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Abstract: The sustainable Supplier Evaluation and Selection and Order Allocation (SSOA) problem
has received significant attention in supply chain management due to its potential to enhance a
company’s performance, improve customer satisfaction, and reduce costs. In this study, an integrated
methodology is proposed to address the SSOA problem. The methodology combines multiple tech-
niques to handle the uncertainties associated with supplier evaluation, including a new ranking
method based on the concept of Radius of Gyration (ROG) for interval type-2 fuzzy sets. The method-
ology also incorporates both subjective weights obtained using the Simple Multi-Attribute Rating
Technique (SMART) and expert preferences, and objective weights calculated using the Method based
on the Removal Effects of Criteria (MEREC) method to determine the weights of evaluation criteria.
Some criteria for sustainable development are used to evaluate supplier performance, resulting in
type-2 fuzzy sets, which are evaluated using the Weighted Aggregated Sum Product Assessment
(WASPAS) method. The ROG-based ranking method is employed to calculate the relative scores of
suppliers. Finally, a multi-objective decision-making (MODM) mathematical model is presented to
identify suitable suppliers and allocate their order quantities. The methodology is demonstrated in
a sustainable SSOA problem and is shown to be efficient and effective, as the ROG-based ranking
method allows for more accurate supplier performance evaluation, and the use of the criteria high-
lights the importance of sustainability in supplier selection and order allocation. The methodology’s
practicality is further supported by the analysis conducted in this study, which demonstrates the
methodology’s ability to handle the uncertainties associated with supplier evaluation and selection.
The proposed methodology offers a comprehensive approach to the SSOA problem that can effec-
tively handle the uncertainties in supplier evaluation and selection and promote sustainable practices
in supply chain management.
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1. Introduction

Sustainable supplier selection and order allocation (SSOA) has become increasingly
important for companies to achieve sustainable development and maintain their com-
petitiveness in the global market. The supply chain is a crucial aspect of a company’s
operations, and suppliers play a critical role in the sustainability of the supply chain. There-
fore, evaluating and selecting sustainable suppliers has become a critical strategic decision
for companies [1,2]. Sustainable suppliers are those who are committed to environmentally
friendly, socially responsible, and economically viable practices in their operations. By
evaluating and selecting such suppliers, organizations can ensure that their suppliers’ per-
formance aligns with their own sustainability goals in these three dimensions. Consumers
and stakeholders are becoming increasingly conscious of the environmental, social, and eco-
nomic impacts of the products and services they use. Partnering with sustainable suppliers
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can enhance an organization’s reputation as a socially responsible and environmentally
conscious business while contributing to the economic development of the community
in which they operate. By engaging with suppliers who promote ethical and fair labor
practices, organizations can support social sustainability and help ensure the well-being
of workers throughout the supply chain. For example, if a supplier uses unsustainable
practices or materials that are subject to regulatory scrutiny, the organization may face legal
or reputational risks, so collaboration with sustainable suppliers can help mitigate these
risks and ensure continuity in the supply chain [3,4].

Sustainability issues in the supply chain have gained increasing attention in recent
years due to the increasing awareness of the negative impact of business operations on the
environment and society. Sustainable SSOA aims to identify and assess suppliers based on
their sustainability performance, including environmental, social, and economic aspects.
Evaluating suppliers based on sustainability criteria enables companies to reduce risks
associated with supply chain disruptions and ensure a reliable supply of goods and ser-
vices. It also helps companies meet their sustainability goals and enhance their reputation
and brand image [5,6]. Order allocation is another critical aspect of the SSOA problem,
which involves determining the most efficient and effective way of allocating orders among
chosen suppliers. Companies need to consider both sustainability and efficiency factors
when allocating orders to suppliers. Allocating orders to sustainable suppliers enables
companies to reduce their environmental impact and promote social responsibility while
ensuring the quality and reliability of goods and services. The SSOA problem is com-
plex, and companies face numerous challenges when evaluating and selecting sustainable
suppliers and allocating orders. The problem of sustainability in supply chains is further
compounded by various types of complexity and uncertainty. Static complexity could
emerge from the consideration of multi-echelon and multi-tier supply chains, where there
are numerous nodes and interdependent processes that need to be taken into account.
Dynamic complexity may also come into play when considering a supply chain in a multi-
period context, where demand, supply, and other factors constantly change over time. In
addition to these, there may be technological complexity related to the use of advanced
manufacturing processes and digital technologies, as well as social complexity related to
dealing with diverse stakeholders and communities [7–9]. All of these types of complexity
can increase the uncertainty associated with sustainability issues, making it challenging
for organizations to manage their supply chains effectively and achieve their sustainability
goals. Therefore, companies need to develop effective models and methods to address
the SSOA problem. The development of advanced mathematical models and decision-
making tools has facilitated the evaluation and selection of sustainable suppliers and order
allocation, considering multiple criteria and uncertainty [10,11].

Multi-criteria decision-making (MCDM) approaches can help organizations to define
criteria, weight criteria, evaluate suppliers, generate alternatives, and make decisions about
which sustainable suppliers to select for supply chain management (SCM) [12,13]. By using
these approaches, organizations can make informed and objective decisions that promote
environmental sustainability, social responsibility, and overall business success MCDM
methods are flexible and adaptable to different contexts and situations. They can be used
to evaluate suppliers in different industries, regions, and supply chain contexts, and can be
customized to suit the specific needs and requirements of an organization [14,15].

The uncertainty of information is a common challenge in the SSOA problems. There
are several methods that can be used to handle uncertainty and improve the accuracy and
reliability of the evaluation and selection process [16]. In the context of sustainable supply
chain management, the reliability of decisions refers to the degree to which the decisions
made by a company in evaluating and selecting sustainable suppliers can be trusted to be
accurate, consistent, and unbiased over time. It is important for companies to make reliable
decisions in sustainable supply chain management because these decisions have significant
impacts on the environment, society, and the economy. The reliability of decisions is closely
linked to the quality of the data and information used to make those decisions. If the data
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used to evaluate and select suppliers are uncertain or imprecise, the resulting decisions will
also be unreliable [17–19]. Uncertain information refers to information that is incomplete
or unpredictable, where there is a lack of clarity about the outcome or the likelihood of
different scenarios. Imprecise information, on the other hand, refers to information that is
not precise or exact, where there is a degree of ambiguity or vagueness in the data. Fuzzy
logic can be used to deal with uncertain and imprecise information [20,21]. It allows for a
more flexible approach to decision-making, where criteria and weights are assigned based
on linguistic variables [22]. Fuzzy MCDM is important for the evaluation and selection of
sustainable suppliers for SCM because it can help to handle uncertainty and imprecision in
the evaluation process [23]. Decision-makers may have different opinions and preferences
regarding the importance of different criteria, and the criteria themselves may be vague
and imprecise. Fuzzy MCDM allows decision-makers to represent criteria and weights in
linguistic variables, which can be more intuitive and meaningful than numerical values. It
also allows decision-makers to incorporate qualitative information, such as sustainability
practices and social responsibility, into the evaluation process. This is important because
sustainability performance may not be easily quantifiable, and qualitative information
may be critical in evaluating suppliers’ sustainability practices. Evaluating and selecting
sustainable suppliers typically involves multiple criteria. These criteria may have different
levels of importance and may be interdependent [24,25]. Fuzzy MCDM can handle this
by allowing decision-makers to evaluate and rank suppliers based on multiple criteria
simultaneously. Fuzzy MCDM can also be used to identify the most critical criteria and their
relative weights, which can help decision-makers to prioritize the criteria and suppliers
based on their importance. This process is very important in the SSOA problem [26,27].

In fuzzy logic, a type-2 fuzzy set is an extension of the traditional type-1 fuzzy set
that allows for more uncertainty and ambiguity in the definition of the set [28]. Type-2
fuzzy sets can be more useful in situations where there is a lot of uncertainty or imprecision
in the definition of a concept or in the data being used to represent that concept [29].
However, they can also be more computationally intensive to work with and require more
complex algorithms and techniques for inference and decision-making. Type-2 fuzzy sets
are well-suited for problems involving uncertainty due to imprecise or incomplete data,
or when there are multiple sources of uncertainty that need to be modeled. Type-1 fuzzy
sets, on the other hand, are often used when the data are well-defined and there is little
uncertainty [30]. By developing type-2 fuzzy sets for linguistic variables, we can capture
the uncertainty and imprecision in the evaluation process. This can lead to more accurate
evaluations of supplier performance, which can help in making better-informed supplier
selection decisions in the supply chain [31–33]. Type-2 fuzzy sets have been applied to
several real-world problems in different fields [34–36].

This study proposes a methodology to address the sustainable SSOA problem by inte-
grating multiple techniques. First, a new ranking method based on the concept of Radius
of Gyration (ROG) is introduced for interval type-2 fuzzy sets to handle the uncertainty
in supplier evaluation. To determine the weights of evaluation criteria, both subjective
weights obtained using the Simple Multi-Attribute Rating Technique (SMART) and expert
preferences, and objective weights calculated using the Method based on the Removal
Effects of Criteria (MEREC) method are combined [37,38]. Then, using sustainability cri-
teria, a type-2 fuzzy decision-matrix, combined weights, and the Weighted Aggregated
Sum Product Assessment (WASPAS) method [39], supplier performance is evaluated as
type-2 fuzzy sets. The ROG-based ranking method is employed to calculate the relative
scores of suppliers. Finally, a multi-objective decision-making (MODM) mathematical
model is presented to identify suitable suppliers and allocate their order quantities. The
application of the proposed methodology is demonstrated in a sustainable SSOA problem,
highlighting the methodology’s effectiveness and applicability. The analysis conducted in
this study demonstrates the practicality and efficiency of the proposed approach. By inte-
grating multiple methodologies, this methodology can effectively handle the uncertainty in
supplier evaluation and selection. Additionally, the use of the ROG-based ranking method
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allows for more accurate supplier performance evaluation, resulting in better supplier
selection decisions. The proposed approach also takes into account sustainability criteria,
emphasizing the importance of sustainability in supplier selection and order allocation.

The remainder of the paper is structured as follows. Section 2 provides an extensive
literature review, discussing some of the recent studies pertaining to the SSOA problem.
Section 3 outlines the proposed methodology, which encompasses the ROG-based ranking
method, a step-by-step procedure for evaluating suppliers, and an approach to solving the
MODM model of the sustainable SSOA problem. The results and discussion concerning
the proposed methodology are presented in Section 4, where an example of the sustainable
SSOA problem is illustrated, along with a sensitivity analysis. Finally, Section 5 presents
the concluding remarks, summarizing the key findings of the study and highlighting future
research directions.

2. Literature Review

The SSOA is an essential problem for many organizations as they directly impact
the quality of the end product and the overall efficiency of the supply chain. Selecting
the right suppliers and allocating orders optimally can help organizations reduce costs,
increase profits, and maintain a competitive edge in the market. Over the years, several
studies have been conducted on the SSOA problem, with a focus on different aspects such
as sustainability, risk, and uncertainty. In this section, some of the recent studies on this
topic, highlighting their contributions, are reviewed.

Esmaeili-Najafabadi et al. [40] enhanced the process of SSOA within a centralized
supply chain, by devising a mixed integer nonlinear programming (MINLP) mathematical
model that incorporates two precautionary measures aimed at mitigating disruption risks.
The investigation revealed that as the likelihood of disruptions increases, the variables that
influence decisions regarding SSOA undergo alterations.

Moheb-Alizadeh and Handfield [41] proposed a sustainable supplier management tool
by simultaneously tackling the challenges of sustainable SSOA. These issues have received
limited attention in the literature. They developed an MODM model that is comprehensive,
considering multiple periods, products, and transportation modes, as well as discount and
shortage conditions. They select the preferred solution based on the data envelopment
analysis (DEA) super efficiency score of all purchasing firms. The proposed approach was
applied to a real-world case study in the automotive industry.

Hosseini et al. [42] developed an efficient solution for managing supply chain dis-
ruptions by developing a resilient SSOA approach. The researchers proposed a graphical
model to obtain the likelihood of disruption scenarios for the supplier selection problem
and a stochastic MODM model to help with decision-making on when and how to use both
reactive and proactive strategies in SSOA.

Kellner and Utz [43] devised a decision support approach that helps purchasing
managers build mid-term supplier portfolios while weighing purchasing costs, supplier
sustainability and overall supply risk trade-offs. To achieve this, the researchers developed
an MODM model that prioritized supplier sustainability, selected the suppliers with the
lowest costs, and reduced supply risk. They used the ε-constraint method to deal with the
MODM model.

Duan et al. [44] presented an integrated model for green SSOA that can aid companies
in cutting costs, enhancing their green performance, and gaining a competitive edge by
combining the alternative queuing method (AQM), linguistic Z-numbers, and an MODM
model. The study employed the step-weight assessment ratio analysis technique to de-
termine the weights of criteria, and an extended AQM to rank the given suppliers while
establishing an MODM model to find the optimal order quantity for the selected suppliers
based on their scores.

Mohammed et al. [45] developed a hybrid approach based on MCDM and MODM
techniques for sustainable SSOA. The authors put forward an integrated approach based
on the fuzzy analytic hierarchy process (AHP) and fuzzy Technique for Order Preference
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by Similarity to Ideal Solution (TOPSIS) to evaluate and rank suppliers based on three sets
of criteria and created an MODM model for selecting suppliers and determining optimal
order quantities.

Safaeian et al. [46] proposed an MODM model for SSOA that takes into account
incremental discounts in a fuzzy environment. The researchers utilized the Zimmermann
fuzzy approach to transform the MODM model into a single objective format, which was
then solved using Genetic Algorithm and Non-dominated Sorting GA (NSGA). Finally, the
methodology’s effectiveness and performance were evaluated and discussed.

Alegoz and Yapicioglu [47] developed a hybrid approach for SSOA that takes both
qualitative and quantitative criteria into account. The goal was to identify appropriate sup-
pliers and make optimal order allocations. To achieve this, the researchers used trapezoidal
type-2 fuzzy AHP, fuzzy TOPSIS and goal programming. The study also compared the use
of MCDM methods regarding their effectiveness.

The purpose of the study made by Mari et al. [48] was to establish resilient criteria for
SSOA in an uncertain environment, aiming to mitigate low probability disruption risks that
can have a high impact and enhance supply chain resilience. To accomplish this aim, the
study proposed a possibilistic fuzzy MODM model and an interactive fuzzy optimization
methodology to help organizations balance resilience and cost in their supply chains.

Laosirihongthong et al. [49] introduced a comprehensive approach for assessing
suppliers based on sustainability indicators, as well as allocating purchase orders among
the top-ranked suppliers. To achieve this goal, the researchers used a mixed-methods
approach and utilized the fuzzy AHP to rank suppliers. Furthermore, the study devised
a cost-minimization method for allocating purchase orders. The findings of the study
demonstrated that both economic and environmental factors are essential considerations.

Feng and Gong [50] proposed an integrated approach for green SSOA in the auto-
mobile manufacturing industry using MODM and the linguistic entropy weight method
(LEWM). The LEWM was used to analyze the performance and select qualified green sup-
pliers on each evaluation criterion. The order allocation model aimed to minimize carbon
emission and total cost and maximize supply value. The study found that the proposed
framework could effectively deal with green SSOA for automobile manufacturers.

Khoshfetrat et al. [51] established an MODM model for a sustainable SSOA problem in
the automotive industry that considers various criteria in a fuzzy environment. To achieve
this goal, the study combined the evaluation process of suppliers, which used the AHP
method, with the process of order allocation to determine the ideal quantity needs to be
purchased from each supplier in each period. Furthermore, the study provided a sensitivity
analysis to analyze the best suppliers and their allocated orders.

Jia et al. [52] The study addressed the issue of uncertain factors, such as emissions,
supply capacity, per-unit cost, demand, and minimum order quality, whose probability
distributions were imprecise, by estimating their distributions. The study proposed a
robust MODM model for sustainable SSOA, which optimized four conflicting objectives
while considering the sustainability dimensions. The proposed model effectively balanced
multiple objectives and solved the sustainable SSOA problem by structuring ambiguous
distribution sets.

Wong [53] studied the complicated issue of selecting eco-friendly suppliers. To address
this problem, the study created a fuzzy goal programming model that considered various
factors such as suppliers’ dynamic risk, importance functions, and green market segmenta-
tion. The effect of different ratios of environmentally conscious consumers was studied and
a solution was proposed to incorporate market incentives and result in mutually beneficial
outcomes for the environment and the economy.

The aim of the research carried out by You et al. [54] was to create a unique framework
for SSOA that could benefit organizations in accomplishing sustainable development
goals. To deal with the uncertainty involved in evaluating the sustainable performance
of suppliers, the researchers employed Double Hierarchy Hesitant Linguistic Term Sets
(DHHLTSs). They proposed an extended approach to select efficient and sustainable
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suppliers and established a linear MODM model to apportion rational order quantities
among the selected suppliers, taking quantity discounts into account.

Rezaei et al. [55] proposed an integrated approach for SSOA in lean manufacturing
companies by utilizing both MODM and MCDM techniques. The study was conducted
in four phases. Firstly, relevant leanness criteria were identified from previous research.
Secondly, the AHP method was employed to evaluate these criteria for supplier selection.
Next, a fuzzy AHP method was used to choose suppliers based on the lean supplier
selection criteria. Finally, an MODM mathematical model was developed to determine the
optimal allocation of orders.

Kaviani et al. [56] developed a new approach that combined fuzzy multi-objective
optimization and intuitionistic fuzzy AHP to tackle the SSOA problem. They started by
using intuitionistic fuzzy AHP to establish the key criteria weights for evaluating suppliers
and then utilized a fuzzy MODM mathematical model to determine the optimal order
quantity for each supplier. The authors concluded that their innovative decision-making
tool could handle decision-makers’ uncertainty and had demonstrated practical usefulness.

Rezaei et al. [57] addressed the issue of risk and uncertainty in SSOA for closed-
loop supply chain (CLSC) networks and reverse logistics. They proposed a two-stage
model based on stochastic programming that uses a conditional value-at-risk (CVaR) risk
measurement tool to assess both risk-averse and risk-neutral scenarios. The goal of the
study was to explore how changes in key problem parameters affect a company’s sourcing
strategies. The researchers recommended that firms consider purchasing from spot markets
and backup suppliers to mitigate uncertainties.

Wang et al. [58] devised a model based on the analytic network process (ANP) and
integer programming that leverages MCDM techniques to optimize the SSOA problem.
The researchers aimed to evaluate how different emission trading schemes (ETS) scenarios
could affect a company’s overall cost structure and the creation of a low-carbon supply
chain, taking into account the carbon competitiveness of suppliers by factoring in the
carbon embedded in raw materials and carbon emission trading schemes.

Çalık [59] developed a framework for managing the sustainable SSOA problem in
the agricultural machinery industry in Turkey. To achieve this, an MODM mathematical
model was developed, which included sustainability dimensions. The weight of the criteria
was determined using an approach based on the AHP method and interval type-2 fuzzy
sets. The proposed approach offered an integrated model that considered the integration of
quantitative and qualitative evaluation criteria, taking into account varying preferences.

Khalili Nasr et al. [60] proposed a two-stage model to deal with the SSOA problem in
CLSCs that could minimize waste. In the first stage, a fuzzy Best-Worst Method (BWM)
was used to evaluate suppliers based on various criteria. In the second stage, a linear
MODM model was used to design a CLSC network incorporating vehicle scheduling,
inventory-location-routing, and quantity discounts. To solve the MODM model a fuzzy
goal programming approach was proposed.

Kaur and Prakash Singh [61] presented a multi-stage hybrid model for the SSOA
problem that would account for risks and disruptions arising from positive and negative
events, such as natural/man-made disasters and Industry 4.0, and optimize the distribution
of orders to suppliers over multiple periods in a manner that would minimize costs as well
as the disruption risk. The proposed model involved supplier segmentation and evaluation
using the DEA, fuzzy AHP, and TOPSIS. Moreover, the risk related to each supplier was
assessed using the model.

Islam et al. [62] developed a new two-stage approach to handle SSOA problems with
uncertain demand. The study introduced a Relational Regressor Chain method for demand
forecasting in the first stage. In the second stage, suitable suppliers and order quantities
from each supplier were determined based on the forecasted demand and an MODM model.
To obtain efficient solutions ε-constraint and weighted-sum methods were employed. The
outcomes indicated the efficiency of the proposed method over the other methods in terms
of forecasting accuracy.
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Rezaei et al. [63] devised an effective framework for SSOA in a centralized supply
chain while considering collaboration between the supplier and buyer and the strategies
for risk reduction. The study employed MINLP models and risk reduction strategies such
as protected suppliers, emergency stock, reserving additional capacity, backup suppliers,
and geographical separation. It also employed the risk priority number constraint and
Failure Mode and Effects Analysis (FMEA) technique to account for suppliers’ reliability.

Firouzi and Jadidi [64] proposed a fuzzy MODM model for the SSOA problem that
could manage the uncertainties brought about by disasters in Japan. The researchers
acknowledged that such catastrophes could have unfavorable effects on businesses and
markets, resulting in increased demand for certain goods or a reduction in the suppliers’
ability to provide them in the appropriate quantity, quality, and time. To effectively consider
decision makers’ preferences, the study used a weighted additive function to solve the
MODM model with parameters defined by fuzzy sets.

Li et al. [65] presented an inclusive mathematical model to assist in SSOA while con-
sidering both qualitative and quantitative factors in the risk management of supply chains.
The study noted the emerging trend of environmental considerations in this field and high-
lighted the importance of dynamic SSOA. The presented model included the preliminary
selection of suppliers based on the risk value assessed through quantitative and qualitative
methods. This was followed by developing an MODM model for dynamic SSOA.

Yousefi et al. [66] developed a two-stage hybrid approach that could be utilized to
select efficient suppliers, allocate orders, and determine prices in a coordinated supply
chain. The first stage of the proposed model employed the DEA technique and an MODM
mathematical model to evaluate suppliers and minimize costs simultaneously. The second
stage of the proposed approach utilized the order quantity specified in the first stage, the
bargaining game, the Nash equilibrium concept, and a quadratic programming model to
determine the price.

Beiki et al. [67] introduced a new approach to tackle the SSOA problem by combining
an MODM model with the language entropy weight method. The authors emphasized
the need to improve the collaboration between potential suppliers and supply chain prac-
titioners to achieve sustainable development goals. An MODM model based on three
objectives was developed, aiming to maximize procurement value while minimizing total
cost and carbon emissions. The language entropy weight method was utilized in the study
to evaluate suppliers based on their sustainability performance.

Esmaeili-Najafabadi et al. [68] proposed a multi-objective model for integrated SSOA
in a centralized supply chain based on a risk-averse decision-maker and the risks of
disruption. Two types of risks including local disruption risks and regional disruption risks
were considered in the study. Risk-averse and risk-neutral and models were developed,
and the decision maker’s behavior was analyzed using two risk assessment tools, value-
at-risk (VaR) and CVaR. The model was solved using the particle swarm optimization
(PSO) algorithm.

Mohammed et al. [69] aimed to put forward a new technique for SSOA that takes
into account green and resilience aspects by devising an integrated framework. The
proposed framework was based on calculating importance weights using the AHP method,
assessing suppliers using the TOPSIS method, and applying an MODM mathematical
model with the ε-constraint method to solve the problem. The purpose of the study was
to support companies in augmenting their supply chain resilience while fulfilling their
environmental responsibilities.

Hosseini et al. [70] developed a solution methodology for the SSOA challenges under
uncertainty. An integration of the evidential reasoning and BWM was used to propose an
approach for the evaluation of suppliers based on sustainability dimensions. Stochastic
programming and dynamic programming were utilized to solve the MODM model, and its
results were compared with some other techniques. The effect of uncertainties in suppliers’
availability, quantity discounts, and demand was examined through a sensitivity analysis.
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Ali et al. [71] devised a comprehensive method for SSOA in a sustainable supply chain
under uncertainty. The study utilized a fuzzy AHP approach to compute the criteria weights
and a fuzzy TOPSIS technique to assess the performance of suppliers and ascertain their
final ranks. Then an MODM model based on goal programming was used for allocating
the optimum order quantity to the selected suppliers. The results of the study and analyses
indicated that the suggested model was able to deal with uncertainties associated with the
SSOA problem.

Goodarzi et al. [72] aimed to develop a model that integrated a decision-making
approach to evaluate green suppliers and allocate optimal orders while accounting for
uncertainty. The fuzzy Delphi method was employed to refine supplier evaluation criteria
and use green and resilient indexes were for the prioritization of suppliers. The gray
Correlation method and TOPSIS were utilized to analyze the results.

Liaqait et al. [73] proposed a decision-support framework based on the integration
of fuzzy MCDM techniques, demand forecasting, and MODM mathematical models. The
focus of the research was on a multi-modal transportation network to demonstrate the
effect of transportation on travel time, the supply chain’s total cost, and environmental
impact. The findings of the proposed model showed that the multi-modal transporta-
tion network had a substantial impact on the supply chain’s travel time, total cost, and
environmental impact.

The study of Gai et al. [74] aimed to present an integrated two-stage MCDM approach
that incorporated both quantitative and qualitative analyses for dealing with the challenges
of SSOA in green supply chain management. In the first stage, the evaluation of green
suppliers was made using linguistic Z-Numbers and the MULTIMOORA (Multi-Objective
Optimization on the basis of a Ratio Analysis plus the full Multiplicative form) method. In
the second stage, an MODM mathematical model was employed to determine the number
of orders allocated to the preferred suppliers.

Aouadni and Euchi [75] developed a hybrid solution methodology for SSOA based on
the best-worst method and TOPSIS technique in the first phase to find a robust ranking of
suppliers and to use the Linear Programming approach in the second phase to determine
the weight of the objective function. The study applied the methodology to a real case of
the Tunisian Electric Society, and the experimental results showed that the proposed model
provided effective gains concerning solution quality.

The purpose of the study made by Galankashi et al. [76] was to tackle the problem
of merging agile manufacturing with purchasing and supplier selection. The authors
reviewed past research thoroughly and utilized the AHP method to finalize the criteria
for choosing agile suppliers. They utilized the criteria to evaluate suppliers using a fuzzy
AHP and established an MODM model based on multiple periods for allocating orders. A
sensitivity analysis was conducted to provide more practical and comprehensible results.

Liu et al. [77] put forward a linear MODM model to help manage supply chains
through the efficient selection of suppliers and allocation of orders. The study introduced a
modified BWM method to assess and prioritize suppliers. The authors used fuzzy variables
to find the amount of raw material order quantities. The goal programming method was
employed to solve the MODM model that included four objective functions. The study
illustrated that the proposed model yielded lower costs and better criteria in comparison to
other models.

The purpose of the study carried out by Bai et al. [78] was to address the neglect of net-
zero emissions and carbon neutrality in the SSOA problems of supply chain management.
They introduced an MODM mathematical model that can assess various procurement
policies and provide practical and theoretical insights. A case of an energy trading platform
was used for the implementation and assessment of the model. The results indicated
the importance of purchasing fossil fuels or attaining net zero through carbon emissions
sequestration and carbon offsets.

Ahmad et al. [79] developed an approach to deal with the SSOA problem in a two-
echelon make-to-order supply chain. The focus of the study was on determining the
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acceptable tolerances for the members of a supply chain to the minimization of the vari-
ability in total costs. The authors employed an MINLP model, and the robustness of the
solutions was improved by incorporating the Taguchi Method of Tolerance Design (TMTD).
They tested their model and showed the effectiveness of it.

The studies reviewed here highlight the importance of considering uncertainty in
handling SSOA. Table 1 presents a summary of the reviewed studies, taking into account
the uncertainty associated with SSOA can lead to more robust decisions in supply chain
management. The studies also reveal that SSOA is a complex process that requires the inte-
gration of various criteria, including economic, social, and environmental considerations.
Additionally, the studies demonstrate the need to address the challenges of sustainable
SSOA, which has received limited attention in prior literature. Therefore, the current
study focused on developing a new methodology to deal with sustainable SSOA problems
under uncertainty.

Table 1. Summary of the reviewed studies.

No. Author(s) and Reference Year of Publication Description of the Approach for SSOA

1 Esmaeili-Najafabadi et al. [40] 2019 An MINLP model that incorporates two precautionary
measures aimed at mitigating disruption risks

2 Moheb-Alizadeh and Handfield [41] 2019 An MODM model considering multiple periods,
products, and transportation modes

3 Hosseini et al. [42] 2019 A graphical model to obtain the likelihood of
disruption scenarios for SSOA

4 Kellner and Utz [43] 2019 An MODM model for evaluation of supplier
sustainability based on costs and supply risk.

5 Duan et al. [44] 2019 An integrated model for SSOA by combining AQM,
linguistic Z-numbers, and an MODM model

6 Mohammed et al. [45] 2019 A hybrid approach based on AHP, fuzzy TOPSIS and
an MODM model

7 Safaeian et al. [46] 2019 An MODM model based on the Zimmermann fuzzy
approach and NSGA

8 Alegoz and Yapicioglu [47] 2019 A hybrid approach based on trapezoidal type-2 fuzzy
AHP, fuzzy TOPSIS and goal programming

9 Mari et al. [48] 2019 A possibilistic fuzzy MODM model and an interactive
fuzzy optimization methodology

10 Laosirihongthong et al. [49] 2019 An approach based on the fuzzy AHP and a
cost-minimization model

11 Feng and Gong [50] 2020 An integrated approach using MODM and the
linguistic entropy weight method

12 Khoshfetrat et al. [51] 2020 An integrated approach based on AHP and MODM
model in a fuzzy environment

13 Jia et al. [52] 2020 A robust MODM model based on four
conflicting objectives

14 Wong [53] 2020 A fuzzy goal programming model that considered
various factors like suppliers’ dynamic risk

15 You et al. [54] 2020 A framework that employed Double Hierarchy
Hesitant Linguistic Term Sets

16 Rezaei et al. [55] 2020 An integrated approach using the AHP method and
MODM model

17 Kaviani et al. [56] 2020 An approach that combined fuzzy multi-objective
optimization and intuitionistic fuzzy AHP

18 Rezaei et al. [57] 2020 A two-stage model based on stochastic programming
that uses a conditional value-at-risk

19 Wang et al. [58] 2020 A model based on ANP and integer programming

20 Çalık [59] 2020 An approach based on the AHP method, interval
type-2 fuzzy sets and MODM model
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Table 1. Cont.

No. Author(s) and Reference Year of Publication Description of the Approach for SSOA

21 Khalili Nasr et al. [60] 2021 A two-stage model based on a fuzzy BWM and a
linear MODM model

22 Kaur and Prakash Singh [61] 2021 An integrated approach based on DEA, fuzzy AHP,
and TOPSIS

23 Islam et al. [62] 2021
A new two-stage approach based on a Relational

Regressor Chain, ε-constraint and
weighted-sum methods

24 Rezaei et al. [63] 2021 A framework based on MINLP models, risk reduction
strategies and FMEA technique

25 Firouzi and Jadidi [64] 2021 A fuzzy MODM model that could manage the
uncertainties brought about by disasters

26 Li et al. [65] 2021 An approach based on the risk value assessed and an
MODM model

27 Yousefi et al. [66] 2021 A two-stage hybrid approach that employed DEA and
an MODM model

28 Beiki et al. [67] 2021 A new approach by combining an MODM model with
the language entropy weight method

29 Esmaeili-Najafabadi et al. [68] 2021 A multi-objective approach based on VaR, CVaR,
and PSO

30 Mohammed et al. [69] 2021 An integrated approach based on AHP, TOPSIS, and
the ε-constraint method

31 Hosseini et al. [70] 2022 An approach based on the evidential reasoning, BWM,
stochastic programming and dynamic programming

32 Ali et al. [71] 2022 A hybrid approach using fuzzy AHP, fuzzy TOPSIS
and an MODM model

33 Goodarzi et al. [72] 2022 A framework based on fuzzy Delphi, Gray Correlation
method, TOPSIS and MODM models

34 Liaqait et al. [73] 2022 Fuzzy MCDM techniques, demand forecasting, and
MODM mathematical models

35 Gai et al. [74] 2022 A two-stage approach that incorporated linguistic
Z-Numbers, MULTIMOORA, and an MODM model

36 Aouadni and Euchi [75] 2022 A hybrid methodology based on BWM, TOPSIS and
bi-objective programming

37 Galankashi et al. [76] 2022 An integrated approach based on a fuzzy AHP and an
MODM model with multiple periods

38 Liu et al. [77] 2022 An approach based on a modified BWM method and
goal programming

39 Bai et al. [78] 2022 An MODM mathematical model that can assess
various procurement policies

40 Ahmad et al. [79] 2022 An integrated approach based on an MINLP model
and the Taguchi Method of Tolerance Design

3. Methodology

In this section, a new decision-making approach is presented based on interval type-2
fuzzy sets, ROG of fuzzy sets, SMART, MEREC and WASPAS. Then a model is described to
deal with the SSOA problem. The preliminaries and different components of the decision-
making approach are delineated in the following subsections.

3.1. Interval Type-2 Fuzzy Sets

Interval type-2 fuzzy sets are a type of fuzzy set that allows for a more precise rep-
resentation of uncertainty in data. While traditional fuzzy sets assign each element a
membership value between 0 and 1, IT2FS assign each element a membership function
that is itself a fuzzy set. This allows for a more nuanced representation of uncertainty,
as the membership function can vary within a given interval. IT2FS can also be used to
construct fuzzy preference relations, which provide a way to model the preferences of
decision-makers. This can be useful in group decision-making scenarios, where there may
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be multiple decision-makers with different preferences. The use of IT2FS in constructing
these relations can help to improve the efficiency of the decision-making process. Further-
more, IT2FS can be used to rank alternatives and criteria weights, which can be useful in
determining the most appropriate course of action [80,81].

The study uses a trapezoidal form of IT2FSs that is defined by a two-level membership
function denoted by µF(x). This function includes an Upper Membership Function (UMF)
and a Lower Membership Function (LMF) that form the Footprint of Uncertainty (FOU)
for an interval type-2 fuzzy set. The trapezoidal IT2FS is formed by UMF and LMF, which
have trapezoidal shapes. The trapezoidal membership function has commonly been used
in fuzzy sets and fuzzy logic systems. It has a simple shape that is easy to understand
and interpret. The trapezoidal membership function is more flexible than the triangular
membership function, as they allow for a wider range of uncertainty to be represented. This
type of membership function is more precise, as they do not assume a normal distribution
for the uncertainty. The trapezoidal membership function can represent both symmetric
and asymmetric uncertainty, making them a more versatile choice for many applications.
Moreover, it can be easily combined with other types using standard fuzzy set operations,
such as union and intersection. It can also be easily converted to crisp numbers, which
makes it more useful in practical applications. This type of membership function can be
used in a wide range of applications, including control systems, decision-making, and data
analysis, making it a popular choice for many researchers and practitioners in the field of
fuzzy logic. Figure 1 depicts a trapezoidal IT2FS.
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The mathematical expression for defining this trapezoidal IT2FS is as follows [82,83].

˜̃A = (Ãi| i ∈ {L, U}) = (aA
i , bA

i , cA
i , dA

i ; θA
i | i ∈ {L, U}) (1)

Assuming ˜̃B is another trapezoidal IT2FS with the same definition and k is a definite
number, we can define some fundamental mathematical operations of trapezoidal IT2FSs
as follows.

Addition: ⊕

˜̃A⊕ ˜̃B = (aA
i + aB

i , bA
i + bB

i , cA
i + cB

i , dA
i + dB

i ; min(θA
i , θB

i )| i ∈ {L, U}) (2)

˜̃A⊕ k = (aA
i + k, bA

i + k, cA
i + k, dA

i + k; θA
i | i ∈ {L, U}) (3)

Subtraction: 	

˜̃A	 ˜̃B = (aA
i − dB

i , bA
i − cB

i , cA
i − bB

i , dA
i − aB

i ; min(θA
i , θB

i )| i ∈ {L, U}) (4)

˜̃A	 k = (aA
i − k, bA

i − k, cA
i − k, dA

i − k; θA
i | i ∈ {L, U}) (5)
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Multiplication: ⊗

˜̃A⊗ ˜̃B = (min I1, min I2, max I2, max I1; min(θA
i , θB

i )| i ∈ {L, U}) (6)

where I1 = {aA
i aB

i , aA
i dB

i , dA
i aB

i , dA
i dB

i } and I2 = {bA
i bB

i , bA
i cB

i , cA
i bB

i , cA
i cB

i }.

˜̃A⊗ k =

{
(aA

i k, bA
i k, cA

i k, dA
i k; θA

i | i ∈ {L, U}) i f k ≥ 0
(dA

i k, cA
i k, bA

i k, aA
i k; θA

i | i ∈ {L, U}) i f k < 0
(7)

Exponentiation: ∧

˜̃A ∧ k = ((aA
i )

k
, (bA

i )
k
, (cA

i )
k
, (dA

i )
k
; θA

i | i ∈ {L, U}) (8)

Defuzzified crisp score: Γ

Γ( ˜̃A) =
1
2

 ∑
i∈{L,U}

aA
i + (1 + θA

i )(b
A
i + cA

i ) + dA
i

4 + 2θA
i

 (9)

3.2. Comparative Ranking of Trapezoidal IT2FSs Based on ROG

The section puts forward a technique for comparative ranking of trapezoidal interval
type-2 fuzzy sets. Several methods have been proposed for ranking fuzzy numbers. Lee
and Li [84] developed a ranking approach to sort fuzzy numbers based on the fuzzy mean
and spread of these numbers. However, the method becomes challenging to compare when
fuzzy numbers have a high mean value with a high spread or a low mean value with a
low spread. Cheng [85] proposed the coefficient of variance (CV index) to address this
limitation, which ranks fuzzy numbers by their smaller CV index. Additionally, Cheng [85]
proposed the distance-based method to rank fuzzy numbers. However, both the distance-
based method and the CV index have limitations, with the distance method contradicting
the CV index in some cases. Chu [86] proposed a ranking approach that uses the area
between the centroid and the original point to address these limitations, but it fails to
rank fuzzy numbers with the same centroid point. As an improvement over previous
methods Deng et al. [87] proposed a ranking method that was free from the limitations of
the mentioned methods. The technique of ranking proposed in this section is derived from
the modified area method suggested by Deng et al. [87]. This method assesses the ranking
of a fuzzy set by examining the area between the original point and the Radius of Gyration
(ROG) point. Deng et al. [87] initially introduced this ranking technique for generalized
trapezoidal fuzzy numbers, using the moment of inertia concerning the x and y axes.

This research utilizes the idea of ranking based on ROG and applies it to present a
comparative ranking method for trapezoidal IT2FSs, which is a novel approach. Suppose

we are working with a collection of n trapezoidal IT2FSs, which we will refer to as ˜̃E1, ˜̃E2,

. . . , ˜̃En. Below are the steps that describe the ROG-based ranking method that is proposed
for ranking trapezoidal IT2FSs.

Step 1. Compute the moment of inertia for the upper and lower membership func-
tions of each set with respect to both the x and y axes (Ix and Iy), using the equations
provided below.

IxEk
i = IxEk

1i + IxEk
2i + IxEk

3i , i ∈ {L, U}, k ∈ {1, 2, . . . , n} (10)

IyEk
i = IyEk

1i + IyEk
2i + IyEk

3i , i ∈ {L, U}, k ∈ {1, 2, . . . , n} (11)

where

IxEk
1i =

(bEk
i − aEk

i )(θ
Ek
i )

3

12
, i ∈ {L, U}, k ∈ {1, 2, . . . , n} (12)



Mathematics 2023, 11, 2014 13 of 33

IxEk
2i =

(cEk
i − bEk

i )(θ
Ek
i )

3

3
, i ∈ {L, U}, k ∈ {1, 2, . . . , n} (13)

IxEk
3i =

(dEk
i − cEk

i )(θ
Ek
i )

3

12
, i ∈ {L, U}, k ∈ {1, 2, . . . , n} (14)

IyEk
1i =

(bEk
i − aEk

i )
3
θ

Ek
i

4
+

(bEk
i − aEk

i )(aEk
i )

2
θ

Ek
i

2
+

2(bEk
i − aEk

i )
2
aEk

i θ
Ek
i

3
, i ∈ {L, U}, k ∈ {1, 2, . . . , n} (15)

IyEk
2i =

(cEk
i − bEk

i )
3
θ

Ek
i

3
+ (cEk

i − bEk
i )(bEk

i )
2
θ

Ek
i + (cEk

i − bEk
i )

2
bEk

i θ
Ek
i , i ∈ {L, U}, k ∈ {1, 2, . . . , n} (16)

IyEk
3i =

(dEk
i − cEk

i )
3
θ

Ek
i

12
+

(dEk
i − cEk

i )(cEk
i )

2
θ

Ek
i

2
+

(dEk
i − cEk

i )
2
cEk

i θ
Ek
i

3
, i ∈ {L, U}, k ∈ {1, 2, . . . , n} (17)

Step 2. Use the following equations to compute the ROG point for the UMF and LMF
of each trapezoidal IT2FS.

RxEk
i =

√√√√ IxEk
i

(((cEk
i − bEk

i ) + (dEk
i − aEk

i )).θEk
i )/2

, i ∈ {L, U}, k ∈ {1, 2, . . . , n} (18)

RyEk
i =

√√√√ IyEk
i

(((cEk
i − bEk

i ) + (dEk
i − aEk

i )).θEk
i )/2

, i ∈ {L, U}, k ∈ {1, 2, . . . , n} (19)

Step 3. Employ the following formula to compute interval areas based on both the
obtained ROG point and the original point.

LREk = min(RxEk
L RyEk

L , RxEk
U RyEk

U ), k ∈ {1, 2, . . . , n} (20)

UREk = max(RxEk
L RyEk

L , RxEk
U RyEk

U ), k ∈ {1, 2, . . . , n} (21)

Step 4. Compute the degree of possibility for each pair of fuzzy sets in relation to one

another using the following equation. Let ˜̃Es and ˜̃Em be two unequal trapezoidal IT2FSs.

Pos(˜̃Es ≥ ˜̃Em) =


1 i f ∆N ≥ 0 and ∆P ≥ 0

∆P
∆P−∆N

i f ∆N ≤ 0 and ∆P ≥ 0

0 i f ∆N ≤ 0 and ∆P ≤ 0

(22)

where ∆N = LREs −UREm , ∆P = UREs − LREm , and the degree of possibility for ˜̃Es over˜̃Em is denoted by Pos(˜̃Es ≥ ˜̃Em).
Step 5. Compute the comparative ranking values for the trapezoidal IT2FSs using the

following equation [30,88,89].

CR(˜̃Ek) =
1

n(n− 1)

(
n

∑
l=1

Pos(˜̃Ek ≥ ˜̃El) +
n
2
− 1

)
, k ∈ {1, 2, . . . , n} (23)
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3.3. The Proposed MCDM Approach

This section presents a new method for multi-criteria decision-making when the
experts’ judgments are expressed as trapezoidal interval type-2 fuzzy sets. The proposed
method combines SMART, MEREC, and the ROG-based ranking technique to provide a
comprehensive approach to decision-making. To use this approach, decision-makers must
first define the problem and provide subjective assessments. SMART provides subjective
weights for the criteria, MEREC determines the objective weights, and WASPAS is used
for the fuzzy evaluation of the suppliers. The SMART method has several advantages
that make it a popular approach to multi-criteria decision-making. It is a straightforward
and easy-to-understand approach to decision-making. It requires minimal training and
can be applied by individuals with different levels of expertise. The SMART method is a
flexible approach that can be applied in a wide range of decision-making contexts. It allows
decision-makers to incorporate both qualitative and quantitative criteria. Moreover, it is a
relatively quick approach to decision-making that can help decision-makers save time and
resources. In the MEREC method, the determination of objective weights takes a unique
approach compared to other objective weighting methods. Instead of using variations
in criteria to calculate weights, this method utilizes the removal effects of criteria on the
performances of alternatives as a measure for weighting. Such a perspective is new and
distinct from other approaches to determining objective criteria weights. The MEREC
method provides insights into the relative importance of each criterion to the decision.
In addition, the efficiency of the WASPAS method for the evaluation process has been
demonstrated through numerous studies, making it an effective MCDM method [90]. The
subjective weights and objective weights are combined to provide more realistic decisions.
The ROG-based technique is used to calculate ranking values for the suppliers based
on their aggregated WASPAS measures. The following steps represent the procedure of
determination of relative scores of suppliers using the proposed MCDM approach.

Step 1. Form a team of decision-makers (DMs). This step involves assigning a group of
experts who will carry out the decision-making process. Typically, these experts are chosen
from senior-level executives or other positions of high responsibility within an organization.
Let us assume that there is a group of q decision-makers (D1 to Dq).

Step 2. Collect information about the potential suppliers and evaluation criteria.
Gather data on the issue and extract the options that require assessment as well as the
standards that can account for various aspects of the choices. Suppose that there are n
alternatives (A1 to An) and m criteria (C1 to Cm) involved in the MCDM problem.

Step 3. Gather the preliminary evaluations of the criteria from each decision-maker.
Ask each member of the decision-making group to provide their initial evaluations of
the criteria. Different techniques, such as linguistic variables or the Likert scale can be
employed to gather their opinions. As per the proposed approach’s framework, a scale
ranging from 0 to 100 is utilized for evaluations, with 0 denoting the least important and
100 the most important criteria.

Step 4. Obtain the initial evaluations of the alternatives’ performances on each criterion
from all experts. To capture the uncertainty of the evaluation process, linguistic variables
are employed in this stage to gather the opinions of the decision-makers. The primary
benefit of linguistic variables is their ability to be converted into trapezoidal IT2FSs. The
range of linguistic variables encompasses “Very Poor” (VP) to “Very Good” (VG), and the
full list of these variables is presented in Table 2 [82]. Let ˜̃xijk indicate the evaluation of jth
criterion for ith alternative based on the perspective of kth decision-maker.
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Table 2. The linguistic variables and related fuzzy numbers.

Linguistic Variables Trapezoidal IT2FSs

Very Poor (VP) ((0, 0, 0, 1; 1), (0, 0, 0, 0.5; 0.9))
Poor (P) ((0, 1, 1.5, 3; 1), (0.5, 1, 1.5, 2; 0.9))

Medium Poor (MP) ((1, 3, 3.5, 5; 1), (2, 3, 3.5, 4; 0.9))
Fair (F) ((3, 5, 5.5, 7; 1), (4, 5, 5.5, 6; 0.9))

Medium Good (MG) ((5, 7, 7.5, 9; 1), (6, 7, 7.5, 8; 0.9))
Good (G) ((7, 8.5, 9, 10; 1), (8, 8.5, 9, 9.5; 0.9))

Very Good (VG) ((9, 10, 10, 10; 1), (9.5, 10, 10, 10; 0.9))

Step 5. Calculate the subjective weight of each criterion using the SMART technique.
Use the evaluations obtained from the experts in Step 3 for this step. Let IPjk denote the
importance or points assigned by the kth decision-maker to the jth criterion. Then, apply
the following equation to determine the subjective weight of each criterion (ws

j ) [37].

ws
j =

∑k IPjk

∑k ∑j IPjk
(24)

Step 6. Create an interval type-2 fuzzy decision-matrix by combining the alternatives’
performances. Utilize Table 2, apply arithmetic operations of IT2FSs, and use the initial
evaluations gathered in Step 4 to consolidate the alternatives’ performances and turn them
into trapezoidal interval type-2 fuzzy numbers. It is worth noting that this type of fuzzy set
is an effective method for capturing decision-making information uncertainty. The results
of this phase are the elements of the interval type-2 fuzzy decision-matrix (˜̃xij). These
elements are calculated as follows.

˜̃xij =
1
q

q
⊕

k = 1
˜̃xijk (25)

Step 7. Defuzzify the decision-matrix and calculate the objective weights of criteria
using the MEREC method [38]. In order to calculate the objective criteria weights (wo

j )
using MEREC, the defuzzified decision-matrix needs to be obtained first. The elements
of the crisp matrix (xd

ij) can be computed based on the results of Step 6 and Equation (9)
as follows.

xd
ij = Γ(˜̃xij) (26)

Step 8. Combine the subjective and objective criteria weights to obtain more realistic
weights for the criteria. By fusing the subjective criteria weights obtained using SMART in
Step 5 with the objective weights determined by MEREC in Step 7, the combined weights of
criteria (wc

j ) can be computed using the following formula with a combination parameter ω.

wc
j = ωws

j + (1−ω)wo
j (27)

Step 9. Normalize the interval type-2 fuzzy decision-matrix. The WASPAS method
typically utilizes a linear normalization approach, but given the utilization of trapezoidal
IT2FSs, we need to adapt the normalization approach in this stage. The beneficial criteria
are represented by BC while NC is used to represent non-beneficial criteria. Utilize the
subsequent equations to normalize the interval type-2 fuzzy decision-matrix. Keep in mind
that the calculations use Equations (2) to (9).

˜̃xn
ij =


˜̃xij ⊗ 1

max
i

xd
ij

i f j ∈ BC

1	 (˜̃xij ⊗ 1
max

i
xd

ij
) i f j ∈ NC

(28)
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Step 10. Determine the WSM ( ˜̃QS
i ) and WPM ( ˜̃QP

i ) measures of the WASPAS method by
applying the following equations. As a result of using trapezoidal IT2FSs, this step differs
slightly from the classic WASPAS method and has been modified for more efficient handling.

˜̃QS
i =

m
Σ⊕

j = 1
(˜̃xn

ij ⊗ wc
j ) (29)

˜̃QP
i =

m
Π⊗
j = 1

((1⊕ ˜̃xn
ij) ∧ wc

j ) (30)

Step 11. Calculate the composite WASPAS measure. Utilizing the normalized WSM
and WPM measures and the combination parameter γ, the composite WASPAS measure is
computed in this step.

˜̃Qi = ( ˜̃QSN
i ⊗ γ)⊕ ( ˜̃QPN

i ⊗ (1− γ)) (31)

where ˜̃QSN
i = ˜̃QS

i ⊗
1

max
l

Γ( ˜̃QS
l )

(32)

˜̃QPN
i = ˜̃QP

i ⊗
1

max
l

Γ( ˜̃QP
l )

(33)

Step 12. Determine the ranking values of the composite WASPAS measures. This step
employs Equations (10) to (23) (the proposed ROG-based ranking technique) to determine
ranking values (Si) for the composite WASPAS measurements of the alternatives (suppliers).
These ranking values will be utilized as relative scores for suppliers in the evaluation and
order allocation model.

Si = CR( ˜̃Qi) (34)

3.4. A Mathematical Model for the SSOA Problem

In this sub-section, a multi-objective mathematical model is presented for the supplier
selection and order allocation problem. The model is based on the minimization of the total
purchasing cost and total distance, and the maximization of the total scores of the selected
suppliers. The aim of this model is to select the most suitable supplier for some production
centers and determine the number of orders for the selected suppliers. Notations of the
model are represented in Table 3.

Table 3. Notations of the SSOA model.

Parameters/Variables Description

co
ij Unit purchasing cost of the ith supplier for jth production center

dij Distance between ith supplier and jth production center
Si The relative score of ith supplier

Omin
i Minimum quantity to be ordered from ith supplier

CPi Supply capacity of ith supplier
DEMj Demand of jth production center
Kmin Minimum number of suppliers that need to be selected

xo
ij Variable: order quantity of the ith supplier for jth production center

yi Binary variable: = 1 if ith supplier is selected; = 0 otherwise
Z1 Total purchasing cost

Zmin
1 Minimum value of Z1

Zmax
1 Maximum value of Z1
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Table 3. Cont.

Parameters/Variables Description

Z2 Total distance-based measure
Zmin

2 Minimum value of Z2
Zmax

2 Maximum value of Z2
Z3 Total relative score of selected suppliers

Zmin
3 Minimum value of Z3

Zmax
3 Maximum value of Z3

Using the fuzzy multi-objective programming approach [91], the SSOA problem
considered in this study is defined as follows.

Max λ (35a)

Z1 = ∑
i

∑
j

co
ijx

o
ij (35b)

Z2 = ∑
i

∑
j

dijxo
ij (35c)

Z3 = ∑
i

∑
j

Sixo
ij (35d)

λ ≤ 1−
Z1 − Zmin

1

Zmax
1 − Zmin

1
(35e)

λ ≤ 1−
Z2 − Zmin

2

Zmax
2 − Zmin

2
(35f)

λ ≤ 1 +
Z3 − Zmax

3

Zmax
3 − Zmin

3
(35g)

∑
j

xo
ij ≥ yiOmin

i ∀i (35h)

∑
j

xo
ij ≤ yiCPi ∀i (35i)

∑
i

xo
ij = DEMj ∀j (35j)

∑
i

yi ≥ Kmin (35k)

xo
ij ≥ 0 and yi ∈ {0, 1} (35l)

To obtain the minimum and maximum values of Z1, Z2 and Z3, the model needs to
be solved separately by considering the related objective functions and constraints (35h)
to (35l). By defining the objective functions in Equations (35b) to (35d) and maximizing λ
through the constraints in (35e) to (35g), these functions can achieve values that approach
their ideal states. The relative score of the ith supplier in Equation (35d) is determined using
the MCDM approach presented in the previous subsection. The minimum order allocated
to selected suppliers is defined by constraint (35h), while constraint (35i) requires that the
order quantity of the selected suppliers does not exceed their maximum supply capacity.
The purpose of constraint (35j) is to ensure that the selected suppliers’ order quantity
satisfies the minimum demand requirement of each production center. To have a more
reliable procurement process, it is common to select multiple suppliers for a production
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center. Therefore, constraint (35k) sets a minimum number of suppliers that must be
selected. Constraint (35l) shows the type of variables.

The procedure for using the methodology is presented in Figure 2.
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4. Results and Discussion

In this section, firstly the proposed methodology is applied to deal with a sustainable
SSOA problem. Then the results are discussed through a sensitivity analysis.

4.1. The Application of the Methodology in Sustainable SSOA

The proposed methodology was used to deal with an example of the SSOA problem
in a company. The company operates in the food industry with more than 200 employees
in Golestan, Iran. It has two production centers (PC1 and PC2) and needs to purchase
raw materials from some potential suppliers. The company’s management team is highly
qualified and has extensive experience in the industry. They must decide which suppliers
to purchase from and determine the quantity of raw materials to order. The company
has implemented various measures to reduce waste, use renewable energy sources, and
optimize its logistics operations. It has a strong commitment to sustainability and is
actively involved in various initiatives to reduce its carbon footprint. The following is
the description of using different steps of the proposed MCDM approach and using the
mathematical model in selecting suppliers and allocating orders to them.

Step 1. In this step, a group of experts was formed. This group consists of two
experts from the procurement department (D1 and D2), two experts from the operations
department (D3 and D4), two experts from the finance department (D5 and D6), one expert
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from the marketing department (D7), and one expert from the research and development
(R&D) department (D8). The experts have a good knowledge of fuzzy sets, decision-making
techniques and supply chain management practices and principles. Table 4 presents some
details about the experts.

Table 4. Information about experts.

Expert Department Job Title Years of Experience Gender Academic Degree

D1 Procurement department Purchasing Director 8 Male PhD in Management
D2 Procurement department Sourcing Specialist 6 Female MA in Business Management
D3 Operations department Operations Manager 7 Male PhD in Operations Research
D4 Operations department Supply Chain Analyst 2 Female BA in Industrial Engineering
D5 Finance department Finance manager 8 Female MA in Accounting & Finance
D6 Finance department Risk analyst 4 Male BA in Accounting & Finance
D7 Marketing department Chief marketing officer 7 Male MA in Marketing
D8 R&D department Project manager 10 Male PhD in Industrial Engineering

By bringing together decision-makers from these different departments, the company
can ensure that all relevant factors are considered and that the selected suppliers meet
the company’s requirements and standards. Each department brings its unique exper-
tise and perspective to the decision-making process, resulting in a well-informed and
comprehensive decision.

Step 2. The potential suppliers and evaluation criteria should be identified in this
step. The decision-making group has identified eight potential suppliers (Sup1 to Sup8)
which can be seen in Figure 3. These alternatives need to be evaluated with respect to
sustainability criteria. According to the literature, the decision-making group agreed on
fifteen criteria within three dimensions of sustainability [92–95]. The criteria and their
descriptions are presented in Table 5.
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Table 5. The evaluation criteria and their descriptions.

Dimension Criteria Description

Environmental
sustainability Climate change mitigation (C11)

This involves reducing greenhouse gas emissions and
implementing measures to mitigate the effects of climate

change, such as investing in renewable energy, improving
energy efficiency, and adopting low-carbon

transportation options.

Resource conservation (C12)

This involves reducing the consumption of non-renewable
resources and conserving natural resources such as water, land,

and forests. Companies can achieve this by implementing
sustainable sourcing practices, using recycled materials, and

minimizing waste.

Pollution prevention (C13)

This involves minimizing or eliminating the release of harmful
substances into the environment, such as toxic chemicals or air

pollutants. Companies can achieve this by implementing
pollution prevention measures, such as using clean production

processes, reducing emissions, and properly disposing of
hazardous waste.

Biodiversity conservation (C14)

This involves protecting and conserving biodiversity and
ecosystem services, such as pollination, soil fertility, and water
quality. Companies can achieve this by using sustainable land

management practices, protecting endangered species and
habitats, and reducing deforestation.

Adoption of circular economy
principles (C15)

This involves moving away from the traditional linear model of
“take-make-dispose” and instead adopting a circular economy
model where waste is minimized and resources are kept in use
for as long as possible. This can be achieved by implementing
recycling programs, designing products for reuse, and finding

ways to extend the lifespan of products.

Social
sustainability Labor standards (C21)

This involves ensuring fair wages, safe working conditions, and
other labor standards throughout the supply chain. Companies

can achieve this by implementing codes of conduct for
suppliers, auditing their supply chains for compliance, and

providing training and support to suppliers to help them meet
these standards.

Human rights (C22)

This involves respecting and promoting human rights,
including freedom from discrimination, the right to privacy,

and the right to freedom of association. Companies can achieve
this by implementing human rights policies, engaging with

stakeholders to understand their concerns, and monitoring their
supply chains to identify and address human rights abuses.

Community engagement (C23)

This involves engaging with local communities in a respectful
and transparent manner, and taking their concerns into account
in decision-making processes. Companies can achieve this by
implementing community engagement strategies, conducting

impact assessments to understand the potential impacts of their
operations on local communities, and providing support to
local communities to help build their capacity and improve

their well-being.

Health and safety (C24)

This involves ensuring that the health and safety of workers
and local communities are protected from harm. Companies

can achieve this by implementing health and safety policies and
procedures, providing training and support to workers and
suppliers, and conducting risk assessments to identify and

address potential health and safety hazards.



Mathematics 2023, 11, 2014 21 of 33

Table 5. Cont.

Dimension Criteria Description

Diversity and inclusion (C25)

This involves promoting diversity and inclusion throughout the
supply chain, including ensuring that women and other

underrepresented groups have equal opportunities to
participate in economic activities. Companies can achieve this
by implementing diversity and inclusion policies and programs,
providing training and support to suppliers, and monitoring

their supply chains for compliance.

Economic
sustainability Cost-efficiency (C31)

This involves reducing costs while maintaining or improving
the quality of products and services. Companies can achieve
this by implementing efficiency measures, such as improving

production processes, reducing waste, and optimizing logistics
and transportation.

Innovation (C32)

This involves developing and implementing new products,
services, or business models that create value for the company
and its stakeholders. Companies can achieve this by investing

in research and development, collaborating with other
organizations to share knowledge and expertise, and exploring

new markets or opportunities.

Resilience (C33)

This involves building resilience into the supply chain to ensure
that it can withstand disruptions, such as natural disasters,

political instability, or economic downturns. Companies can
achieve this by diversifying their suppliers, implementing risk

management strategies, and maintaining adequate
inventory levels.

Responsible investment (C34)

This involves investing in companies or projects that have a
positive impact on the environment, society, or economy.
Companies can achieve this by implementing responsible
investment policies, conducting due diligence on potential

investments, and engaging with stakeholders to understand
their concerns.

Long-term perspective (C35)

This involves taking a long-term perspective when making
business decisions, and considering the potential impacts of

those decisions on future generations. Companies can achieve
this by implementing sustainability strategies that consider the
environmental, social, and economic impacts of their operations

over the long term.

Steps 3 to 5. In these steps, the experts expressed their evaluations on each criterion
based on a scale ranging from 0 to 100, then they were asked to evaluate each supplier with
respect to the criteria using linguistic variables. The data from these steps are presented
in Tables 6 and 7. It should be noted that the experts’ evaluations of the suppliers are
partially provided in Table 7 due to limitations in space. The detailed data can be found
in Reference [96], named Evaluation Data. According to the evaluations of the experts on
each criterion, the subjective criteria weights can be determined using the SMART method
and Equation (24). The subjective weights are shown in the last column of Table 6.
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Table 6. The evaluations of the experts on each criterion.

D1 D2 D3 D4 D5 D6 D7 D8 Sum ws
j

C11 40 35 45 50 30 30 40 40 310 0.0665
C12 40 45 50 40 35 40 30 30 310 0.0665
C13 30 40 40 40 45 45 50 30 320 0.0687
C14 20 25 25 20 10 20 30 20 170 0.0365
C15 30 20 30 35 40 20 30 20 225 0.0483
C21 40 50 60 30 30 40 45 50 345 0.0740
C22 25 20 20 30 35 25 20 25 200 0.0429
C23 30 30 40 40 30 40 30 30 270 0.0579
C24 30 40 40 45 35 40 20 25 275 0.0590
C25 15 10 10 15 20 10 10 20 110 0.0236
C31 60 70 60 80 80 70 75 70 565 0.1212
C32 40 50 50 40 30 40 45 50 345 0.0740
C33 40 30 50 45 35 50 45 45 340 0.0730
C34 50 60 60 50 70 60 70 60 480 0.1030
C35 45 50 55 60 45 40 60 40 395 0.0848

Table 7. Experts’ evaluation of suppliers on each criterion.

C11 C12 C13 C14 C15 C21 C22 C23 C24 C25 C31 C32 C33 C34 C35

D1 Sup1 VG G P MG P G MP MG VG F G G VG MG VG
Sup2 MP MG F MP P MG P MP P MG G MG MP P VP
Sup3 MP P MP P VP MG F VP MP P F F MP F F
Sup4 P MG P F MG VP MP MP P F P MP MP F VP
Sup5 MG P MP F MP MG MG F P MP MG P MG F F
Sup6 G MP F MP F G G P G MG MG VG VG MG G
Sup7 VP P P MG MP MP MP F VP MP VP F P F VP
Sup8 MG P F MP F P MP VP MP P MG MG MP P P

D2 Sup1 MG G P MG MP VG MP MG MG F G G MG F MG
Sup2 MP G MP P VP G MP P P F F MP P VP VP
Sup3 P P MG F P F MP MP P P MG F VP MP F
Sup4 VP G MP MP MP VP P F P F VP P F F P
Sup5 F P F P MP MP MG MG F MP MG F F MG MP
Sup6 G F MG F MG G MG MP G F VG VG G MG G
Sup7 VP P P MP MP MP P MP VP MP VP F MP MP MP
Sup8 G MP MP VP MP P MP P MP P MP F VP MP P

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

D8 Sup1 MG G P MG MP VG MP MG MG F G G MG F MG
Sup2 MP G MP P VP G MP P P F F MP P VP VP
Sup3 P P MG F P F MP MP P P MG F VP MP F
Sup4 VP G MP MP MP VP P F P F VP P F F P
Sup5 F P F P MP MP MG MG F MP MG F F MG MP
Sup6 G F MG F MG G MG MP G F VG VG G MG G
Sup7 VP P P MP MP MP P MP VP MP VP F MP MP MP
Sup8 G MP MP VP MP P MP P MP P MP F VP MP P

Step 6. The interval type-2 fuzzy decision-matrix can be calculated based on Table 7
and Equation (25). According to the number of suppliers and criteria in this case, the matrix
has 120 (8 × 15) elements which are defined as trapezoidal IT2FSs. Due to limitations in
space, it is not possible to present all of the elements of the decision-matrix in this paper.
The decision-matrix is partially provided in Table 8, and the detailed matrix can be found
in Reference [96], named Decision Matrix.
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Table 8. Interval type-2 fuzzy decision-matrix.

aU bU cU dU θU aL bL cL dL θL˜̃x1,11 6.25 7.94 8.31 9.38 1 7.13 7.94 8.31 8.69 0.9˜̃x1,12 5.75 7.5 8 9.25 1 6.75 7.5 8 8.5 0.9˜̃x1,13 1.25 2.75 3.25 4.75 1 2 2.75 3.25 3.75 0.9˜̃x1,14 3.75 5.75 6.25 7.75 1 4.75 5.75 6.25 6.75 0.9˜̃x1,15 0.38 1.5 1.88 3.25 1 0.94 1.5 1.88 2.38 0.9

...
...

...
...

...
...

...
...

...
...

...˜̃x8,31 2.5 4.5 5 6.5 1 3.5 4.5 5 5.5 0.9˜̃x8,32 4.75 6.63 7.13 8.5 1 5.75 6.63 7.13 7.63 0.9˜̃x8,33 0.25 1.13 1.44 2.75 1 0.69 1.13 1.44 1.94 0.9˜̃x8,34 1.5 3.25 3.75 5.25 1 2.38 3.25 3.75 4.25 0.9˜̃x8,35 0 0.38 0.56 1.75 1 0.19 0.38 0.56 1.06 0.9

Steps 7 and 8. According to the decision-matrix obtained in the previous step, the
defuzzified decision matrix was calculated. Then the MEREC method was used and the
objective weights of the criteria were determined. The defuzzified decision matrix and the
objective criteria weights are represented in Table 9. Based on the objective weights of the
criteria and the subjective weights obtained in the previous steps, the combined weights
can be calculated. The last column of Table 9 shows the combined weights of the criteria. It
should be noted that ω = 0.5 was considered for the combination parameter.

Table 9. The defuzzified decision-matrix and the objective criteria weights.

Sup1 Sup2 Sup3 Sup4 Sup5 Sup6 Sup7 Sup8 wo
j wc

j

C11 8.04 3.92 1.70 0.85 5.67 9.00 1.27 6.86 0.0811 0.0738
C12 7.69 7.94 2.48 7.05 2.48 4.67 2.01 2.71 0.0418 0.0542
C13 2.98 3.45 5.92 1.79 2.96 6.55 1.32 5.42 0.0556 0.0621
C14 5.92 1.09 3.45 3.21 2.49 3.70 5.42 1.79 0.0608 0.0486
C15 1.70 0.85 1.32 4.42 1.41 5.42 1.70 3.21 0.0544 0.0514
C21 9.29 7.44 5.17 1.18 4.92 8.76 4.92 1.09 0.0795 0.0768
C22 4.67 2.71 3.21 0.80 7.11 6.61 3.20 4.67 0.0883 0.0656
C23 7.69 1.70 0.94 2.96 7.49 2.32 4.67 1.56 0.0660 0.0620
C24 8.23 0.85 1.56 2.48 3.45 9.15 1.18 1.56 0.0596 0.0593
C25 4.17 4.67 1.78 6.99 4.17 5.42 3.68 2.74 0.0482 0.0359
C31 9.29 6.30 4.92 1.47 5.92 8.95 1.56 4.67 0.0645 0.0929
C32 7.69 6.17 4.67 2.23 3.20 9.44 4.92 6.80 0.0496 0.0618
C33 8.57 3.45 0.94 3.70 5.67 9.29 2.71 1.32 0.0748 0.0739
C34 6.61 0.94 3.68 5.17 7.44 7.11 4.17 3.45 0.0894 0.0962
C35 8.95 1.03 6.99 1.00 3.70 8.85 1.41 0.56 0.0862 0.0855

Steps 9 to 11. Based on the decision-matrix obtained in Step 6, and Equation (28),
the normalized decision-matrix can be computed. Because of limitations in space, this
matrix is not presented with details. The partial version of the normalized matrix is pre-
sented in Table 10, the detailed version can be found in Reference [96], named Normalized
Decision Matrix.

Steps 10 and 11. According to the normalized decision-matrix and Equations (29)

to (33), the values of WSM ( ˜̃QS
i ), WPM ( ˜̃Qp

i ) and composite WASPAS measure ( ˜̃Qi) were
computed. The computations were carried out with γ = 0.5. These values are shown in
Table 11.
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Table 10. The normalized decision matrix.

aU bU cU dU θU aL bL cL dL θL˜̃xn
1,11 0.69 0.88 0.92 1.04 1 0.79 0.88 0.92 0.97 0.9˜̃xn
1,12 0.72 0.94 1.01 1.17 1 0.85 0.94 1.01 1.07 0.9˜̃xn
1,13 0.19 0.42 0.5 0.73 1 0.31 0.42 0.5 0.57 0.9˜̃xn
1,14 0.63 0.97 1.06 1.31 1 0.8 0.97 1.06 1.14 0.9˜̃xn
1,15 0.07 0.28 0.35 0.6 1 0.17 0.28 0.35 0.44 0.9

...
...

...
...

...
...

...
...

...
...

...˜̃xn
8,31 0.27 0.48 0.54 0.7 1 0.38 0.48 0.54 0.59 0.9˜̃xn
8,32 0.5 0.7 0.76 0.9 1 0.61 0.7 0.76 0.81 0.9˜̃xn
8,33 0.03 0.12 0.15 0.3 1 0.07 0.12 0.15 0.21 0.9˜̃xn
8,34 0.2 0.44 0.5 0.71 1 0.32 0.44 0.5 0.57 0.9˜̃xn
8,35 0 0.04 0.06 0.2 1 0.02 0.04 0.06 0.12 0.9

Table 11. Different measures of the WASPAS method.

aU bU cU dU θU aL bL cL dL θL˜̃QS
1

0.63 0.83 0.89 1.03 1 0.74 0.83 0.89 0.94 0.9˜̃QS
2

0.22 0.39 0.45 0.62 1 0.31 0.39 0.45 0.51 0.9˜̃QS
3

0.21 0.4 0.46 0.64 1 0.31 0.4 0.46 0.52 0.9˜̃QS
4

0.17 0.34 0.4 0.57 1 0.26 0.34 0.4 0.46 0.9˜̃QS
5

0.35 0.57 0.63 0.81 1 0.46 0.57 0.63 0.69 0.9˜̃QS
6

0.67 0.87 0.93 1.06 1 0.78 0.87 0.93 0.98 0.9˜̃QS
7

0.16 0.35 0.4 0.58 1 0.25 0.35 0.4 0.46 0.9˜̃QS
8

0.21 0.39 0.44 0.62 1 0.3 0.39 0.44 0.5 0.9

˜̃QP
1

1.61 1.82 1.87 2.02 1 1.72 1.82 1.87 1.93 0.9˜̃QP
2

1.21 1.37 1.42 1.59 1 1.29 1.37 1.42 1.48 0.9˜̃QP
3

1.2 1.39 1.44 1.62 1 1.29 1.39 1.44 1.5 0.9˜̃QP
4

1.16 1.32 1.37 1.54 1 1.24 1.32 1.37 1.43 0.9˜̃QP
5

1.33 1.55 1.61 1.8 1 1.44 1.55 1.61 1.68 0.9˜̃QP
6

1.65 1.86 1.91 2.06 1 1.76 1.86 1.91 1.97 0.9˜̃QP
7

1.15 1.33 1.38 1.56 1 1.24 1.33 1.38 1.44 0.9˜̃QP
8

1.19 1.37 1.42 1.59 1 1.28 1.37 1.42 1.48 0.9

˜̃Q1 0.78 0.95 1 1.12 1 0.87 0.95 1 1.04 0.9˜̃Q2 0.45 0.59 0.63 0.77 1 0.52 0.59 0.63 0.68 0.9˜̃Q3 0.44 0.6 0.64 0.79 1 0.52 0.6 0.64 0.69 0.9˜̃Q4 0.4 0.54 0.59 0.73 1 0.48 0.54 0.59 0.64 0.9˜̃Q5 0.55 0.73 0.78 0.93 1 0.64 0.73 0.78 0.84 0.9˜̃Q6 0.81 0.99 1.03 1.15 1 0.91 0.99 1.03 1.07 0.9˜̃Q7 0.4 0.55 0.59 0.74 1 0.47 0.55 0.59 0.64 0.9˜̃Q8 0.43 0.58 0.62 0.77 1 0.51 0.58 0.62 0.68 0.9

Step 12. Using the ROG-based method proposed for the comparative ranking of
IT2FSs, the ranking values (Si) or relative scores for suppliers were determined in this step.
These values in addition to the other parameters related to the considered company are
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presented in Table 12. Based on these parameters and Model (35) the SSOA problem was
solved, and the quantity of the order from each supplier was obtained. The outcomes of
solving the SSOA problem are shown in Table 13. It should be noted that the solver of
LINGO 18 Software (Commercial Version) was used to handle the optimization problem.

Table 12. The parameters of the SSOA model.

Supplier Si
Omin

i
(Tons)

CPi
(Tons)

co
i1

(×105 IRR)
co

i2
(×105 IRR)

di1
(Km)

di2
(Km)

Sup1 0.1696 5000 40,000 200 260 45 150
Sup2 0.1155 7000 25,000 260 270 30 120
Sup3 0.1230 4500 26,000 250 260 35 110
Sup4 0.0717 5500 26,000 260 280 20 80
Sup5 0.1518 4000 20,000 280 260 40 60
Sup6 0.1875 5800 35,000 290 200 80 20
Sup7 0.0711 3900 15,000 280 230 100 25
Sup8 0.1097 4200 25,000 270 240 130 35

DEM1 = 50,000 DEM2 = 40,000 Kmin = 2

Table 13. The results of solving the SSOA problem.

Supplier xo
ij yi Objective Functions

PC1 PC2

Sup1 34,079.12 0 1 Zmin
1 = 0.1865 × 108

Z1 = 0.1927956 × 108
Sup2 9705.485 0 1 Zmax

1 = 0.2541 × 108

Sup3 0 0 0 Zmin
2 = 2,065,000 Z2 = 2,948,341

Sup4 0 0 0 Zmax
2 = 0.1155 × 108

Sup5 6215.396 0 1 Zmin
3 = 8445.527 Z3 = 14,956.37

Sup6 0 35,000 1 Zmax
3 = 15,625

Sup7 0 0 0
λ = 0.9069Sup8 0 5000 1

The information presented in Table 13 suggests that for meeting the demand of Produc-
tion Center 1, Suppliers 1, 2, and 5 are identified as suitable suppliers, while for Production
Center 2, Suppliers 6 and 8 are considered as the optimal options. It is important to note
that the selection of suppliers for each production center was not solely based on their
relative scores or performance ratings. The proposed methodology also considered the
order quantities that each supplier could provide to ensure that the total demand of each
production center could be met.

4.2. Sensitivity Analysis

Performing a sensitivity analysis on the weights of criteria used for supplier selection
and order allocation can provide valuable insights into the decision-making process and
help companies to make more informed choices. It is essential to conduct such an analysis
because the weights assigned to each criterion can significantly impact the relative scores
of the suppliers. Since one of the objective functions of the mathematical model is related
to the relative scores the changes in the weights can affect the quantity of orders allocated
to suppliers. By conducting a sensitivity analysis, companies can test different weight
combinations and observe the effect of each change on the final scores of suppliers and
order allocation. This analysis can help companies understand the trade-offs between
different criteria and make a more balanced decision. Additionally, performing a sensitivity
analysis can help companies identify which criteria have the most significant impact on
supplier selection and order allocation decisions. To make this analysis, a pattern of
changing weights has been used in this study. The pattern of changing weights involves
defining m sets, where m is the total number of criteria being considered. In each set, one
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criterion is assigned the highest weight, while another is assigned the lowest weight. The
remaining criteria are assigned weights that lie between these two extremes. These weights
are presented in Table 14 and graphically shown in Figure 4.

Table 14. The weights used for the sensitivity analysis.

C11 C12 C13 C14 C15 C21 C22 C23 C24 C25 C31 C32 C33 C34 C35

Set 1 0.008 0.017 0.025 0.033 0.042 0.050 0.058 0.067 0.075 0.083 0.092 0.100 0.108 0.117 0.125
Set 2 0.017 0.025 0.033 0.042 0.050 0.058 0.067 0.075 0.083 0.092 0.100 0.108 0.117 0.125 0.008
Set 3 0.025 0.033 0.042 0.050 0.058 0.067 0.075 0.083 0.092 0.100 0.108 0.117 0.125 0.008 0.017
Set 4 0.033 0.042 0.050 0.058 0.067 0.075 0.083 0.092 0.100 0.108 0.117 0.125 0.008 0.017 0.025
Set 5 0.042 0.050 0.058 0.067 0.075 0.083 0.092 0.100 0.108 0.117 0.125 0.008 0.017 0.025 0.033
Set 6 0.050 0.058 0.067 0.075 0.083 0.092 0.100 0.108 0.117 0.125 0.008 0.017 0.025 0.033 0.042
Set 7 0.058 0.067 0.075 0.083 0.092 0.100 0.108 0.117 0.125 0.008 0.017 0.025 0.033 0.042 0.050
Set 8 0.067 0.075 0.083 0.092 0.100 0.108 0.117 0.125 0.008 0.017 0.025 0.033 0.042 0.050 0.058
Set 9 0.075 0.083 0.092 0.100 0.108 0.117 0.125 0.008 0.017 0.025 0.033 0.042 0.050 0.058 0.067

Set 10 0.083 0.092 0.100 0.108 0.117 0.125 0.008 0.017 0.025 0.033 0.042 0.050 0.058 0.067 0.075
Set 11 0.092 0.100 0.108 0.117 0.125 0.008 0.017 0.025 0.033 0.042 0.050 0.058 0.067 0.075 0.083
Set 12 0.100 0.108 0.117 0.125 0.008 0.017 0.025 0.033 0.042 0.050 0.058 0.067 0.075 0.083 0.092
Set 13 0.108 0.117 0.125 0.008 0.017 0.025 0.033 0.042 0.050 0.058 0.067 0.075 0.083 0.092 0.100
Set 14 0.117 0.125 0.008 0.017 0.025 0.033 0.042 0.050 0.058 0.067 0.075 0.083 0.092 0.100 0.108
Set 15 0.125 0.008 0.017 0.025 0.033 0.042 0.050 0.058 0.067 0.075 0.083 0.092 0.100 0.108 0.117

Mathematics 2023, 11, x FOR PEER REVIEW 26 of 33 
 

 

one criterion is assigned the highest weight, while another is assigned the lowest weight. 
The remaining criteria are assigned weights that lie between these two extremes. These 
weights are presented in Table 14 and graphically shown in Figure 4. 

Table 14. The weights used for the sensitivity analysis. 

 𝑪𝟏𝟏 𝑪𝟏𝟐 𝑪𝟏𝟑 𝑪𝟏𝟒 𝑪𝟏𝟓 𝑪𝟐𝟏 𝑪𝟐𝟐 𝑪𝟐𝟑 𝑪𝟐𝟒 𝑪𝟐𝟓 𝑪𝟑𝟏 𝑪𝟑𝟐 𝑪𝟑𝟑 𝑪𝟑𝟒 𝑪𝟑𝟓 
Set 1 0.008 0.017 0.025 0.033 0.042 0.050 0.058 0.067 0.075 0.083 0.092 0.100 0.108 0.117 0.125 
Set 2 0.017 0.025 0.033 0.042 0.050 0.058 0.067 0.075 0.083 0.092 0.100 0.108 0.117 0.125 0.008 
Set 3 0.025 0.033 0.042 0.050 0.058 0.067 0.075 0.083 0.092 0.100 0.108 0.117 0.125 0.008 0.017 
Set 4 0.033 0.042 0.050 0.058 0.067 0.075 0.083 0.092 0.100 0.108 0.117 0.125 0.008 0.017 0.025 
Set 5 0.042 0.050 0.058 0.067 0.075 0.083 0.092 0.100 0.108 0.117 0.125 0.008 0.017 0.025 0.033 
Set 6 0.050 0.058 0.067 0.075 0.083 0.092 0.100 0.108 0.117 0.125 0.008 0.017 0.025 0.033 0.042 
Set 7 0.058 0.067 0.075 0.083 0.092 0.100 0.108 0.117 0.125 0.008 0.017 0.025 0.033 0.042 0.050 
Set 8 0.067 0.075 0.083 0.092 0.100 0.108 0.117 0.125 0.008 0.017 0.025 0.033 0.042 0.050 0.058 
Set 9 0.075 0.083 0.092 0.100 0.108 0.117 0.125 0.008 0.017 0.025 0.033 0.042 0.050 0.058 0.067 
Set 10 0.083 0.092 0.100 0.108 0.117 0.125 0.008 0.017 0.025 0.033 0.042 0.050 0.058 0.067 0.075 
Set 11 0.092 0.100 0.108 0.117 0.125 0.008 0.017 0.025 0.033 0.042 0.050 0.058 0.067 0.075 0.083 
Set 12 0.100 0.108 0.117 0.125 0.008 0.017 0.025 0.033 0.042 0.050 0.058 0.067 0.075 0.083 0.092 
Set 13 0.108 0.117 0.125 0.008 0.017 0.025 0.033 0.042 0.050 0.058 0.067 0.075 0.083 0.092 0.100 
Set 14 0.117 0.125 0.008 0.017 0.025 0.033 0.042 0.050 0.058 0.067 0.075 0.083 0.092 0.100 0.108 
Set 15 0.125 0.008 0.017 0.025 0.033 0.042 0.050 0.058 0.067 0.075 0.083 0.092 0.100 0.108 0.117 

 
Figure 4. The pattern of changing criteria weights. 

The weights provided in Table 14 were used instead of 𝑤  in Equation (27) to see the 
changes in the relative scores of the suppliers. The variations in the relative scores of each 
supplier can be seen in Figure 5. Based on the data presented in Figure 5, it appears that 
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The weights provided in Table 14 were used instead of wc
j in Equation (27) to see

the changes in the relative scores of the suppliers. The variations in the relative scores of
each supplier can be seen in Figure 5. Based on the data presented in Figure 5, it appears
that the relative score of Supplier 5 remains consistently stable across all sets, suggesting
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a high degree of reliability in terms of meeting the defined criteria. Suppliers 1 and 6
also demonstrate a relatively stable score, albeit with some minor variations. Conversely,
the scores of the remaining suppliers appear to vary considerably with changes in the
criteria weights across the different sets. It is worth noting that a stable relative score can be
interpreted as a higher degree of consistency in meeting the defined criteria, and therefore,
may be indicative of a more reliable supplier. This pattern of changing weights allows
companies to test the impact of assigning different levels of importance to each criterion
and observe the resulting effect on supplier selection and order allocation.
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The results presented in Figure 6 reveal the effects of changing the criteria weights on
the resulting order quantities for two production centers. Specifically, the order quantity
for Production Center 1 varies for Suppliers 1, 2, 4, and 5, while Supplier 1 consistently
receives the highest order quantity allocation. For Production Center 2, the order quantity
varies for Suppliers 5, 7, and 8, but a fixed quantity of orders is allocated to Supplier 6.
These findings have important implications for supplier selection and order allocation
decisions. Firstly, they highlight the importance of considering the relative scores of the
suppliers when allocating orders, as Supplier 1 consistently receives the highest order
quantity allocation for Production Center 1, indicating that it is the most reliable supplier
for this production center. Similarly, Supplier 6 receives a fixed quantity of orders for
Production Center 2, suggesting that it is the most reliable supplier for this production
center. Furthermore, the analysis underscores the need to consider the effects of the criteria
weights on the relative scores of the suppliers. The relative scores of Suppliers 1, 5, and
6 remain relatively stable across the different sets of criteria weights, indicating that they
are more robust and reliable suppliers. In contrast, the relative scores of Suppliers 2, 3, 4,
7, and 8 vary significantly across the different sets of criteria weights, highlighting their
sensitivity to changes in the criteria weights. Therefore, the results of the sensitivity analysis
suggest that suppliers with more stable relative scores are generally more reliable, as they
are less affected by changes in the criteria weights. Overall, the findings demonstrate
the importance of conducting sensitivity analysis on the effects of criteria weights on
supplier selection and order allocation decisions. This can help decision-makers identify
the most reliable suppliers and allocate orders in a way that maximizes efficiency and
sustainability criteria.
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4.3. Comparative Analysis

The subsection in your paper presents a comprehensive comparison between the
results of the proposed method and those of six other well-established methods, namely
Simple Additive Weighting (SAW), Complex Proportional Assessment (COPRAS), TOPSIS,
VIKOR (stands for “VIekriterijumsko KOmpromisno Rangiranje”), Evaluation Based on
Distance from Average Solution (EDAS), and MULTIMOORA. This comparison aims to
validate the accuracy and efficiency of the proposed method while identifying its strengths
and weaknesses relative to other methods. To measure the strength of the relationship
between the results, the study uses Spearman’s rank correlation coefficient (ρ), which is
a robust measure of the correlation between the rankings obtained from the proposed
method and the rankings from the other methods. Table 15 presents the ranking results of
different methods and the correlation coefficient.

Table 15. The results of the comparison.

Supplier SAW COPRAS TOPSIS VIKOR EDAS MULTIMOORA Proposed Approach

Sup1 2 2 2 1 2 2 2
Sup2 5 5 5 6 5 5 5
Sup3 4 4 4 4 4 4 4
Sup4 7 7 7 8 8 7 7
Sup5 3 3 3 3 3 3 3
Sup6 1 1 1 2 1 1 1
Sup7 8 8 8 7 7 8 8
Sup8 6 6 6 5 6 6 6

ρ 1 1 1 0.929 0976 1 —

The results show that Supplier 6 has the first rank in the results of all methods except
VIKOR, where it ranks second. Meanwhile, Supplier 1 has the second rank in the results of
all methods except VIKOR, where it ranks first. Additionally, Supplier 5 ranks third in all of
the six methods. Based on the interpretation of correlation values presented by Walters [97],
the values of Spearman’s rank correlation coefficient demonstrate a very strong relationship
between the results of the proposed method and those of the other methods. This confirms
the validity of the results obtained from the proposed method and suggests that it is a
reliable and effective tool for supplier selection.
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5. Conclusions

The SSOA problem is a critical aspect of supply chain management. Efficient supplier
selection and order allocation can significantly impact the overall sustainability of the
supply chain. The SSOA problem becomes more complex when considering sustainability
criteria, as these criteria are often uncertain and subjective. Therefore, the development of
effective methodologies for sustainable SSOA is crucial for achieving sustainability goals in
the supply chain. The proposed methodology in this study integrates multiple techniques
to address the sustainable SSOA problem. The methodology utilizes a new ranking method
based on the concept of Radius of Gyration for interval type-2 fuzzy sets, which can handle
the uncertainty in supplier evaluation. To determine the weights of evaluation criteria,
both subjective weights obtained using the SMART and expert preferences, and objective
weights calculated using the MEREC method are combined. The proposed methodology
also incorporates sustainability criteria and uses the WASPAS method to evaluate supplier
performance as type-2 fuzzy sets. The ROG-based ranking method is then employed to
calculate the relative scores of suppliers, and an MODM linear mathematical model is
presented to identify suitable suppliers and allocate their order quantities. The proposed
methodology was applied to a sustainable SSOA problem in Golestan, Iran. The results
demonstrated that the proposed approach was effective in selecting suitable suppliers
and allocating their order quantities based on sustainability criteria. The application of
the proposed methodology resulted in the selection of five suitable suppliers and the
allocation of orders among them. The sensitivity analysis also showed that the proposed
methodology was robust and could handle changes in the weight of evaluation criteria.
Future research can be conducted in various directions to further enhance the proposed
methodology. To further improve the understanding of the advantages of a ROG-based
approach, a comprehensive comparison with other ranking approaches could be conducted
in future research. Other types of fuzzy sets and membership functions, such as symmetric
IT2FSs, Fermatean fuzzy sets and Pythagorean fuzzy sets, can be explored to evaluate
supplier performance. Additionally, other weighting methods, such as SWARA (Stepwise
Weight Assessment Ratio Analysis) and SECA (Simultaneous Evaluation of Criteria and
Alternatives), can be used to determine the weights of evaluation criteria. Furthermore,
other MCDM methods, such as CoCoSo (Combined Compromise Solution) and MARCOS
(Measurement of Alternatives and Ranking according to COmpromise Solution), can be
investigated to compare their performance with the proposed approach. The proposed
method can also be extended to a dynamic decision-making approach. This could involve
setting up rules or algorithms to adjust the decision based on predefined criteria or using
machine learning techniques to learn from past decisions and adjust the decision-making
process accordingly. Overall, the proposed methodology provides a solid foundation
for future research and can be further enhanced to tackle more complex sustainability
challenges in the supply chain.
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