dimensional optimization problems. Then, this
makes the VWRPGA easier to implement than the VWOGA in practical applications.

3. The VWRPGA for Banach Spaces

In this section, we consider the VWRPGA in the context of Banach spaces. We remark
that there are two natural generations of the PGA in the case of Banach space X: the
X-greedy algorithm and the dual greedy algorithm. However, there are no general results
on convergence and error bound of these two algorithms, cf. [29]. On the other hand, the
WOGA, WRGA, WRPGA and VWOGA have been successfully generalized to the case
of Banach spaces. We first recall from [31] the definition of the Weak Chebyshev Greedy
Algorithm (WCGA), which is a natural generalization of the WOGA.

For any non-zero element f ∈ X, we denote by Ff a norming functional for f :

‖Ff ‖ = 1, Ff ( f ) = ‖ f ‖.

The existence of such a functional is guaranteed by the Hahn–Banach theorem. Let
τ = {tm}∞

m=1, 0 < tm ≤ 1 be a given sequence. The WCGA is defined as follows.

WCGA(X, D):
• Step 0: Define f0 = 0.
• Step m:
- If f = fm−1, stop the algorithm and define fk = fm−1 = f for k ≥ m.
- If f 6= fm−1, choose an element ϕm ∈ D such that

Ff− fm−1(ϕm) ≥ tm sup
ϕ∈D

Ff− fm−1(ϕ).

Set
Φm := span{ϕ1, ϕ2, · · ·, ϕm}.

Define fm to be the best approximant to f from Φm and proceed to Step m + 1.

To estimate the error of WCGA, we shall utilize some geometric aspects of Banach
spaces. For a Banach space X, we define ρ(u), the modulus of smoothness of X, as

ρ(u) := sup
f ,g∈X,‖ f ‖=‖g‖=1

{
‖ f + ug‖+ ‖ f − ug‖

2
− 1
}

, u > 0.

A uniformly smooth Banach space is one with the property

lim
u→0

ρ(u)
u

= 0.

We shall only consider Banach spaces whose modulus of smoothness satisfies
the inequality

ρ(u) ≤ γuq, 1 < q ≤ 2,

where γ is a constant independent of u.
A typical example of a uniformly smooth Banach space is the Lebesgue space Lp,

1 < p < ∞. It is known from [33] that

ρ(u) ≤
{

up/p i f 1 < p ≤ 2,
(p− 1)u2/2 i f 2 ≤ p < ∞.

(8)
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Moreover, we obtain from [34] that for any X with dimX = ∞,

ρ(u) ≥ (1 + u2)
1
2 − 1

and for any X with dimX ≥ 2,
ρ(u) ≥ Cu2, C > 0.

The following error bound of the WCGA on A1(D) has been established in [31].

Theorem 10. Let X be a Banach space with modulus of smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. If
f ∈ A1(D) ⊂ X, then the output { fm}m≥0 of the WCGA(X,D) satisfies the inequality

‖ f − fm‖ ≤ C1(q, γ)

(
1 +

m

∑
k=1

t
q

q−1
k

)−1+ 1
q

,

where the constant C1(q, γ) depends only on q and γ.

Taking {tk}∞
k=1, tk = 1, k = 1, 2, · · · , Theorem 10 implies the following corollary, which

can be seen in [31].

Corollary 1. Let X be a Banach space with modulus of smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. Then,
for any f ∈ A1(D), the output { fm}m≥0 of the WCGA(X, D) satisfies the inequality

‖ f − fm‖ ≤ c ·m−1+ 1
q .

In order to show the convergence rate O(m−1+ 1
q ) cannot be improved, we now take

Lp, 1 < p < ∞ as an example.
Let 1 < p ≤ 2 be fixed. Combining Corollary 1 with inequality (8), we have for any

D ⊂ Lp and any f ∈ Lp

‖ f − fm‖ ≤ c ·m−1+ 1
p . (9)

When D is a wavelet basis of Lp, it is known from [35] that there is a f ∈ A1(D)
such that

‖ f − fm‖ ≥ c ·m−1+ 1
p .

Thus, inequality (9) could not be improved.
Similarly, let p > 2 be fixed. Combining Corollary 1 with inequality (8), we have for

any D ⊂ Lp and any f ∈ Lp

‖ f − fm‖ ≤ c ·m−
1
2 . (10)

When D is the trigonometric system of Lp, it is known from [36] that there is a
f ∈ A1(D) such that

‖ f − fm‖ ≥ c ·m−
1
2 .

Thus, inequality (10) could not be improved.

Then, the convergence rate O(m−1+ 1
q ) in Corollary 1 serves as a benchmark for the

performance of greedy algorithms in uniformly smooth Banach spaces.
Next, we recall the definition of the WRGA in the Banach space setting from [31]. Let

τ = {tm}∞
m=1, 0 < tm ≤ 1, be a given sequence. The WRGA is defined as follows.

WRGA(X, D):
• Step 0: Define f0 = 0.
• Step m:
- If f = fm−1, stop the algorithm and define fk = fm−1 = f for k ≥ m.
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- If f 6= fm−1, choose a element ϕm ∈ D such that

Ff− fm−1(ϕm − fm−1) ≥ tm sup
ϕ∈D

Ff− fm−1(ϕ− fm−1).

Find 0 ≤ λm ≤ 1 such that

‖ f − ((1− λm) fm−1 + λm ϕm)‖ = inf
0≤λ≥1

‖ f − ((1− λ) fm−1 + λϕm)‖.

Define fm := (1− λm) fm−1 + λm ϕm, and proceed to Step m + 1.
The following error bound of the WRGA on A1(D) has been established in [31].

Theorem 11. Let X be a Banach space with a modulus of smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. If
f ∈ A1(D) ⊂ X, then the output { fm}m≥0 of the WRGA (X,D) satisfies the inequality

‖ f − fm‖ ≤ C2(q, γ)

(
1 +

m

∑
k=1

tp
k

)− 1
p

, p =
q

q− 1
,

where the constant C2(q, γ) depends only on q and γ.

Now, we turn to the vector greedy algorithms. Let τ = {tm}∞
m=1, 0 < tm ≤ 1 be a

given sequence. The Vector Weak Chebyshev Greedy Algorithm (VWCGA) [22] is defined
as follows.

VWCGA(X, D):
• Step 0: Define f i,v,τ,c

0 := 0, i = 1, . . . N.
• Step m:
- If f i = f i,v,τ,c

m−1 , stop the algorithm and define f i,v,τ,c
k = f i,v,τ,c

m−1 = f for k ≥ m.
- If f i 6= f i,v,τ,c

m−1 , let im be such that

‖ f im − f im ,v,τ,c
m−1 ‖ = max

1≤i≤N
‖ f i − f i,v,τ,c

m−1 ‖.

Choose an element ϕm ∈ D such that

Ff im− f im ,v,τ,c
m−1

(ϕm) ≥ tm sup
ϕ∈D

Ff im− f im ,v,τ,c
m−1

(ϕ).

Set
Φm := span{ϕ1, ϕ2, · · ·, ϕm}.

Define f i
m to be the best approximant to f i from Φm, i = 1, · · ·, N and proceed to

Step m + 1.

Let τ = {tm}∞
m=1, 0 < tm ≤ 1 be a given sequence. The Vector Weak Relaxed Greedy

Algorithm (VWRGA) [22] is defined as follows.

VWRGA(X, D):
• Step 0: Define f i,v,τ,c

0 := 0, i = 1, . . . N.
• Step m:
- If f i = f i,v,τ,r

m−1 , stop the algorithm and define f i,v,τ,r
k = f i,v,τ,r

m−1 = f for k ≥ m.
- If f i 6= f i,v,τ,r

m−1 , let im be such that

‖ f im − f im ,v,τ,r
m−1 ‖ = max

1≤i≤N
‖ f i − f i,v,τ,r

m−1 ‖.
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Choose an element ϕm ∈ D such that

Ff im− f im ,v,τ,r
m−1

(ϕm) ≥ tm sup
ϕ∈D

Ff im− f im ,v,τ,r
m−1

(ϕ).

Find 0 ≤ λi
m ≤ 1 such that

‖ f i − ((1− λi
m) f im ,v,τ,r

m−1 + λi
m ϕm)‖ = inf

0≤λ≥1
‖ f i − ((1− λ) f im ,v,τ,r

m−1 + λϕm)‖.

Define f i,v,τ,r
m := (1− λi

m) f i,v,τ,r
m−1 + λi

m ϕm, and proceed to Step m + 1.
The error bounds of the VWCGA and VWRGA on A1(D) have been established in [22].

Theorem 12. Let X be a Banach space with a modulus of smoothness ρ(u) ≤ γuq, 1 < q ≤ 2.
Then, for a sequence τ := {tk}∞

k=1, 0 < tk ≤ 1 and any f i ∈ A1(D) ⊂ X, i = 1, . . . , N, we have

‖ f i − f i,v,τ,c
m ‖ ≤ C1(q, γ)min

1,

(
1
N

m

∑
k=1

tp
k

)− 1
p
, p =

q
q− 1

,

‖ f i − f i,v,τ,r
m ‖ ≤ C2(q, γ)min

1,

(
1
N

m

∑
k=1

tp
k

)− 1
p
, p =

q
q− 1

.

Now, we start to define the VWRPGA (X, D). To accomplish this,we recall the defi-
nition of the WRPGA from [17]. Let X be a Banach space with a modulus of smoothness
ρ(u) ≤ γuq, 1 < q ≤ 2. Let τ = {tm}∞

m=1, 0 < tm ≤ 1 be a given sequence.

WRPGA(X, D):
• Step 0: Define f0 = 0.
• Step m:
- If f = fm−1, stop the algorithm and define fk = fm−1 = f for k ≥ m.
- If f 6= fm−1, choose an element ϕm ∈ D such that

|Ff− fm−1(ϕm)| ≥ tm sup
ϕ∈D

Ff− fm−1(ϕ).

With

λm = sign{Ff− fm−1(ϕm)}‖ f − fm−1‖(2γq)
1

1−q |Ff− fm−1(ϕm)|
1

q−1 ,

f̂m := fm−1 + λm ϕm,

choose sm such that
‖ f − sm f̂m‖ = min

s∈R
‖ f − s f̂m‖.

Define the next approximant to be fm = sm f̂m, and proceed to Step m + 1.
The sufficient conditions for the convergence of the WRPGA in terms of the weakness

sequence and the modulus of smoothness can be found in [17]. Moreover, the following
theorem gives the error bound of the WRPGA on A1(D).

Theorem 13 (see Theorem 6.1 in [17]). Let X be a Banach space with modulus of smoothness
ρ(u) ≤ γuq, 1 < q ≤ 2. If f ∈ A1(D) ⊂ X, then the output { fm}m≥0 of the WRPGA(X,D)
satisfies the inequality

‖ f − fm‖ ≤ C3(q, γ)

(
1 +

m

∑
k=1

tp
k

)− 1
p

, p =
q

q− 1
,



Mathematics 2023, 11, 2020 16 of 23

where the constant C3(q, γ) depends only on q and γ.

Let X be a Banach space with modulus of smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. Let
τ = {tm}∞

m=1, 0 < tm ≤ 1 be a given sequence. We define the VWRPGA (X, D) as follows.

VWRPGA(X, D): Given f i ∈ X, i = 1, . . . , N.
• Step 0: Define f i,v,τ,R

0 := 0, i = 1, . . . N.
• Step m:
- If f i = f i,v,τ,R

m−1 , stop the algorithm and define f i,v,τ,R
k = f i,v,τ,R

m−1 = f for k ≥ m.
- If f i 6= f i,v,τ,R

m−1 , let im be such that

‖ f im − f im ,v,τ,R
m−1 ‖ = max

1≤i≤N
‖ f i − f i,v,τ,R

m−1 ‖.

Choose an element ϕm ∈ D such that

Ff im− f im ,v,τ,R
m−1

(ϕm) ≥ tm sup
ϕ∈D

Ff im− f im ,v,τ,R
m−1

(ϕ).

With

λi
m = sign{Ff i− f i,v,τ,R

m−1
(ϕm)}‖ f i − f i,v,τ,R

m−1 ‖(2γq)
1

1−q |Ff i− f i,v,τ,R
m−1

(ϕm)|
1

q−1 ,

ˆf i
m := f i,v,τ,R

m−1 + λi
m ϕm,

choose sm such that
‖ f i − si

m
ˆf i
m‖ = min

s∈R
‖ f i − s ˆf i

m‖.

Define the next approximant to be f i,v,τ,R
m = si

m
ˆf i
m, and proceed to Step m + 1.

In this section, we obtain the convergence properties and error bound of the VWRPGA.
Firstly, we establish the theorem on the convergence of the VWRPGA. It seems that

this theorem is the first result on the convergence property of the vector greedy algorithms
in the Banach space setting.

Theorem 14. Let X be a Banach space with modulus of smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. Assume

∞

∑
m=1

tp
m = ∞, p =

q
q− 1

.

Then, for any f i ∈ X, i = 1, . . . , N and any dictionary D the VWRPGA converges.

The idea of the proof of Theorem 14 is similar to that of Theorem 5. However, because
of the complexity of Banach spaces, a series of arguments in the subsequence analysis must
be modified, replaced, and generalized. Some useful results in the case of Hilbert spaces
have been generalized to the case of Banach spaces, as shown in the following lemmas.

Lemma 3. Let X be a Banach space with modulus of smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. For
any two nonzero elements f , g ∈ X and any h > 0, we have

‖ f − hg‖ ≤ ‖ f ‖+ 2‖ f ‖γ ·
(

h‖g‖
‖ f ‖

)q
− hFf (g).

Proof. The proof of this lemma follows from the proof of Lemma 6.1 in [29] and the fact
that the modulus of smoothness of X satisfies ρ(u) ≤ γuq, 1 < q ≤ 2.
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Lemma 4. Let X be a Banach space with modulus of smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. Let
f i,v,τ,R
m−1 be the output of the VWRPGA at Step m− 1 for f i, i = 1, . . . , N. If f i 6= f i,v,τ,R

m−1 , then
we have

Ff i− f i,v,τ,R
m−1

( f i,v,τ,R
m−1 ) = 0.

Proof. Denote L := span{ ˆf i
m} ⊂ X. By the definition of the VWRPGA(X,D), f i,v,τ,R

m−1 is the
best approximant to f i from L for i = 1, . . . , N. Thus, the conclusion of the lemma follows
from Lemma 2.1 in [31].

Lemma 5 (see Lemma 2.2 in [31]). For any bounded linear functional F and any dictionary D
from a Banach space, we have

sup
ϕ∈D

F(ϕ) = sup
g∈A1(D)

F(g).

Now, we prove Theorem 14.

Proof of Theorem 14. Let ri
m, i = 1, · · · , N be the residual of f i,v,τ,R

m . It is known from the
definition of the VWRPGA(X, D) that ri

m satisfies

‖ri
m‖ = ‖ f i − f i,v,τ,R

m ‖

= ‖ f i − si
m

ˆf i
m‖

≤ ‖ f i − ˆf i
m‖

= ‖ri
m−1 − λi

m ϕm‖.

We apply Lemma 3 to the latter inequality with f = ri
m−1, g = sign(λi

m)ϕm, h = |λi
m|,

and obtain

‖ri
m‖ ≤ ‖ri

m−1‖+ 2‖ri
m−1‖γ ·

(
|λi

m|
‖ri

m−1‖

)q

− λi
mFf i− f i,v,τ,R

m−1
(ϕm).

By the choice of λi
m, we have

‖ri
m‖ ≤ ‖ri

m−1‖
{

1− q− 1
q

(2γq)
1

1−q · |Ff i− f i,v,τ,R
m−1

(ϕm)|
q

q−1

}
. (11)

Thus, it is easy to see that {‖ri
m‖}∞

m=0 is a decreasing sequence. According to the
Monotone Convergence Theorem, we know that lim

m→∞
‖ri

m‖ for i = 1, . . . , N exists.

Next, we prove that lim
m→∞

‖ri
m‖ = 0 by contradiction. Assume lim

m→∞
‖ri

m‖ ≥ a > 0, i =

1, . . . , N. Then, for any m, we have ‖ri
m‖ ≥ a. By (11), we obtain that



Mathematics 2023, 11, 2020 18 of 23

N

∑
i=1
‖ri

m‖ ≤
N

∑
i=1
‖ri

m−1‖ −
q− 1

q
(2γq)

1
1−q ·

N

∑
i=1
‖ri

m−1‖ · |Ff i− f i,v,τ,R
m−1

(ϕm)|
q

q−1

≤
N

∑
i=1
‖ri

m−1‖

1− q− 1
q

(2γq)
1

1−q ·
‖rim

m−1‖ · (Ff im− f im ,v,R,τ
m−1

(ϕm))
q

q−1

N

∑
i=1
‖ri

m−1‖


≤

N

∑
i=1
‖ri

m−1‖

1− q− 1
q

(2γq)
1

1−q ·
‖rim

m−1‖ · (Ff im− f im ,v,R,τ
m−1

(ϕm))
q

q−1

N‖rim
m−1‖


≤

N

∑
i=1
‖ f i‖

m

∏
j=1

{
1− 1

N
· q− 1

q
(2γq)

1
1−q · (F

f ij− f
ij ,v,R,τ

j−1

(ϕj))
q

q−1

}
.

Denote
xj =

1
N
· q− 1

q
(2γq)

1
1−q · (F

f ij− f
ij ,v,R,τ

j−1

(ϕj))
q

q−1 ). (12)

By the inequality 1− x ≤ 1
1+x , 0 ≤ x ≤ 1, we obtain

N

∑
i=1
‖ri

m‖ ≤
N

∑
i=1
‖ f i‖

m

∏
j=1

1
1 + xj

≤
N

∑
i=1
‖ f i‖ 1

1 +
m

∑
j=1

xj

. (13)

Then, we proceed with a lower estimate for xj, j = 1, . . . , m.

By Lemma 1, we set ε = a
2 and find f ε

j such that

‖ f ij − f ε
j ‖ < ε

and
f ε
j

A(ε)
∈ A1(D),

with some number A(ε) > 0.

We obtain from Lemma 5 that

F
f ij− f

ij ,v,R,τ

j−1

(ϕj) ≥ tj sup
ϕ∈D

F
f ij− f

ij ,v,R,τ

j−1

(ϕ)

= tj sup
g∈A1(D)

F
f ij− f

ij ,v,R,τ

j−1

(g)

≥ tj A(ε)−1F
f ij− f

ij ,v,R,τ

j−1

( f ε
j ). (14)
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By Lemma 4, we obtain

F
f ij− f

ij ,v,R,τ

j−1

( f ε
j ) = F

f ij− f
ij ,v,R,τ

j−1

( f ij − ( f ij − f ε
j ))

= F
f ij− f

ij ,v,R,τ

j−1

( f ij)− F
f ij− f

ij ,v,R,τ

j−1

( f ij − f ε
j )

> F
f ij− f

ij ,v,R,τ

j−1

( f ij − f
ij ,v,R,τ
j−1 + f

ij ,v,R,τ
j−1 )− ε

= F
f ij− f

ij ,v,R,τ

j−1

( f ij − f
ij ,v,R,τ
j−1 )− ε

= ‖rij
j−1‖ − ε. (15)

Inequalities (14), (15) and ε = a
2 result in

F
f ij− f

ij ,v,R,τ

j−1

(ϕj) ≥ tj A(ε)−1(‖rij
j−1‖ − ε)

≥ tj A(ε)−1 · a
2

. (16)

Combining (12) with (16), we obtain

xj ≥
1
N
· q− 1

q
(2γq)

1
1−q ·

(
tj A(ε)−1 · a

2

) q
q−1

=
1
N
· q− 1

q
(2γq)

1
1−q ·

(
a

2A(ε)

)p
· tp

j . (17)

Combining (17) with (13), we have

N

∑
i=1
‖ri

m‖ ≤
N

∑
i=1
‖ f i‖ · 1

1 +
1
N
· q− 1

q
(2γq)

1
1−q ·

(
a

2A(ε)

)p m

∑
j=1

tp
j

.

The assumption
∞

∑
m=1

tp
m = ∞ implies that

N

∑
i=1
‖ri

m‖ → 0 as m→ ∞.

Thus, lim
m→∞

‖ri
m‖ = 0 for 1 = 1, . . . , N. We obtain a contradiction which proves this

theorem.

Remark 5. According to Theorem 3.1 in [32], we know that
∞

∑
m=1

tp
m = ∞ is also a necessary

condition for the convergence of the VWRPGA.

Remark 6. Since the WRGA only converges for the target elements fromA1(D), see [31], then the
VWRGA also only converges for the target elements from A1(D). Thus, the convergence property
of the VWRPGA is better than that of the VWRGA.

Remark 7. For f i ∈ A1(D), i = 1, . . . , N, the sufficient condition for the convergence of
the VWCGA follows from Theorem 12. Theorem 15 gives the convergence condition for any
f i ∈ X, i = 1, . . . , N.

By using the same method, it is not difficult to prove the following theorem on the
convergence of the VWCGA.
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Theorem 15. Let X be a Banach space with modulus of smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. Assume

∞

∑
m=1

tp
m = ∞, p =

q
q− 1

.

Then, for any f i ∈ X, i = 1, . . . , N and any dictionary D the VWCGA converges.

Next, we give the theorem about the error bound of the VWRPGA(X,D) on A1(D).

Theorem 16. Let X be a Banach space with modulus of smoothness ρ(u) ≤ γuq, 1 < q ≤ 2.
Then, for a sequence τ := {tk}∞

k=1, 0 < tk ≤ 1 and any f i ∈ A1(D) ⊂ X, i = 1, . . . , N, we have

‖ f i − f i,v,τ,R
m ‖ ≤ C3(q, γ)min

1,

(
1
N

m

∑
k=1

tp
k

)− 1
p
, p =

q
q− 1

.

Proof. It is known from (11) that the sequences {‖ f i − f i,v,τ,R
m ‖}∞

m=0, i = 1, · · · , N are
decreasing. Fix i. The inequality

‖ f i − f i,v,τ,R
m ‖ ≤ 1

follows from the assumption f i ∈ A1(D) and the fact that {‖ f i− f i,v,τ,R
m ‖}∞

m=0 is decreasing.
Thus, we only need to prove the following estimate:

‖ f i − f i,v,τ,R
m ‖ ≤ C(q, γ)

(
1
N

m

∑
k=1

tp
k

)− 1
p

, i = 1, . . . , N.

We define the set El := {k|ik = l , 1 ≤ k ≤ m} just as we did in proof of Theorem 6. It
is obvious that

m

∑
k=1

tp
k =

N

∑
l=1

∑
k∈El

tp
k .

Thus, there exists l0 ∈ [1, N] such that

∑
k∈El0

tp
k ≥

1
N

m

∑
k=1

tp
k .

As in proof of Theorem 6, for f l0 ∈ X, the sequences f l0,v,R,τ
1 , . . . , f l0,v,R,τ

m are the out-
puts of the WRPGA with the weakness sequence τl0 := {tl0

k }. Therefore, using Theorem 13,
we obtain

‖ f l0 − f l0,v,R,τ
k0−1 ‖ ≤ C(q, γ)

1 + ∑
k∈El0

−{k0}
tp
k

− 1
p

≤ C(q, γ)

1 + ∑
k∈El0

tp
k − 1

− 1
p

≤ C(q, γ)

(
1
N

m

∑
k=1

tp
k

)− 1
p

.

The proof of Theorem 16 is completed.
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Remark 8. We know from Theorems 12 and 16 that the error bound of the VWRPGA is almost
the same as those of the VWCGA and VWRGA. Similarly, the computational complexity of the
VWRPGA is essentially smaller than those of the VWCGA and VWRGA.

4. Conclusions

In this paper, we consider the use of vector greedy algorithms for simultaneous
approximation. We first work in a Hilbert space H. We propose a new vector greedy
algorithm—the Vector Weak Rescaled Pure Greedy Algorithm (VWRPGA)—for simul-
taneous approximation with respect to a dictionary D in H. Then, we study the error
performances of the VWRPGA. We show that the convergence rate of the VWRPGA on
A1(D) is optimal. The VWRPGA has a weaker convergence condition than the VWPGA.
The convergence rate of the VWRPGA is better than that of the VWPGA. In particular,
this advantage is more obvious when N is large. Moreover, the error performances of the
VWRPGA are similar to those of the VWOGA. However, from the viewpoint of compu-
tational complexity, the VWRPGA is simpler than the VWOGA. For N target elements,
from the definitions of the algorithms, one can see that the VWOGA needs to solve N
m-dimensional optimization problems. However, the VWRPGA only needs to solve N
one-dimensional optimization problems.

Then, we design the Vector Weak Rescaled Pure Greedy Algorithm (VWRPGA) in a
uniformly smooth Banach space setting. We obtain the convergence properties and error
bound of the VWRPGA in this case. We also show that the convergence condition of
the VWCGA is the same as that of the VWRPGA. We show that when the Banach space
is a Lebesgue space, the convergence rate of the VWRPGA on A1(D) is sharp. As for
the convergence properties, the VWRGA converges only for the target elements from
A1(D), while the VWRPGA converges for any element. Therefore, the VWRPGA has better
convergence properties than the VWRGA. The error bounds of the VWRPGA are similar to
those of the VWCGA and VWRGA. From the viewpoint of computational complexity, the
VWRPGA is simpler than the VWCGA and the VWRGA.

In conclusion, the VWRPGA is the simplest vector greedy algorithm for simultaneous
approximation with the best convergence property and the optimal convergence rate.

The VWRGA is more efficient than the WRPGA, since the complexity of its calculation
and the storage of information can be reduced greatly by the VWRPGA instead of the
N-fold WRPGA. If τ := {tk}∞

k=1, tk = 1, k = 1, 2, · · · and N = 1, then the VWRPGA degen-
erates into the RPGA. In [5], the authors applied the RPGA to a kernel-based regression.
They defined the Rescaled Pure Greedy Learning Algorithm (RPGLA) and studied its
efficiency. They showed that the computational complexity of the RPGLA is less than
the Orthogonal Greedy Learning Algorithm (OGLA) [37] and Relaxed Greedy Learning
Algorithm (RGLA) [38]. When the kernel is infinitely smooth, the learning rate can be
arbitrarily close to the best rate O(m−1) under a mild assumption of the regression function.
Since the VWRPGA is more efficient than the RPGA, the VWRPGA can be used to solve
the problems of multi-task learning more efficiently. Moreover, it is natural to consider the
applications of the VWRPGA to vector signal processing. We will study these applications
of the VWRPGA in the future.
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