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Abstract: In the current study, the concatenation model of birefringent fibers is explored for the
first time, and we present optical soliton solutions to the model. The integration algorithm used to
achieve this retrieval is the method of undetermined coefficients, which yields a wide range of soliton
solutions. The parameter constraints arise naturally during the derivation of the soliton solutions,
which are essential for such solitons to exist.
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1. Introduction

While there exists an abundance of models that govern the propagation of solitons
across transcontinental and transoceanic distances through an optical fiber, an interesting
equation that was proposed about a decade ago in 2014 by Ankiewicz et al. is the con-
catenation model [1,2]. This model is a combination of three well-known equations that
describe the dynamics of soliton transmission across intercontinental distances. They are
the nonlinear Schrödinger Equation (NLSE), the Lakshmanan–Porsezian–Daniel (LPD)
model, and the Sasa–Satsuma Equation (SSE). These three models are concatenated in
sequence, hence the name.

Recently, the concatenation model has gained further importance and has attracted
considerable attention from a wide range of perspectives. The soliton solutions were
derived through the use of undetermined coefficients. The conservation laws were also
enumerated after they were identified by the multiplier approach. The model was also
addressed numerically with the Laplace–Adomian decomposition scheme. The trial equa-
tion approach was also implemented, and Painleve analysis was carried out [3–7]. These
studies were all conducted for the scalar version of the model. It is now time to turn the
page and move on.

The current paper addresses the concatenation model in birefringent fibers, again with
the help of undetermined coefficients. A full spectrum of solitons is thus made available,
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along with the solvability conditions, which are listed as parameter constraints. After
providing a brief introduction to the model in birefringent fibers, in the rest of the paper,
we explain the derivation of these solitons in detail using the integration algorithm. The
results are then presented with full transparency.

Governing Model

The concatenation model for polarization-preserving fibers can be stated as follows:

iut + auxx + b|u|2u + c1

[
σ1uxxxx + σ2(ux)

2u∗ + σ3|ux|2u + σ4|u|2uxx + σ5u2u∗xx + σ6|u|4u
]

+ ic2

[
σ7uxxx + σ8|u|2ux + σ9u2u∗x

]
= 0. (1)

Equation (1) is the concatenation model that is formed by joining three well-studied
models in fiber optics, namely NLSE, the LPD equation, and the SSE. It must be noted that
when c1 = c2 = 0, we have the NLSE; while if c1 = 0, we recover the SSE; and when c2 = 0,
we obtain the LPD model. Thus, Equation (1), as it stands, is the model that is generated by
concatenating the three globally familiar models from nonlinear fiber optics.

For birefringent fibers, Equation (1) is split into two components as:

iqt + a1qxx +
(

b1|q|2 + c1|r|2
)

q

+ c11

[
σ11qxxxx +

{
α1(qx)

2 + β1(rx)
2
}

q∗ +
(

γ1|qx|2 + λ1|rx|2
)

q +
(

δ1|q|2 + ζ1|r|2
)

qxx

+
(

µ1q2 + ρ1r2
)

q∗xx +
(

f1|q|4 + g1|q|2|r|2 + h1|r|4
)

q
]

+ ic21

[
σ71qxxx +

(
η1|q|2 + θ1|r|2

)
qx +

(
ε1q2 + τ1r2

)
q∗x
]
= 0, (2)

and

irt + a2rxx +
(

b2|r|2 + c2|q|2
)

r

+ c12

[
σ12rxxxx +

{
α2(rx)

2 + β2(qx)
2
}

r∗ +
(

γ2|rx|2 + λ2|qx|2
)

r +
(

δ2|r|2 + ζ2|q|2
)

rxx

+
(

µ2r2 + ρ2q2
)

r∗xx +
(

f2|r|4 + g2|r|2|q|2 + h2|q|4
)

r
]

+ ic22

[
σ72rxxx +

(
η2|r|2 + θ2|q|2

)
rx +

(
ε2r2 + τ2q2

)
r∗x
]
= 0. (3)

Equations (2) and (3) represent the concatenation model split into two components
for a birefringent fiber. For j = 1, 2, aj represents the chromatic dispersion along the two
components, while bj accounts for self-phase modulation, and cj represents the cross-phase
modulation. Then, σ1j represents the fourth-order dispersions along the two components.
Next up, αj, β j, γj, λj, δj, ζ j, µj, ρj, f j, gj, and hj are the respective split-ups of the coefficients
σ2 to σ6 from the LPD model, along the two components for a birefringent fiber. σ7j
represents the coefficients of the fourth-order dispersion along the components, while in
Equation (1), this effect is represented by the coefficient of σ7. Finally, ηj, θj, εj, and τj are
the components of soliton self-frequency shift along the two components of a birefringent
fiber, which are designated by σ8 and σ9 in the SSE part.

The concatenation model of (2) and (3) describes the propagation of solitons in bire-
fringent optical fibers. It is composed of three main equations, namely the NLSE, the
LPD model, and the SSE. These three equations are concatenated or combined to form
a more comprehensive model that can describe the behavior of solitons in a wide range
of situations. The NLSE is a fundamental equation in nonlinear optics and describes the
propagation of light in a medium with a nonlinear refractive index. It is used to model
the propagation of solitons in fiber optic communication systems. The LPD model is a
modified version of the NLSE that includes additional terms to account for the effects of
birefringence, which is the property of a medium that causes light to split into two polarized
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components. This model is used to study the behavior of solitons in birefringent fibers.
The SSE is another important equation in soliton theory that describes the propagation of
solitons in dispersive media. It is a generalization of the NLSE and is used to study the
behavior of solitons in media with higher-order dispersion.

By combining these three equations into a single model, the concatenation model
provides a more complete and accurate description of the behavior of solitons in birefringent
optical fibers. It has many applications in fiber optic communication systems, where solitons
are used to transmit information over long distances with minimal distortion.

It must be noted that the preliminary model was introduced about a decade ago [1,2].
It is not yet known what the exact form of an optical fiber would be or where such a form
would be applicable. With a conjecture that it would make sense for erbium-doped fiber,
in the present study, the governing model (1) is split and considered with differential
group delay for the first time. This is proposed as a purely analytical model before any
laboratory testing.

The integration of the coupled system (2) and (3) requires the following hypothesis to
be applied:

q(x, t) = P1(x, t)ei(−κx+ωt+Θ), (4)

and

r(x, t) = P2(x, t)ei(−κx+ωt+Θ). (5)

On the basis of this hypothesis, the waveform is described by the function P(x, t),
which is unique for each type of soliton; Θ is a phase constant; the wave number is
represented by ω; and the soliton frequency is given by κ. Inserting these hypotheses into
(2) and (3) leads to the real part identity

−[ω + κ2al + κ3(c2lσ7l − κc1lσ1l)]Pl + [bl − κc2l(ε l − ηl)− κ2c1l(αl − γl + δl + µl)]P3
l

+c1l fl P5
l + c1l gl P3

l P2
2 + c1lhl Pl P4

l̄ + [cl − κ(κc1l(βl + ξl + ρl − λl) + c2l(τl − θl))]Pl P2
l̄

+c1l(αl + γl)Pl

(
∂Pl
∂x

)2
+ c1l(βl + λl)Pl

(
∂Pl̄
∂x

)2
+ c1l [(δl + µl)P2

l + (ξl + ρl)P2
l̄ ]

∂2Pl
∂x2

+[al + 3κ(c2lσ7l − 2κc1lσ1l)]
∂2Pl
∂x2 + c1lσ1l

∂4Pl
∂x4 = 0, (6)

while the imaginary counterpart reduces to

∂Pl
∂t
− [2κal − (4kc1lσ1l − 3c2lσ7l)κ

2]
∂Pl
∂x

+ [c2l(ε l + ηl)− 2κc1l(αl + δl − µl)]P2
l

∂Pl
∂x

+[c2l(θl + τl)− 2κc1l(ξl − ρl)]P2
l̄

∂Pl
∂x
− 2κβlc1l Pl Pl̄

∂Pl̄
∂x

+ (c2lσ7l − 4κc1lσ1l)
∂Pl
∂x3 = 0, (7)

where l̄ = 3− l and l = 1, 2. Equation (7) shows that the speed can be retrieved as

v = −2κ(al + c2lσ7lκ), (8)

after considering

c2l(ε l + ηl) = 2κc1l(αl + δl − µl), (9)

c2l(θl + τl) = 2κc1l(ξ − ρl), (10)

βl = 0, (11)

c2lσ7l = 4κc1lσ1l . (12)
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Additionally, comparing the two values of the speed yields

a1 = a2 = a, c21 = c22 = c7, σ71 = σ72 = σ7. (13)

Thus, as a direct consequence, the speed is rewritten as

v = −2κ(a + c7σ7κ), (14)

while in view of constraints (9)–(12), the real part of Equation (6) is recast as

−(ω + aκ2 + 3c1lσ1lκ
4)Pl + [bl − κc7(ε l − ηl)− c1lκ

2(αl − γl + δl + µl)]P3
l

+c1l fl P5
l + c1l gl P3

l P2
l̄ + c1lhl Pl P4

l̄ + [cl − κ(κc1l(ξl + ρl − λl) + c7(τl − θl))]Pl P2
l̄

+c1l(αl + γl)Pl

(
∂Pl
∂x

)2
+ c1lλl Pl

(
∂Pl̄
∂x

)2
+ c1l [(δl + µl)P2

l + (ξl + ρl)P2
l̄ ]

∂2Pl
∂x2

+(a + 6c1lσ1lκ
2)

∂2Pl
∂x2 + c1lσ1l

∂4Pl
∂x4 = 0. (15)

It must be noted from (8) that the speeds of the solitons along the two components of
a birefringent fiber appear to be different. This is because the parameters and coefficients
are chosen generally. Then, equating the two components of the soliton velocity yields a
number of parameter constraints and relations given by (13), leading to the recovery of the
single speed at which the soliton travels along the two components, as expressed by (14).

Throughout the next section, we will explore the integrability of the real part Equation (15)
from the point of view of four different types of soliton solutions.

2. Soliton Solutions

Soliton solutions are a type of mathematical solution that describes a self-reinforcing
solitary wave that maintains its shape and velocity over a significant distance. These
solutions arise in various fields, including physics, engineering, and applied mathematics,
where they have important applications in areas such as optical fiber communications,
plasma physics, and water waves. The study of solitons began in the 19th century when
Scottish engineer John Scott Russell observed a solitary wave on a canal in Scotland. It
was not until the 1960s, however, that the theory of solitons began to take shape with the
development of the NLSE, which is a mathematical model that describes the behavior
of solitons. Today, researchers continue to study soliton solutions in various settings,
developing new models and methods for their analysis and application. The study of
solitons remains an active area of research, with many new discoveries and applications
expected in the years to come.

We now proceed to secure optical solitons with the concatenation model with dif-
ferential group delay ((2) and (3)). Four different solitons are explored in the next four
subsections by studying the integrability of the real part Equation (15) according to the
corresponding waveform ( Pl(x, t)).

The principle of undetermined coefficients is fairly simple. With an appropriate
hypothesis of the soliton solutions that can be deciphered from the scalar version of the
model, namely (1), the governing model is simplified after inserting this hypothesis into
the two components. The real and imaginary components are separated. The imaginary
component gives way to the velocity of the soliton, along with a few parameter constraints.
The real part gives a relation from which the coefficients of the linearly independent
functions are set to zero. This yields the relation between the soliton amplitude and width,
along with a few more parameter constraints. Thus, a complete picture of the soliton,
along with its essential parameter relations, is derived. It is applicable to bright, dark, and
singular solitons. A transparent shortcoming of this approach is that it fails to recover
soliton radiation and cannot be applied to derive multiple soliton solutions.
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2.1. Bright Solitons

Bright solitons are a type of soliton solution that describes a self-reinforcing wave that
has a maximum amplitude at its center. They are called “bright” solitons because they can
be easily observed in optical systems, where they appear as bright pulses of light. Bright
soliton solutions are important in many areas of physics, including fiber optics, plasma
physics, and Bose–Einstein condensates. Bright soliton solutions are typically described by
the NLSE, which is a mathematical model that takes into account the nonlinearity of the
wave equation. These solutions are characterized by their ability to maintain their shape
and velocity over long distances, and they are highly stable, making them ideal for use in
telecommunications and other applications. The study of bright soliton solutions is an active
area of research, with many new models and methods for their analysis and application.
Researchers continue to explore the properties of these solutions in various settings, and
new discoveries are expected to emerge in the years to come. Bright soliton solutions are a
fascinating and important area of study in modern physics and applied mathematics.

The first case to be addressed is the bright soliton, this waveform of which typically
has a structure of the form,

Pl(x, t) = Al sechpl ϕ, ϕ = B(x− vt), (16)

where the soliton amplitudes Al (l = 1, 2) have a width of B, which implies that there are
two soliton amplitudes with a specified width. The value of the unknown exponent (pl)
can be determined using the principle of balance. By plugging the expression (16) into
Equation (15), we obtain a simplified form of the equation,

[p2
l (al + 6c1lσ1lκ

2)B2 + p4
l c1lσ1l B2 − (ω + aκ2 + 3c1lσ1lκ

4)]Al sechpl ϕ

+[(bl − κc7(ε l − ηl)− c1lκ
2(αl − γl + δl + µl)) + p2

l c1l(αl + γl + δl + µl)B2]A3
l sech3pl ϕ

+ flc1l A5
l sech5pl ϕ− pp(1 + pl)[(a + 6c1lσ1lκ

2) + 2c1lσ1l(2 + pl(2 + pl))B2]Al B2 sech2+pl ϕ

+pl(1 + pl)(2 + pl)(3 + pl)c1lσ1l Al B4 sech4+pl ϕ− pl [plc1l(αl + γl) + (1 + pl)c1l(δl + µl)]A3
l B2 sech2+3pl ϕ

+{[cl − κ(κc1l(ξl + ρl − λl) + c7(τl − θl))] + p2
l c1l(ξl + ρl)B2 + p2

l̄ λlc1l B2}Al A2
l̄ sechpl+2pl̄ ϕ

+glc1l A3
l A2

l̄ sech3pl+2pl̄ ϕ + hlc1l Al A4
l̄ sechpl+4pl̄ ϕ

−[pl(1 + pl)c1l(ξl + ρl) + p2
l̄ λlc1l ]Al A2

l̄ B2 sech2+pl+2pl̄ ϕ = 0, (17)

where, as previously defined, l̄ = 3− l and l = 1, 2. On the last identity (17), balancing
nonlinearity and second-order dispersion leads to the comparison of the exponents of
sech3pl ϕ and sechpl+2 ϕ , from which,

pl = 1, (18)

for l = 1, 2. The substitution of (18) into (17) allows us to set the coefficients of the functions
sechj ϕ to zero for j = 1, 3, 5. This provides us a wave number that can be expressed
as follows:

ω = a
(

B2 − κ2
)
+ c1lσ1l

(
B4 + 6κ2B2 − 3κ4

)
, (19)

with inverse width described by

B =

[
(Z4 + Z5)A2

l − 2Z7 + (c1lλl + Z6)A2
l̄

40c1lσ1l

±

√
[(Z4 + Z5)A2

l − 2Z7 + (c1lλl + Z6)A2
l̄ ]

2 + 80c1lσ1l(Z2 A2
l + Z3 A2

l̄ )

40c1lσ1l


1
2

, (20)

provided the radicand is non-negative and the identity
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hlc1l A4
l̄ + flc1l A4

l + 24c1lσ1l B4 =
[
(Z4 + 2Z5)B2 − glc1l A2

l̄

]
A2

l + (2Z6 + c1lλl)A2
l̄ B2. (21)

For simplicity, we adopted the following notations:

Z1 = (ω + aκ2 + 3c1lσ1lκ
4), (22)

Z2 = [bl − κc7(ε l − ηl)− c1lκ
2(αl − γl + δl + µl)], (23)

Z3 = [cl − κ(κc1l(ξl + ρl − λl) + c7(τl − θl))], (24)

Z4 = c1l(αl + γl), (25)

Z5 = c1l(δl + µl), (26)

Z6 = c1l(ξl + ρl), (27)

Z7 = (a + 6c1lσ1lκ
2). (28)

Hence, we can derive the optical soliton solution for the concatenated model ((2) and
(3)) as follows:

q(x, t) = A1 sech[B(x− vt)]ei(−κx+ωt+Θ), (29)

and

r(x, t) = A2 sech[B(x− vt)]ei(−κx+ωt+Θ). (30)

Above, we discussed the associated constraints for the wave numbers, speed, inverse
width, and amplitudes. Plots of the bright solitons described by Equations (29) and (30)
with A1 = 1, A2 = 1, κ = 1, a = 1, c7 = 1, σ7 = 1, c1l = 1, σ1l = 1, λl = 1, αl = 1, γl = 1,
δl = 1, µl = 1, ξl = 1, ρl = 1, bl = 1, ε l = 1, ηl = 1, cl = 1, τl = 1, and θl = 1 are illustrated
in Figure 1. Bright solitons are a type of soliton solution that describes a self-reinforcing
wave that has a maximum amplitude at its center.

Figure 1. Profiles of a bright 1-soliton along the two components of a birefringent fiber after neglecting
the radiative effects.

2.2. Dark Solitons

Dark solitons are another type of soliton solution that describes a self-reinforcing
wave with a minimum amplitude at its center. They are called “dark” solitons because
they appear as a localized dip or dark region in the waveform. Dark soliton solutions
arise in many physical systems, including nonlinear optics, Bose–Einstein condensates,
and ocean waves. Unlike bright solitons, dark solitons are typically unstable, meaning
they eventually break up or decay over long distances. However, they are still of great
interest to researchers because of their unique properties and potential applications. For
example, they can be used to manipulate and control light in optical systems, and they can
provide insight into the behavior of complex systems. The study of dark soliton solutions
is an active area of research, with many new models and methods for their analysis and
application. Researchers continue to explore the properties of these solutions in various
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settings, and new discoveries are expected to emerge in the years to come. Dark soliton
solutions are an important area of study in modern physics and applied mathematics, with
potential applications in a wide range of fields.

The second case to be considered is dark solitons, the wave form assumption ( Pl(x, t) )
of which is

Pl(x, t) = Al tanhpl ϕ, ϕ = B(x− vt). (31)

Here, the soliton speed is represented by v, and Al and B are considered free param-
eters. The parameter pl is determined using the principle of balancing. By plugging (31)
into (15), we arrive at the simplified expression:

−{(ω + aκ2 + 3c1lσ1lκ
4) + 2p2

l [(a + 6c1lσ1lκ
2)− c1lσ1l(5 + 3p2

l )B2]B2}Al tanhpl ϕ

+{[bl − κc7(ε l − ηl)− c1lκ
2(αl − γl + δl + µl)]− 2p2

l c1l(αl + γl + δl + µl)B2}A3
l tanh3pl ϕ

+ flc1l A5
l tanh5pl ϕ + pl(1 + pl)[(a + 6c1lσ1lκ

2)− 4c1lσ1l(2 + pl(2 + pl))B2]Al B2 tanh2+pl ϕ

+c1lσ1l pl(1 + pl)(2 + pl)(3 + pl)Al B4 tanh4+pl ϕ

+pl [plc1l(αl + γl) + (1 + pl)c1l(δl + µl)]A3
l B2 tanh2+3pl ϕ

+{[cl − κ(κc1l(ξl + ρl − λl) + c7(τl − θl))]− (p2
l c1l(ξl + ρl) + λl p2

l̄ c1l)B2}Al A2
l̄ tanhpl+2pl̄ ϕ

+hlc1l Al A4
l̄ tanhpl+4pl̄ ϕ + glc1l A3

l A2
l̄ tanh3pl+2pl̄ ϕ

−pl(1− pl)[(a + 6c1lσ1lκ
2)− 4c1lσ1l(2− pl(2− pl))B2]Al B2 tanhpl−2 ϕ

−pl(1− pl)(2− pl)(3− pl)c1lσ1l Al B4 tanhpl−4 ϕ

+pl [plc1l(αl + γl)− (1− pl)c1l(δl + µl)]A3
l B2 tanh3pl−2 ϕ

+[pl(pl − 1)c1l(ξl + ρl) + p2
l̄ λlc1l ]Al A2

l̄ B2 tanhpl+2pl̄−2 ϕ

+[pl(1 + pl)c1l(ξl + ρl) + p2
l̄ λlc1l ]Al A2

l̄ B2 tanhpl+2pl̄+2 ϕ = 0, (32)

where, as in the previous section, l̄ = 3− l and l = 1, 2 . By inspection, the parameter
pl in this case can be verified to result in (18) for both l = 1 and l = 2. Substituting the
obtained value of pl into Equation (32) and setting the coefficients of the functions tanhj ϕ
with j = 1, 3, 5 to zero results in the following expression for the wave number:

ω = −a
(

κ2 + 2B2
)
+ c1l

[
(αl + γl)A2

l + λl A2
l̄

]
B2 + c1lσ1l

(
16B4 − 12κ2B2 − 3κ4

)
, (33)

and the free parameter,

B =

[
Z7 − (Z4 + Z5)A2

l − (Z6 + c1lλl)A2
l̄

40c1lσ1l

±

√
[(Z4 + Z5)A2

l − Z7 + (c1lλl + Z6)A2
l̄ ]

2 + 40c1lσ1l(Z2 A2
l + Z3 A2

l̄ )

40c1lσ1l


1
2

, (34)

along with the solvability condition,

c1l fl A4
l + c1lhl A4

l̄ +
[
(Z4 + 2Z5)B2 + c1l gl A2

l̄

]
A2

l + (2Z6 + c1lλl)A2
l̄ B2 + 24c1lσ1l B4 = 0. (35)

For convenience, we adopted the notations previously given on (22)–(28). It is clear
from (34) that

c1lσ1l 6= 0, (36)

and that [
(Z4 + Z5)A2

l − Z7 + (c1lλl + Z6)A2
l̄

]2
+ 40c1lσ1l

(
Z2 A2

l + Z3 A2
l̄

)
≥ 0, (37)
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along with the fact that the entire radicand on (34) must be positive. Consequently, the
solution for the dark soliton in the considered system can be expressed as follows:

q(x, t) = A1 tanh[B(x− vt)]ei(−κx+ωt+Θ), (38)

and

r(x, t) = A2 tanh[B(x− vt)]ei(−κx+ωt+Θ). (39)

Above, described the relationship between the respective free parameters, along with
the speed (14) and wave number (33), subject to the constraints discussed above. Plots of
the dark solitons described by Equations (38) and (39) with A1 = 1, A2 = 1, κ = 1, a = 1,
c7 = 1, σ7 = 1, c1l = 1, σ1l = 1, λl = 1, αl = 1, γl = 1, δl = 1, µl = 1, ξl = 1, ρl = 1, bl = 1,
ε l = 1, ηl = 1, cl = 1, τl = 1, and θl = 1 are demonstrated in Figure 2. Dark solitons are a
type of soliton solution that describes a self-reinforcing wave with a minimum amplitude
at its center.

Figure 2. Profiles of a dark 1-soliton along the two components of a birefringent fiber after neglecting
the radiative effects.

2.3. Singular Solitons

Singular solitons are a type of soliton solution that exhibits a singularity at the center
of the wave profile. They are also referred to as peakons because they resemble a peaked
function rather than a smooth wave. Singular solitons arise in various fields, including
fluid dynamics, nonlinear optics, and plasma physics. Unlike bright and dark solitons,
which have a finite energy and amplitude, singular solitons have infinite amplitude at
the center of the wave profile. As a result, these solutions are typically highly unstable
and cannot propagate over long distances. However, they are still of great interest to
researchers because of their unique properties and potential applications. The study of
singular soliton solutions is an active area of research, with many new models and methods
for their analysis and application. Researchers continue to explore the properties of these
solutions in various settings, and new discoveries are expected to emerge in the years to
come. Singular soliton solutions are a fascinating and important area of study in modern
physics and applied mathematics, with potential applications in fields such as shock wave
theory and signal processing.

2.3.1. Singular Solitons (Type I)

In this case, we need to make a certain assumption regarding the waveform, which is:

Pl(x, t) = Al cschpl ϕ, ϕ = B(x− vt). (40)

Let us assume that Al and B are independent variables that are considered as free
parameters. By substituting this assumption into (15), we obtain the following result:
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{p2
l (a + 6c1lσ1lκ

2)B2 + p4
l c1lσ1l B4 − (ω + aκ2 + 3c1lσ1lκ

4)}Al cschpl ϕ

+{[bl − κc7(ε l − ηl)− c1lκ
2(αl − γl + δl + µl)] + p2

l c1l(αl + γl + δl + µl)B2}A3
l csch3pl ϕ

+ flc1l A5
l csch5pl ϕ + pl(1 + pl)[(a + 6c1lσ1lκ

2) + 2(2 + pl(2 + pl))c1lσ1l B2]Al B2 csch2+pl ϕ

+pl(1 + pl)(2 + pl)(3 + pl)c1lσ1l Al B4 csch4+pl ϕ

+pl [plc1l(αl + γl) + (1 + pl)c1l(δl + µl)]A3
l B2 csch2+3pl ϕ

+{[cl − κ(κc1l(ξl + ρl − λl) + c7(τl − θl))] + (p2
l̄ λlc1l + p2

l c1l(ξl + ρl))B2}Al A2
l̄ cschpl+2pl̄ ϕ

+glc1l A3
l A2

l̄ csch3pl+2pl̄ ϕ + hlc1l Al A4
l̄ cschpl+4pl̄ ϕ

+[p2
l̄ λlc1l + pl(1 + pl)c1l(ξl + ρl)]Al A2

l̄ B2 csch2+pl+2pl̄ ϕ = 0, (41)

after simplification, where l̄ = 3− l and l = 1, 2. Balancing the cubic nonlinearity
and second-order dispersion in the final equation results in the determination of pl as
presented in Equation (18). We then substitute the obtained value of pl and, following
the same procedure as for dark and bright solitons, gather the coefficients of cschj ϕ for
j = 1, 3, 5, which results in the same wave number as that of the dark soliton solution given
by Equation (19). The free parameter (B) is also determined by

B =

[
−(Z4 + Z5)A2

l − Z7 − (c1lλl + Z6)A2
l̄

40c1lσ1l

± ±

√
[(Z4 + Z5)A2

l + 2Z7 + (c1lλl + Z6)A2
l̄ ]

2 − 80c1lσ1l(Z2 A2
l + Z3 A2

l̄ )

40c1lσ1l


1
2

, (42)

while the identity equation is the same as in the dark soliton case (35). Here, we again
adopted the expressions given in (22)–(28). Clearly, the constraint (36) also applies here,
and (37) slightly changes to[

(Z4 + Z5)A2
l + 2Z7 + (c1lλl + Z6)A2

l̄

]2
− 80c1lσ1l

(
Z2 A2

l + Z3 A2
l̄

)
≥ 0. (43)

As a result, the singular soliton solutions for the system described by Equations (2)
and (3) are introduced as below

q(x, t) = A1 csch[B(x− vt)]ei(−κx+ωt+Θ), (44)

and

r(x, t) = A2 csch[B(x− vt)]ei(−κx+ωt+Θ). (45)

As previously discussed, the relevant parameters and their corresponding constraints
have been outlined above. Plots of the singular solitons described by Equations (44) and
(45) with A1 = 1, A2 = 1, κ = 1, a = 1, c7 = 1, σ7 = 1, c1l = 1, σ1l = 1, λl = 1, αl = 1,
γl = 1, δl = 1, µl = 1, ξl = 1, ρl = 1, bl = 1, ε l = 1, ηl = 1, cl = 1, τl = 1, and θl = 1
are depicted in Figure 3. Singular solitons are a type of soliton solution that exhibits a
singularity at the center of the wave profile.
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Figure 3. Profiles of a singular 1-soliton along the two components of a birefringent fiber with a clear
visibility of the blow-up effects.

2.3.2. Singular Solitons (Type II)

In this case, the assumption for the waveform portion (Pl(x, t)) is

Pl(x, t) = Al cothpl ϕ, ϕ = B(x− vt). (46)

Similarly, the parameters Al and B are considered to be free parameters. Substituting
them into Equation (15) yields the following relation

−{(ω + aκ2 + 3c1lσ1lκ
4) + 2p2

l [(a + 6c1lσ1lκ
2)− (5 + 3p2

l )B2]B2}Al cothpl ϕ

+{[bl − κc7(ε l − ηl)− c1lκ
2(αl − γl + δl + µl)]− 2p2

l c1l(αl + γl + δl + µl)B2}A3
l coth3pl ϕ

+pl(1 + pl)[(a + 6c1lσ1lκ
2)− 4(2 + pl(2 + pl))c1lσ1l B2]Al B2 coth2+pl ϕ

+ flc1l A5
l coth5pl ϕ + pl(1 + pl)(2 + pl)(3 + pl)c1lσ1l Al B4 coth4+pl ϕ

+pl [plc1l(αl + γl) + (1 + pl)c1l(δl + µl)]A3
l B2 coth2+3pl ϕ

−pl(1− pl)[(a + 6c1lσ1lκ
2)− 4(2− pl(2− pl))c1lσ1l B2]Al B2 coth−2+pl ϕ

−pl(1− pl)(2− pl)(3− pl)c1lσ1l Al B4 coth−4+pl ϕ

+pl [plc1l(αl + γl)− (1− pl)c1l(δl + µl)]A3
l B2 coth−2+3pl ϕ

+hlc1l Al A4
l̄ cothpl+4pl̄ ϕ + glc1l A3

l A2
l̄ coth3pl+2pl̄ ϕ

+[p2
l̄ λlc1l + pl(1 + pl)c1l(ξl + ρl)]Al A2

l̄ B2 coth2+pl+2pl̄ ϕ

+[p2
l̄ λlc1l − pl(1− pl)c1l(ξl + ρl)]Al A2

l̄ B2 coth−2+pl+2pl̄ ϕ

+{[cl − κ(κc1l(ξl + ρl − λl) + c7(τl − θl))]− 2[p2
l̄ λlc1l + p2

l c1l(ξl + ρl)]B2}Al A2
l̄ cothpl+2pl̄ ϕ = 0. (47)

In this case, the balancing algorithm and coefficients of the standalone elements, specif-
ically coth−2+pl ϕ and coth−4+pl ϕ, provide us the value of pl as presented in Equation (18).
Upon substituting the obtained value of pl from Equation (18) into Equation (47), the result-
ing solutions and corresponding solvability conditions are identical to those obtained for
the case of a dark soliton, as shown in Equations (33)–(37). Consequently, the concatenation
coupled model given by Equations (2) and (3) possesses type-II singular soliton solutions,
which are introduced below

q(x, t) = A1 coth[B(x− vt)]ei(−κx+ωt+Θ), (48)

and
r(x, t) = A2 coth[B(x− vt)]ei(−κx+ωt+Θ), (49)

where all the relevant parameters and their corresponding constraints for these soli-
tons are identical to those for dark solitons. Plots of the singular solitons described by
Equations (48) and (49) with A1 = 1, A2 = 1, κ = 1, a = 1, c7 = 1, σ7 = 1, c1l = 1, σ1l = 1,
λl = 1, αl = 1, γl = 1, δl = 1, µl = 1, ξl = 1, ρl = 1, bl = 1, ε l = 1, ηl = 1, cl = 1, τl = 1,
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and θl = 1 are presented in Figure 4. Soliton solutions that display a singularity at the
center of the wave profile are referred to as singular solitons.

Figure 4. Characteristics of singular solitons.

3. Conclusions

In the current, we paper addressed optical solitons in a birefringent fiber modeled by
the concatenation-type governing equation. Three standard equations are concatenated
to formulate the model. They are the most familiar NLSE, the LPD model, and the SSE.
The model of study was integrated using the principle of undetermined coefficients. This
resulted in the retrieval of bright, dark, and singular (both kinds) one-soliton solutions to
the model, along with the applicable constraint conditions that naturally emerged during
the course of the derivation of the soliton solution.

While this is a simple approach, it has its merits and shortcomings. It is simple in the
sense that after picking an appropriate hypothesis and inserting it into the equation, the
parameter relations and constraints naturally emerge. The imaginary part relation gives the
soliton velocity and additional constraint relations that must remain valid for the solitons to
exist. One of the shortcomings is that it fails to recover multisoliton solutions, unlike inverse
scattering transform (IST) or the Hirota’s bilinear approach. Another disadvantage is it is
unable to go past the discrete regime and provide an answer for the continuous regime.
In other words, the algorithm does not yield soliton radiation. In order to recover soliton
radiation, one must implement additional approaches such as IST or, beyond all order
asymptotics, even applying the theory of unfoldings. Another disadvantage is that the
method fails to obtain additional soliton solutions such as the straddled solitons. However,
these can be recovered with the aid of Kudryashov’s approach.

With the fundamental results in place, various avenues are opened, presenting oppor-
tunities for future studies. First, an immediate burning question would be, “What are the
conservation laws?”. Such laws will be investigated in a separate paper, with conserved
densities derived using the multipliers approach and listed after computing the conserved
quantities from the bright one-soliton solution derived in this paper.

The model proposed in this paper involves differential group delay, while in a previous
report, the same model was investigated but for the scalar case [3]. Dispersion-flattened
fibers can be explored in future work. This would provide a newer perspective to extract
the soliton solutions and provide a new perspective of possible conservation laws.

The inclusion of perturbation terms is our next target. Thus, the perturbed concatena-
tion model will be analyzed for its integrability. The availability of conservation laws would
mean that one can compute the adiabatic parameter dynamics of the soliton parameters
via the soliton perturbation theory. One can also implement the moment method or the
collective variables approach to recover this kind of dynamical system.

The integrability of the perturbed model also needs to be studied to recover the soliton
solution when the concatenation model includes perturbation terms. This depends on
two situations. If the perturbation terms are weak, with quasimonochromaticity, one must
integrate the perturbed concatenation model approximately with the use of multiscale
perturbation analysis, irrespective of the type of perturbation term, be it Hamiltonian or
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non-Hamiltonian. Thus, a quasistationary soliton solution would be revealed, along with
the resonance conditions. However, if the perturbation terms are strong but of Hamiltonian
type, several integration schemes are available to integrate the perturbed concatenation
model. A few such schemes are Kudryashov’s approach, Jacobi’s elliptic function scheme,
and the sin-Gordon equation scheme, just to mention a few. In the final situation, when
the perturbation terms are strong but non-Hamiltonian type, a slick scheme needs to be
implemented that considers the model with time-dependent coefficients and applies an
integration scheme possibly including the method of undetermined coefficients. This would
naturally apply constraints on the parameter and the time-dependent coefficients. Some of
the non-Hamiltonian perturbations to which this scheme can be successfully applied are
the linear attenuation effect and Raman scattering, among others. All of these possibilities
are subject to one exception. If the perturbation term(s) contain(s) maximum intensity, all of
the above-mentioned integration approaches fail miserably. In that case, one must resort to
approximate integration with the aid of the semi-inverse variational principle. In this case,
it is only the bright one-soliton solution that can be recovered, and the retrieval of dark or
singular solitons is not possible because the stationary integral is rendered divergent.

With adiabatic parameter dynamics in place, which can be recovered with the use
of soliton perturbation theory, one can address the suppression of intrachannel collision
of solitons with the aid of quasiparticle theory, which is yet to be developed for the
concatenation model.

Then, the application of the model to additional devices apart from optical fibers can be
considered. This would involve the implementation of the model for magneto-optic wave
guides, Bragg grating fibers, and optical couplers, as well as for the study the concatenation
model in optical metamaterials. Thus, gap solitons and magneto-optic solitons would be
subsequently recovered and reported. Moreover, the governing model should addressed
with fractional temporal evolution rather than linear temporal evolution as in the current
paper and most previous papers. The consideration of fractional temporal evolution would
lead to the slow evolution of solitons, meaning that one can successfully control the Internet
bottleneck effect, which is a growing problem in the telecommunication industry. Another
viable approach to this problem is to introduce the spatiotemporal dispersion (STD), in
addition to pre-existing chromatic dispersion (CD). This combination if CD and STD can
also be used as an engineering marvel to mitigate the Internet bottleneck effect.

One of the viable aspects to further consider with respect to this concatenation model
is the nonlinearity of the CD. This can occur due to rough handling of fibers, as well
as the random injection of pulses at the initial end of the fiber. When the CD becomes
nonlinear, soliton transmission across intercontinental distance is stalled, and this leads
to the formation of quiescent solitons—a very unwanted feature. While this aspect has
already been studied for the scalar case, it must be addressed for fibers with differential
group delay and dispersion-flattened fibers.

Apart from the various considerations for the analytical approaches listed thus far,
one must additionally consider a model with the use of numerical algorithms. Some of the
most applicable numerical schemes are the Adomian decomposition method, the improved
Adomian decomposition approach, the Laplace–Adomian decomposition scheme, and the
variational iteration method. Several other numerical algorithms that can be implemented
to address the problem include the finite difference method, the finite element method, the
finite volume scheme, and spectral approaches [8–35]. Thus, much work remains to be
done in this field.
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