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Abstract: Traffic accidents directly influence public safety and economic development; thus, the
prevention of traffic accidents is of great importance in urban transportation. The accurate prediction
of traffic accidents can assist traffic departments to better control and prevent accidents. Thus, this
paper proposes a deep learning method named attention-based residual dilated network (ARDN), to
extract essential information from multi-source datasets and enhance accident prediction accuracy.
The method utilizes bidirectional long short-term memory to model sequential information and
incorporates an attention mechanism to recalibrate weights. Furthermore, a dilated residual layer
is adopted to capture long term information effectively. Feature encoding is also employed to
incorporate natural language descriptions and point-of-interest data. Experimental evaluations
of datasets collected from Austin and Houston demonstrate that ARDN outperforms a range of
machine learning methods, such as logistic regression, gradient boosting, Xgboost, and deep learning
methods. The ablation experiments further confirm the indispensability of each component in the
proposed method.
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1. Introduction

Road traffic crashes have a significant impact on public health, causing the loss of
1.3 million lives per year worldwide, as reported by the World Health Organization [1].
Furthermore, these accidents also have substantial economic consequences, accounting
for approximately 3% of gross domestic product in most countries. Therefore, it is crucial
to establish a safe transportation system that takes the vulnerability of road users to
serious injuries in daily life into consideration. However, comprehensively considering all
components can be challenging, and despite efforts to address this issue, traffic accidents
remain a significant public safety issue. To reduce the number and severity of these
incidents, researchers have been working on accident analysis and prediction for several
decades. By identifying the factors that contribute to accidents and developing strategies to
prevent them, governments, communities, and individuals can improve road safety and
reduce the number of fatalities and injuries [2,3]. Centralized traffic management refers to
a system where traffic control and management activities are coordinated and controlled
from a central location [4,5]. Advanced technologies in centralized traffic management can
facilitate the identification of traffic accident hotspots, analyze accident data to understand
accident patterns and causes, and develop targeted interventions to address those issues.
For example, by investing in better road design, traffic signals, and pedestrian crossings,
governments can reduce the risk of accidents and create safer environments for all road
users. Additionally, advanced driver assistance systems, such as automatic emergency
braking and lane departure warning systems, can help prevent accidents caused by human
error. Governments can also mandate the use of safety features to further reduce the risk of
injuries and fatalities in the event of an accident.
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As a result, increasing the accuracy of accident prediction in transportation systems is
expected to eliminate fatal crashes and reduce serious injuries through warnings and pre-
ventive measures. In recent years, there have been two primary approaches to addressing
this problem: causal analysis methods and statistical methods. Statistical methods focus on
identifying correlations or associations between variables based on historical data, while
causal analysis methods seek to understand the underlying mechanisms or factors that con-
tribute to traffic risks. In other words, statistical methods primarily make predictions based
on patterns and trends observed in historical data. In contrast, causal analysis methods
aim to establish cause-and-effect relationships between variables, and their predictions are
based on understanding the causal mechanisms that drive the observed outcomes. As this
study focuses on improving the accuracy of traffic risk prediction, statistical methods are
summarized in related works.

However, the data attributes that are related to traffic accidents are rather complex
and heterogeneous. Factors such as geographical location, road network, traffic patterns,
weather conditions, and specific areas of interest need to be considered in traffic accident
prediction. Road characteristics, such as road types, road design, and road infrastructure,
also influence the occurrence and severity of traffic accidents. Additionally, traffic condi-
tions, such as traffic volume, traffic density, traffic speed, time period, and traffic congestion,
can impact the likelihood of traffic accidents. Simply combining multiple deep learning
modules might not effectively handle multi-source information. While recurrent neural
network (RNN) architectures, including long short-term memory (LSTM), are commonly
used for time series prediction, the problems of gradient explosion and vanishing remain
unresolved. Moreover, the model output is primarily influenced by the nearest time series
input. In contrast, a dilated convolutional network can build deep convolutional connec-
tions to extract higher-order hidden information and large convolutional kernels to extract
features over long periods. This allows for the indirect expansion of convolutional kernels
without increasing computing costs [6,7]. To improve accident prediction accuracy, we
propose a novel deep learning method called attention-based residual dilated network
(ARDN). This method utilizes LSTM to model sequence relationships and an attention
mechanism to focus on key information. The dilated residual network is designed to extract
complex feature information. Finally, the dataset of natural language descriptions and
points of interest is fused through information encoding. We conducted experiments on
datasets collected from Austin and Houston, and compared this method with a series of
machine learning and deep learning methods to verify its validity. The highlights of this
work are as follows:

(1) To address the complexity of traffic accident data, this approach considers diverse
data sources to capture complex patterns.

(2) To overcome the limitations of traditional RNN architectures, the dilated residual
network is adopted to capture long-range dependencies. Introducing an attention
mechanism for key information further enhances prediction accuracy.

(3) Through the comparison of experiments conducted on two datasets, the results show
superiority over baselines.

The remainder of the paper is organized as follows: Section 2 presents a detailed
overview of the model’s architecture and its components; Section 3 provides information
about the experiments, including dataset description, baselines, algorithms comparison,
and ablation study; and Section 4 summarizes this paper and conceptualizes future work.

2. Related Works

Statistical methods have been widely used to predict traffic accidents by examining
patterns, trends, and underlying factors [8]. Regression models have been commonly used
to analyze the risk factors associated with traffic accidents [9–11]. However, these models
rely on pre-defined assumptions regarding the underlying probability data distribution
and the dependent relationships among various variables which may not always align
with the actual circumstances [12]. Machine learning methods offer a more flexible and
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robust approach as they can adapt to evolving circumstances without rigid pre-assumed
relationships among variables. By using machine learning algorithms, transportation
systems can analyze vast amounts of data to identify patterns and relationships that might
be challenging to uncover using traditional statistical methods.

Thus, a series of machine learning methods are listed as follows. To identify the
factors that influence the severity of accidents at intersections, a logistics model with a
heavy-tail distribution was adopted to fit the dataset [13]. The goal of this study was to
develop countermeasures that can help mitigate the risk of severe crashes. A support
vector machine (SVM) model was adopted to analyze the severity of injuries sustained
during accidents and predict the severity of individual crashes [14]. The results verified
that the SVM model provides better prediction results than the ordered probit model. To
further enhance the prediction ability, a fuzzy C-means based SVM has been proposed to
predict the severity level of crashes [15]. The experiments demonstrate that this model
outperforms the SVM model in terms of accuracy and F1 scores. This is because the fuzzy
c-means clustering algorithm helps to enhance the prediction ability. Then, a comparison
between Bayesian network and regression models has been conducted to analyze accident
severity [16]. By comparing the results, it was concluded that the Bayesian network model is
more effective in predicting the severity of accidents than the regression model. To analyze
traffic accidents, researchers have utilized decision trees to extract decision structures from
available datasets [17]. The results indicated that the decision tree is capable of extracting
more relevant rules from the same dataset. In addition, a comparison between binary
logistic regression and decision tree was conducted using a motorcycle accident dataset [18].
The results suggest that the performances of the two models are similar in predicting the
identified factors. To explore the relationship between risk factors and accident severity, a
severity causation network has been proposed that integrates information entropy and the
Bayesian network [19]. This method can significantly enhance the feasibility of predicting
crash severity. Furthermore, the effectiveness of various models, such as classification and
regression tree models [20,21], log binomial regression [22,23], and the rule-based mining
method [24], were also verified through real-world datasets. These studies confirm the
potential of machine learning models to contribute to the prediction of traffic accidents.

With the prosperity of artificial intelligence, deep learning methods have emerged as a
powerful tool in a wide range of applications, including time series prediction [25,26]. By
leveraging the capabilities of deep neural networks, deep learning models have demon-
strated improved accuracy and more precise prediction results [27]. The artificial neural
network (ANN) has been widely used in this domain through employing a multi-layer
perceptron architecture with sigmoid activation and linear output neurons to fit multi-
dimensional mapping relationships. Comparative studies using different evaluation met-
rics, such as the R-value, root mean square error, mean absolute error, and sum of square
error, have consistently shown that ANN provides superior prediction results compared
with other methods, such as genetic algorithms and pattern search [28]. Additionally, a
convex combination algorithm has been proposed to train the neural network model for
accident severity prediction. A modified pruning method for function approximation
algorithms has also been developed to optimize the network structure [29]. The experi-
mental results have demonstrated that this approach achieves comparable classification
accuracy when compared to fully connected networks and ordered logit models. To capture
temporal correlations from traffic accident records, recurrent neural networks (RNN) have
been employed to predict traffic accident severity. The RNN model has demonstrated
better performance when compared with other models, such as multilayer perceptron and
Bayesian logistic regression [30]. In recent years, a feature matrix to gray image algorithm
has been designed to convert traffic accident features into gray images containing combina-
tion relationships. A convolutional neural network-based approach has then been proposed
to predict traffic accident severity [31]. This method has demonstrated improved accuracy
when compared with other methods. To leverage multi-source datasets, a spatio-temporal
convolutional long short-term memory network has been proposed to predict citywide



Mathematics 2023, 11, 2011 4 of 15

short-term crash risk [32]. The results indicated that this approach surpasses the benchmark
techniques when it comes to predicting various crash risks. Additionally, deep accident
prediction (DAP) encompasses several components that capture interrelationships within
multiple data sources, leading to a better performance than several baseline models [33].
Overall, these learning-based methods have shown promising results regarding predict-
ing the severity of traffic accidents and identifying the factors that contribute to them.
These findings can help improve traffic safety by enabling the development of effective
countermeasures [34,35].

3. Methods
3.1. The Overall Architecture

This paper proposes a novel learning-based approach to extract spatial–temporal
information and generate highly accurate predictions, as shown in Figure 1. The proposed
model includes an attention-based dilated residual layer that effectively extracts time series
information from input traffic data.
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The input traffic data comprises several important factors, including descriptions of
traffic events, time, and weather information [33,36,37]. The details are listed as follows:

(1) Traffic event data. This includes the frequency of available traffic events during
the current 15 min interval, such as accidents, broken vehicles, lane blockages, and
flow incidents.

(2) Time information. This is a critical component of the input traffic data and includes
factors such as weekdays, hour of the day, and day or night. For example, weekdays
can be represented as numerical variables (e.g., 1 for weekday, 2 for weekend, etc.),
hour of the day can be represented as categorical variables (e.g., morning, afternoon,
evening, and night), and day or night can be represented as binary variables (e.g.,
0 for day and 1 for night).

(3) Weather information. This is represented as numerical variables (temperature, pres-
sure, humidity, visibility, wind speed, and precipitation amount) or binary variables
(rain, snow, fog, and hail).
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Overall, the input traffic data is formulated as a comprehensive vector denoted by xt
which includes all the aforementioned factors. In addition, a dense network is incorporated
to enable the learning of information from heterogeneous data sources, including natural
language descriptions of historical traffic events and points-of-interest data. To handle
the heterogeneous information effectively, Glove encoding is utilized to encode the raw
information into word vectors, which is described in Section 3.4. The proposed model has
the capability to effectively extract information from these data sources and generate highly
accurate predictions based on this information.

3.2. Attention-Based Bi-LSTM Layer

Long short-term memory is a popular type of neural network that is designed to
capture temporal relationships within sequential data. It is composed of memory units that
accumulate historical information through self-connections. Each memory unit consists of
three gates: the input gate, the forget gate, and the output gate, as shown in Figure 2. The
input gate controls the information flow into the memory unit, while the forget gate and
output gate regulate the information flow within the memory unit. The details are listed
as follows:

ft = σ
(

W f ·[ht−1, xt] + b f

)
, (1)

it = σ(Wi·[ht−1, xt] + bi), (2)

C̃t = tanh(WC·[ht−1, xt] + bC), (3)

Ct = ft ∗ Ct−1 + it ∗ C̃t, (4)

ot = σ(Wo·[ht−1, xt] + bo), (5)

ht = ot ∗ tanh(Ct). (6)
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The forget gate ft determines which information from the previous cell state should
be discarded. This gate concatenates the previous hidden state ht−1 and the current input
xt, then outputs information through the sigmoid function, which is multiplied with the
previous cell state ct−1. The next step is to update the cell state of the layer. A tanh layer is
used to produce an updated value within the interval [−1, 1], which can either strengthen
or weaken some cell states. The output value of the sigmoid layer is multiplied by the
output of the tanh layer, acting as a scaling function. The new cell state Ct is then generated
according to the output of the forget gate ft and the update gate C̃t. Finally, the sigmoid
layer determines the information of Ct to acquire the output ht. Based on the given formula,



Mathematics 2023, 11, 2011 6 of 15

the memory unit allows for linear updates. Consequently, the current state of the hidden
layer can be obtained by combining the nonlinear tanh function with the information from
the output gate.

Although LSTM effectively models sequential information, it is limited to encoding
information in only one direction, usually from front to back. This limitation can be
overcomed by using Bi-LSTM, which can capture the semantics of a sequence in both
directions, as illustrated in Figure 3. Furthermore, when dealing with datasets that contain
information regarding varying dimensions, the challenge lies in extracting important
information that can contribute to improved model performance.
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Originally proposed in the field of visual research, the attention mechanism simulates
the way that the human brain focuses its attention on important regions and disregards
less relevant parts [38]. The core idea behind the attention mechanism is to allocate
more attention to key parts and less attention to other parts by rationally allocating brain
resources [39]. This helps exclude the influence of non-key factors and improve the quality
of feature extractions in the hidden layer. The attention mechanism achieves this by using
a probability weight distribution to calculate the probability weights of feature vectors
at different time steps in the sequence. By utilizing the attention mechanism, we can
effectively extract the most important information from the sequence, leading to better
model performance. The first step is to adopt a learnable matrix to calculate the similarity
between the query and each key:

ht,t′ = tanh
(

Wtx̂T
t + Wxx̂T

t′ + bt

)
, (7)

et,t′ = σ
(
Waht,t′ + ba

)
, (8)

where x̂T
t represents the output of Bi-LSTM and Wt, Wx, Wa, bt, ba represent the learnable

parameters. This produces a weight value at,t′ , which is then normalized through the
softmax function. Then, the corresponding values are multiplied by their weights and the
sum is taken to generate the output:

at,t′ = softmax
(
et,t′
)
, (9)
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lt = ∑ t′ at,t′ x̂
T
t′ . (10)

In sum, this module is composed of Bi-LSTM and an attention mechanism. The former
can effectively address the issue of gradient explosion and vanishment while maintaining
high accuracy. The latter plays a critical role in mapping the query to a series of key-value
pairs, assigning a higher weight to important parts of the data. This helps identify relevant
information and improve the accuracy of the predictions. Finally, the output is transmitted
to the next dilated residual layer for further refinement. In addition, as depicted in Figure 3,
the flow of data through hidden layers allows information to pass through the network
from input layers to output layers. The connections between nodes in different layers are
associated with weights that determine the strength of the connection. These weights are
adjusted during the training process through backpropagation, allowing the network to
learn from input data and optimize the prediction performance by adjusting the weights.

3.3. Dilated Residual Layer

Although LSTM is designed to retain important information in its memory gate, con-
volutional neural networks (CNNs) have shown promise in retaining long-term memories
in a more realistic manner. For instance, models such as WaveNet [6] and temporal con-
volutional networks (TCNs) [7] have demonstrated better performance than RNNs and
LSTMs based on a range of datasets. The dilated residual layer is a key component that
combines dilated convolution and residual connection to achieve high performance in
sequence modeling tasks, as shown in Figure 4.
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Dilated convolutional networks use a dilation rate parameter in addition to the convo-
lution kernel size which indicates the degree of expansion that will be transmitted to the
next dilated residual layer. This allows the network to capture long-range dependencies
in the input sequence, which is particularly important in tasks such as speech recognition
or language modeling. As the number of layers in the network increases, the convolution
window becomes larger, and the number of empty holes in the convolution window also
increases, leading to an even larger receptive field. This approach enables neural networks
to retain long-term memories more effectively than traditional RNNs.

Residual connection is a powerful technique adopted in neural network architectures
to improve training convergence [40]. It allows information from earlier layers to bypass
the intervening layers and directly connect to later layers, enabling the network to learn
more complex representations of the input sequence. This process is repeated for each layer,
with the feature information of the previous layer being added to the feature graph of each
subsequent layer.
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To further enhance the performance of the network, this layer uses normalization
and ReLU nonlinear functions. After each convolution operation, dropout is applied for
regularization to prevent overfitting.

3.4. Heterogeneous Feature Encoding Layer

To improve the understanding of natural language descriptions of historical traffic
events, the well-trained Glove model [41] is employed to encode raw information into
word vectors through unsupervised learning. This approach measures the similarity
between words by calculating the Euclidean distance between their respective vectors,
and is designed to capture vector differences that correspond to linear structures through
different vectors. The core procedure for the Glove model involves constructing a word
co-occurrence matrix from the input text corpus, computing the probability distribution of
word pairs from the matrix, and training the model using an iterative optimization process.
Once trained, the word vectors can be used as feature representations for downstream
machine learning tasks, capturing semantic and syntactic relationships between words.

Then, this method calculates the average values of these word vectors to represent each
region. A dense network is then used to obtain a fixed-length feature vector that captures
important information for classification. Point-of-interest information is also considered to
enhance the understanding of traffic events. This approach enables effective processing
and analysis of natural language descriptions of historical traffic events.

3.5. Output and Optimization

As illustrated in Figure 1, this method integrates information from the dilated resid-
ual layer and heterogeneous feature encoding. The fully connected layer, also known as
the dense layer, is utilized to concatenate information as it is capable of learning com-
plex patterns from input data. This method is differentiable, allowing us to use the
back-propagation algorithm for training. Specifically, we employ the Adam optimizer
to minimize the binary cross-entropy during several iterations of learning. The formulation
is given below:

l(θ) = − 1
N

N

∑
i=1

yi log(p(yi)) + (1− yi) log(1− p(yi)), (11)

where N denotes the total number of samples in the training set, yi represents the sign
function to determine whether the sample is true or not, and p(yi) refers to the predicted
probability of the occurrence of an accident. By minimizing this objective function, we can
improve the performance of the model and enhance its ability to accurately predict the
likelihood of accidents.

4. Experiment

In this section, we validate the effectiveness of the proposed ARDN method through
experiments conducted on the datasets collected from two large cities. Python was chosen
as the programming language to solve the traffic accident prediction problem, and the
Keras framework was utilized to implement the deep learning algorithm. The experiment
is organized as follows. Section 4.1 describes the datasets adopted in this work. Section 4.2
lists the baselines and evaluation criteria. Section 4.3 compares the proposed ARDN method
with a series of baselines. Section 4.4 displays the implications for practice. Finally, the
ablation experiment is conducted in Section 4.5 to verify the validity of the algorithm
components.

4.1. Data Description

This study aims to predict the probability of traffic accidents occurring within a
specific 15 min window. The datasets used in this study was obtained from the website:
https://smoosavi.org/datasets/ (accessed on 1 June 2022). The data were collected from
multiple data providers, including several APIs that provide streaming traffic event data.

https://smoosavi.org/datasets/
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These APIs capture and broadcast traffic events from various sources, such as the US
and state Departments of Transportation, law enforcement agencies, traffic cameras, and
traffic sensors within the road networks [37]. The datasets provide detailed information
on each geographical region with a size of 5 km × 5 km per 15 min interval in Austin and
Houston [33]. Figure 5 depicts the road networks of the two cities, which was obtained
from the website: www.openstreetmap.org/ (accessed on 15 April 2023). They include
various traffic-related events occurring during the current interval, such as traffic events,
time, and weather attributes. To predict the label of the next time interval, the time series
information of the last eight time intervals, i.e., two hours, is adopted in this work.
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4.2. Baseline and Ealuation Criteria

This section aims to compare the effectiveness of our proposed methods against
five baselines:

(1) Logistic regression is a statistical method used for binary classification where the goal
is to predict the probability of an event occurring using a logistic function.

(2) Gradient boosting [42] is a machine learning technique that builds an ensemble of
weak predictive models, such as decision trees, in a sequential manner. It uses gradient
descent optimization to minimize the loss function, combining the predictions of
multiple weak models to make a final prediction.

(3) Xgboost [43] is an optimized implementation of gradient boosting. It uses a variety of
regularization techniques to prevent overfitting and provides additional features such
as parallel processing and handling of missing values.

(4) ANN consists of interconnected nodes organized in layers, where each node performs
a mathematical operation on its inputs and passes the result to the next layer.

(5) DAP [33] was proposed in a previous study [33] and incorporates data augmentation
and preprocessing techniques to improve the accuracy of traffic accident prediction.

To ensure fair comparisons, we set several hyper parameters to fixed values, including
a learning rate of 0.01 and an early stop threshold of 10. The early stop method was used to
prevent overfitting by limiting the number of training iterations. In particular, during the
implementation of ARDP, we used a dropout rate of 0.3, an embedding dimension of 128,
and a kernel size of 3. The dropout rate of 0.3 was chosen to introduce regularization and
prevent overfitting during training. The embedding dimension of 128 was selected as a

www.openstreetmap.org/
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trade-off between model complexity and representation capacity. The kernel size of 3 was
used to capture local spatial–temporal patterns in the input data.

To evaluate the performance of our proposed methods and the baselines, we adopted
F1 scores as evaluation criteria which are computed based on precision and recall rate.
Precision measures the proportion of positive examples predicted by the binary classifier
that are real positive examples, while recall measures the proportion of real positive cases in
the test set that are correctly identified by the binary classifier. Precision and recall rate are
often in conflict with each other. Adopting F1 scores as evaluation criteria provides a more
comprehensive measure of the performance of the different methods, defined as follows:

Precision =
TP

TP + FP
, (12)

Recall =
TP

TP + FN
, (13)

F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
. (14)

where Precision is the ratio of true positive predictions to the total number of positive
predictions and Recall is the ratio of true positive predictions to the total number of actual
positive cases in the test set.

4.3. Discussion on the Results

Tables 1 and 2 present the experimental results obtained from the Austin and Houston
datasets, respectively. The first column indicates the algorithm used for the experiment,
while the remaining columns show the F1 score for each class, i.e., non-accident, accident,
and weighted average. Based on the results presented in these tables, it can be concluded
that the ARDN is the most effective method for predicting accident occurrences in both the
Austin and Houston datasets. The following conclusions can be drawn.

Table 1. A comparison of criteria F1 scores among several baselines in the Austin dataset.

Method Non-Accident Accident Weighted Average

Logistic Regression 0.93 0.58 0.87
Gradient Boosting 0.93 0.61 0.87

XGBoost 0.93 0.62 0.87
ANN 0.92 0.62 0.87
DAP 0.89 0.65 0.87

ARDN 0.93 0.67 0.89

Table 2. A comparison of criteria F1 scores among several baselines in the Houston dataset.

Method Non-Accident Accident Weighted Average

Logistic Regression 0.94 0.49 0.88
Gradient Boosting 0.94 0.51 0.88

XGBoost 0.94 0.50 0.88
ANN 0.93 0.59 0.88
DAP 0.93 0.58 0.88

ARDN 0.94 0.60 0.89

Most algorithms perform well regarding predicting non-accidents as accidents tend to
be special cases and algorithms often err on the side of non-accidents. This highlights the
need for more accurate algorithms that predict accidents specifically.

Gradient boosting and Xgboost outperform logistic regression models as tree-based
models can improve accuracy and efficiency by automatically processing missing values,
outliers, feature selection, and feature fusion.
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The F1 scores for accidents are generally lower than those of non-accidents, indi-
cating that algorithms are better at identifying non-accident data points. This empha-
sizes the importance of developing algorithms that are specifically designed to accurately
identify accidents.

Among all the comparison results, the ARDN method performs the best, achieving
the highest F1 scores for both datasets. This is attributed to its ability to effectively capture
relationships within time-series information using dilated residual networks and attention
mechanisms. The attention mechanism allows the model to focus on the most relevant
regions and time intervals, thus improving the accuracy of the predictions. By using dilated
convolutions, the network can capture long-range dependencies across the input data.
These results demonstrate the potential of the proposed model to improve the accuracy of
accident prediction.

The proposed method addresses the complexity and heterogeneity of traffic accident
data by proposing a deep learning approach that takes diverse data sources into account to
capture the complexity of traffic accident patterns, including the geographical location, road
characteristics, and traffic conditions. Compared with previous deep learning methods, this
method overcomes limitations in several ways. Firstly, RNN architectures might suffer from
issues like gradient explosion and vanishing and primarily rely on the nearest time series
input. In contrast, our proposed dilated residual network is designed to extract complex
features over long periods, achieving indirect expansion of convolutional kernels without
increasing computing costs. Secondly, we introduce an attention mechanism that allows the
model to focus on important information within the data. This attention-based approach
enhances the model’s ability to capture relevant features and relationships, leading to
more accurate predictions. This attention mechanism helps overcome the limitations of
traditional RNN methods that may not effectively capture important information within
the data.

4.4. Implications for Practice

According to the proposed method, high accuracy traffic risk prediction has practical
significance in various ways. Traffic accidents result in significant casualties and property
losses. Accurate traffic risk prediction facilitates timely measures to prevent accidents,
thereby reducing casualties and property losses. It enables traffic management departments
and practitioners to understand the patterns and trends of accidents, leading to the imple-
mentation of preventive measures. For example, patrolling high-risk areas, improving road
designs and infrastructure, adjusting traffic flow, and warning drivers about accident-prone
areas can all contribute to reducing the occurrence of accidents.

Moreover, accurate traffic risk prediction allows traffic management departments to
allocate resources more effectively and optimize safety management strategies. Prioritizing
police and rescue resources in areas with high accident rates and high-risk roads and
making timely adjustments to routes, speed limits, and intersection designs can improve
the effectiveness of traffic safety management. Traffic accidents often cause congestion and
delays on roads, impacting traffic flow and road capacity. Accurate traffic risk prediction
can provide advance warnings about areas prone to accidents, enabling measures to reduce
the impact on traffic flow and road capacity, thereby improving overall traffic efficiency.

Finally, an interactive dashboard can be utilized as a valuable tool to alert drivers to
potential risks on the road ahead. This dashboard can display real-time information about
traffic conditions, road characteristics, and other relevant data, which can help drivers
make informed decisions and take appropriate precautions while driving. For example,
the dashboard can provide visual cues or audible warnings to drivers when approaching
areas with a high risk of accidents, such as accident-prone intersections or stretches of
road with a history of frequent collisions. By proactively informing drivers about potential
risks, the dashboard can assist in reducing the occurrence of accidents and enhancing
overall road safety. Additionally, the dashboard can consider weather conditions, road
construction, and other relevant factors to provide comprehensive and accurate risk alerts
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to drivers. Furthermore, the dashboard can be integrated with other advanced driver
assistance systems or connected vehicle technologies to provide a holistic approach to
traffic risk prediction and prevention. This integration can enhance the effectiveness of the
dashboard in alerting drivers to potential risks and preventing accidents.

4.5. Ablation Experiment

Furthermore, we conducted ablation experiments to assess the effectiveness of the
various components of our proposed method. For this purpose, we trained and evaluated
two baseline models alongside our proposed method. The first baseline, named No-Hetero,
is the proposed method without the natural language description of historical traffic events
and point-of-interest information. The second baseline, named No-RDN, uses a fully con-
nected layer instead of the dilated residual layer. The results of experiments are presented
in Figures 6 and 7. It can be observed that the proposed method ADRN outperforms the
two baselines in terms of F1 scores for accident prediction. These results highlight the
importance of the various components within the ADRN method and demonstrate that the
dilated residual layer contributes to the improved performance. A dilated convolutional
network can cover a larger area of the input data which increases the effective receptive
field of the filter. Thus, it can expand the effective receptive field of the convolutional filters
and allow the network to consider a broader local region.
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In summary, ablation experiments confirm that the various components we have intro-
duced are essential for achieving state-of-the-art performance in traffic accident prediction.
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5. Conclusions

Providing reliable and precise predictions can help inform policymakers and decision-
makers by analyzing the factors that contribute to traffic accidents. Therefore, we proposed
a deep learning approach for traffic risk prediction using LSTM, attention mechanism,
dilated residual network, and a Glove encoding technique. The experimental results of
the datasets from Austin and Houston demonstrated the effectiveness of the proposed
method in extracting important information from multiple sources and outperforming
other baselines. Therefore, our approach has the potential to provide reliable and pre-
cise predictions that can inform policymakers and decisionmakers about the factors that
contribute to traffic accidents.

This research builds upon previous studies in the field of traffic accident prediction
by integrating multiple deep learning techniques and natural language processing. While
previous research has focused on traditional RNNs, which might include the problems of
gradient explosion and vanishing, we adopt the dilated residual network to extract complex
features over long periods and utilize the attention-based approach to further enhance the
model’s ability. By accurately predicting traffic accidents, policymakers and decisionmak-
ers can proactively allocate resources to high-risk areas, implement targeted preventive
measures, and improve traffic management strategies. This can help reduce the number of
accidents, save lives, and reduce economic losses associated with traffic accidents.

This research has limitations but suggests options for future studies. Firstly, the pro-
posed method relies heavily on the availability and accuracy of data from various sources,
which might have inherent biases or inaccuracies. Secondly, the study is based on data
from Austin and Houston, which might not be fully representative of other regions. Further
research could explore the generalizability of the proposed method to other locations and
datasets. Additionally, machine learning methods, including deep learning techniques,
may encounter challenges in delivering highly interpretable results. Interpretable models
are important for policymakers and decisionmakers to understand the underlying factors
that contribute to traffic accidents and make informed decisions. Therefore, future work
could consider integrating causal inference techniques with machine learning approaches
to gain a deeper understanding of the underlying causal mechanisms driving traffic acci-
dents. This could potentially lead to the development of more robust and interpretable
predictive models that can provide insights into causal relationships among various factors
that influence traffic accidents.
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