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Abstract: In this paper, we propose a diffusive predator–prey model with a strong Allee effect and
nonlocal competition in the prey and a fear effect and gestation delay in the predator. We mainly study
the local stability of the coexisting equilibrium and the existence and properties of Hopf bifurcation.
We provide bifurcation diagrams with the fear effect parameter (s) and the Allee effect parameter (a),
showing that the stable region of the coexisting equilibrium increases (or decreases) with an increase
in the fear effect parameter (s) (or the Allee effect parameter (a)). We also show that gestation delay
(τ) can affect the local stability of the coexisting equilibrium. When the delay (τ) is greater than the
critical value, the coexistence equilibrium loses its stability, and bifurcating periodic solutions appear.
Whether the bifurcated periodic solution is spatially homogeneous or inhomogeneous depends on
the fear effect parameter (s) and the Allee effect parameter (a). These results show that the fear effect
parameter (s), the Allee effect parameter (a), and gestation delay (τ) can be used to control the growth
of prey and predator populations.

Keywords: delay; Hopf bifurcation; predator–prey; Allee effect

MSC: 34K18; 35B32

1. Introduction

Scholars have long been committed to using mathematical methods to explain and
predict biological phenomena [1–4]. The analysis of predator–prey models is a research
subject that has recently attracted considerable attention [5–8] from mathematicians and
biologists. In order to better describe the law of changes in a population, many scholars
have used differential equations to build predator–prey models and have introduced
different parameters in order to consider biological factors. Considering that the internal
mating of a population affects the law of change in that population when the population
density is low, W. Allee proposed the famous Allee effect [9]. If the population density is
too sparse, then mating between populations becomes difficult, and Allee effects may occur
when the population density is under a specific threshold. Thus, Allee effects are strongly
related to the vulnerability of populations to extinction [10–12]. For example, if pressure
from the harvesting of bluefin tuna (Thunnus thynnus) is too strong, the population will
collapse [11]. At a very small population size, the probability of finding an acceptable mate
for some endangered species, such as lakapo (Strigos habroptilus), is very low [11].

The earliest single-population model exhibiting the Allee effect is as follows [13]:

du(t)
dt

= r1u(t)
(

1− u(t)
K

)
(u(t)− a0),
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where u(t) represents the density of prey at time t, and r1 and K are the prey’s intrin-
sic growth rate and carrying capacity, respectively. The parameter a0 denotes the Allee
threshold, and the term (u(t)− a0) denotes the Allee effect. It must be noted that the Allee
threshold is the critical population size or density below which the per capita population
growth rate becomes negative. A strong Allee effect is an Allee effect at the Allee threshold.
Whether the Allee effect is weak or strong depends on the opposing strengths of positive
and negative density dependence. After the introduction of this model, many researchers
began to pay attention to predator–prey models with strong Allee effects.

In nature, the influence of predators on prey species is not mediated only by simple
predatory behavior. Since the prey has memory, the presence of predators has an inevitable
impact on the behavior and psychology of the prey. For example, when a predator appears,
the prey will be vigilant and will stop eating and breeding. This indirect effect on prey
populations is known as the fear effect, and it is found widely in nature. Many researchers
have focused on predator–prey models with the fear effect [14–16]. However, these models
describe the prey as having a fear effect in connection with the predator, which affects the
growth law of the prey. In nature, predators also have fear effects. For example, scientists
have used the barking of dogs on a tape to simulate a scene of fear in raccoons. In this way,
raccoons reduce their frequency and time of foraging; this protects the raccoons’ prey to
maintain a balance in the ecosystem. In [17], T. Liu et al. proposed a predator–prey model
with a fear effect on the predator and a strong Allee effect on the prey:

du(t)
dt = r1u(t)

(
1− u(t)

K

)
(u(t)− a0)− λu(t)v(t)

1+kv(t) ,
dv(t)

dt = r2v(t)
1+kv(t)

(
1− v(t)

qu(t)

)
.

(1)

where u(t) and v(t) represent the densities of the prey and predator, respectively; and r1,
K, a0, λ, k, r2, and q are the prey’s intrinsic growth rate, the carrying capacity, the strong
Allee effect, the capture rate, a measure of the fear effect, the predator’s intrinsic growth
rate, and a measure of food quality for the predator, respectively. More explanations of
the parameters can be found in [17]. By setting ũ = u

K , ṽ = v
Kq , t̃ = t

Kr1
, a = a0

K , c = λqK
r1

,
s = kqK, and r = r2

r1K and dropping “˜”, model (1) is changed into
du(t)

dt = u(t)
(
(1− u(t))(u(t)− a)− cv(t)

1+sv(t)

)
,

dv(t)
dt = rv(t)

1+sv(t)

(
1− v(t)

u(t)

)
.

(2)

The authors mainly studied model (2) from the perspective of bifurcation, such as Hopf
bifurcation and Bogdanov–Takens bifurcation [17]. Research has shown that increasing the
fear effect on the predator is conducive to protecting prey populations.

We assume that the concentration distribution of species is uniform in model (2),
but this is not always the actual situation in nature. In real nature, due to widespread
self-diffusion phenomena, few populations of species have a homogeneous spatial distribu-
tion [18–20]. This is precisely because of the existence of diffusion phenomena; population
models often show some more abundant dynamic phenomena, such as spatially inhomoge-
neous periodic solutions, spatial patterns, etc. In addition, time delays also exist [21–23],
such as time delays in maturity, gestation, and predation. Time delays often affect the
stability of the constant steady-state solution, and they cause periodic oscillations in the
population density. Therefore, we introduce self-diffusion and time delay into model (2)
as follows.

∂u(x, t)
∂t

= d1∆u(x, t) + u(x, t)
(
(1− u(x, t))(u(x, t)− a)− cv(x, t)

1 + sv(x, t)

)
,

∂v(x, t)
∂t

= d2∆v(x, t) +
rv(x, t)

1 + sv(x, t)

(
1− v(x, t− τ)

u(x, t− τ)

)
.

(3)
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where d1, d2 > 0 represent the self-diffusion coefficients of the prey and predator, respec-
tively, and τ is the gestation delay in the predator. The growth law of the predator (the
second equation in (3)) can be considered a logistic growth law, where (u(t − τ) is the
carrying capacity of the environment. An increase in density of predators at time t already
exists for predators at time t− τ, where τ is the gestation time of predators. Therefore,
the negative feedback of the density of the predator at time t is related to the relationship
between the predator and the prey at time t− τ.

In nature, animals in the same area usually compete for a common but limited resource;
due to the depletion of resources, intraspecies competition effects should depend on the
average population density in the neighborhood of the current location. In [24,25],
the author suggested that internal competition within the population is often spatially
inhomogeneous and measured this effect by weighting and integration, modifying the
u
K as 1

K
∫

Ω G(x, y)u(y, t)dy. G(x, y) is a kernel function. In [26], Geng et al. studied Hopf,
Turing, double-Hopf, and Turing–Hopf bifurcations of a diffusive predator–prey model
with nonlocal competition. In [27], Liu et al. studied a diffusive predator–prey model with
nonlocal competition and time delay. These works show that spatially inhomogeneous
bifurcating periodic solutions are stable, in contrast to models without nonlocal competition.
A predator–prey model with nonlocal competition can produce complex dynamics, such as
spatiotemporal patterns and stably spatially inhomogeneous periodic solutions [26–29].

Based on the above considerations, we introduce nonlocal competition among prey
into model (3) as follows.

∂u(x, t)
∂t

= d1∆u(x, t) + u(x, t)
(
(1−

∫
Ω

G(x, y)u(y, t)dy)(u(x, t)− a)− cv(x, t)
1 + sv(x, t)

)
,

∂v(x, t)
∂t

= d2∆v(x, t) +
rv(x, t)

1 + sv(x, t)
(1− v(x, t− τ)

u(x, t− τ)
), x ∈ Ω, t > 0

∂u(x, t)
∂ν̄

=
∂v(x, t)

∂ν̄
= 0, x ∈ ∂Ω, t > 0

u(x, θ) = u0(x, θ) ≥ 0, v(x, θ) = v0(x, θ) ≥ 0, x ∈ Ω̄, θ ∈ [−τ, 0].

(4)

The integral term
∫

Ω G(x, y)u(y, t)dy in the first equation of (4) accounts for nonlocal
competition among the prey individuals. The kernel function is of the following form:

G(x, y) =
1
|Ω| =

1
lπ

, x, y ∈ Ω,

which can be regarded as a measurement of the competition pressure at location x from
the individuals at another location (y), which is widely used by some scholars [26–28]. The
region Ω = (0, lπ) with l > 0 is used for the convenience of calculation. In this case, the
strength of the competition among all prey individuals is the same across the habitat.

The aim of this paper is to consider the dynamics of model (4) from the perspective of
stability and Hopf bifurcation and to study the effects of the Allee effect and fear effect on
population growth law using numerical simulation. This article is structured as follows. In
Section 2, we analyze the stability of the coexisting equilibrium and the existence of Hopf
bifurcation. In Section 3, we analyze the properties of Hopf bifurcation. In Section 4, we
perform some numerical simulations and analyze the results. In Section 5, we provide a
brief conclusion.

2. Stability Analysis

In [17], the authors found that system (4) had no less than one equilibrium, which was
noted as E∗(u∗, v∗). We can obtain the concrete form of u∗ by calculating the positive root
of the following equation:

su3 − (as + s− 1)u2 + (as + c− a− 1)u + a = 0 = 0. (5)
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For the completeness of the article, we provide the following lemma and a numerical
simulation (see Figure 1). In Figure 1, we can see that with the increase in parameter
a, the two positive equilibrium points degenerate into one positive equilibrium point.
However, when parameter a is greater than a certain critical value, the positive equilibrium
point disappears.

u1HaL

u2HaL

0.1 0.2 0.3 0.4 0.5
a

0.2

0.4

0.6

0.8

Population density

Figure 1. Positive roots of (5) with a under the following parameter settings: s = 0.1, c = 0.1, and
r = 0.25.

Lemma 1. If support (H1) holds, the following results are true for system (4).
1. If c < a(1− s) or c > a(1− s) + 1, s(a + 1) > 1:
(a). If D < 0, there are two distinct positive equilibria;
(b). If D = 0,
(ib). if A > 0, there exists a unique positive equilibrium;
(iib). if A = 0, there exists no positive equilibrium;

(c). If D > 0, there exists no positive equilibrium.
2. If c ≥ a(1− s), s(a + 1) ≤ 1, there exists no positive equilibrium.

A = (as + s− 1)2 − 3s(as + c− a− 1),

B = −(as + s− 1)(as + c− a− 1)− 9as,

C = (as + c− a− 1)2 + 3a(as + s− 1),

D = −B2 − 4AC.

(6)

According to [17], (u2, v2) is always the saddle point under this set of parameters. We
mainly study the stability and Hopf bifurcation of the equilibrium ((u1, v1)) in the following.

We linearize system (4) at E∗(u∗, v∗):

∂

∂t

(
u(x, t)
u(x, t)

)
= D

(
∆u(x, t)
∆v(x, t)

)
+ L1

(
u(x, t)
v(x, t)

)
+ L2

(
u(x, t− τ)
v(x, t− τ)

)
+ L3

(
û(x, t)
v̂(x, t)

)
, (7)

where

D =

(
d1 0
0 d2

)
, L1 =

(
a1 a2
0 0

)
, L2 =

(
0 0
b1 −b1

)
, L3 =

(
â 0
0 0

)
,

a1 = (1− u∗)u∗ > 0, a2 = − cu∗
(1 + su∗)2 < 0, b1 =

r
1 + su∗

> 0, â = −u∗(u∗ − a) < 0, (8)
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and û = 1
lπ

∫ lπ
0 u(y, t)dy.

Then, the characteristic equations of (7) are

λ2 + Pnλ + Qn + (Rn + b1λ)e−λτ = 0, n ∈ N0, (9)

where

P0 = −â− a1, Q0 = 0, R0 = −(â + a1 + a2)b1,

Pn = (d1 + d2)
n2

l2 − a1, Qn = d2
n2

l2

(
d1

n2

l2 − a1

)
,

Rn = b1

(
d1

n2

l2 − (a1 + a2)

)
, n ∈ N.

(10)

Let τ = 0; Equation (9) becomes

λ2 + (Pn + b1)λ + Qn + Rn = 0, n ∈ N0. (11)

We make the following hypothesis:

(H1) Pn + b1 > 0, Qn + Rn > 0, for n ∈ N0.

Under this hypothesis (H1), E∗(u∗, v∗) is locally asymptotically stable when τ = 0.
Next, we will discuss the case of τ > 0.

Lemma 2. If support (H1) holds, the following results are true for Equation (9):
1. There exists a pair of purely imaginary roots: ±iω+

n at τ
j,+
n for j ∈ N0 and n ∈W1;

2. There are two pairs of purely imaginary roots: ±iω±n at τ
j,±
n for j ∈ N0 and n ∈W2;

3. There exists no purely imaginary root for n ∈W3,
where ±iω±n , τ

j,±
n , W1, W2, and W3 are defined in (14) and (15).

Proof. Let iω (ω > 0) be a solution of Equation (9). Then,

−ω2 + iωPn + Qn + (Rn + b1iω)(cosωτ − isinωτ) = 0, n ∈ N0.

Obviously, cosωτ = ω2(Rn−b1Pn)−QnRn
R2

n+b2
1ω2 , sinωτ =

ω(PnRn−b1(ω
2−Qn))

R2
n+b2

1ω2 . This leads to

ω4 + ω2
(

P2
n − 2Qn − b2

1

)
+ Q2

n − R2
n = 0, n ∈ N0. (12)

Let z = ω2; then, (12) becomes

z2 + z
(

P2
n − 2Qn − b2

1

)
+ Q2

n − R2
n = 0, n ∈ N0. (13)

Let Hn = P2
n − 2Qn − b2

1, Jn = Qn + Rn, and Kn = Qn − Rn. Then, z± = 1
2 [−Hn ±√

H2
n − 4JnKn] are the roots of (13). If (H1) holds, Jn > 0 (n ∈ N0). Then, we can obtain

H0 = (â + a1)
2 − b2

1,

Hk =

(
a1 − d1

k2

l2

)2

+ d2
2

k4

l4 − b2
1, for k ∈ N

K0 = b1(â + a1 + a2) < 0,

Kk = d1d2
k4

l4 − (b1d1 + a1d2)
k2

l2 + (a1 + a2)b1, for k ∈ N.
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We define

S1 = {n|Kn < 0, n ∈ N0},
S2 = {n|Kn > 0, Hn < 0, H2

n − 4JnKn > 0, n ∈ N},
S3 = {n|Kn > 0, H2

n − 4JnKn < 0, n ∈ N},
(14)

and

ω±n =
√

z±n , τ
j,±
n =


1

ω±n
arccos(V(n,±)

cos ) + 2jπ, V(n,±)
sin ≥ 0,

1
ω±n

[
2π − arccos(V(n,±)

cos )
]
+ 2jπ, V(n,±)

sin < 0.

V(n,±)
cos =

(ω±n )2(b2Pn + Rn)−MnRn

R2
n + b2

1(ω
±
n )2

, V(n,±)
sin =

ω±n
(

PnRn + Qnb2 + b1(ω
±
n )2)

R2
n + b2

1(ω
±
n )2

.

(15)

It is easy to verify the conclusion in Lemma 2.

Lemma 3. Support (H1) is satisfied. Then, Re( dλ
dτ )|τ=τ

j,+
n

> 0, Re( dλ
dτ )|τ=τ

j,−
n

< 0 for n ∈
S1 ∪ S2 and j ∈ N0.

Proof. According to (9), we have

(
dλ

dτ
)−1 =

2λ + Pn + b1e−λτ

(Rn + b1λ)λe−λτ
− τ

λ
.

Then,

[Re(
dλ

dτ
)−1]

τ=τ
j,±
n

= Re[
2λ + Pn + b1e−λτ

(Rn + b1λ)λe−λτ
− τ

λ
]
τ=τ

j,±
n

= [
1

R2
n + b2

1ω2
(2ω2 + P2

n − 2Qn − b2
1)]τ=τ

j,±
n

= ±[ 1
R2

n + b2
1ω2

√
(P2

n − 2Qn − b2
1)

2 − 4(Q2
n − R2

n)]τ=τ
j,±
n

.

Therefore, Re( dλ
dτ )|τ=τ

j,+
n

> 0, Re( dλ
dτ )|τ=τ

j,−
n

< 0.

We denote τ∗ = min{τ0
n | n ∈ S1 ∪ S2}.

Naturally, we have the following theorem.

Theorem 1. Assume that (H1) holds; then, the following statements are true for system (4).
1. E∗(u∗, v∗) is locally asymptotically stable for τ > 0 when S1 ∪ S2 = ∅;
2. E∗(u∗, v∗) is locally asymptotically stable for τ ∈ [0, τ∗) when S1 ∪ S2 6= ∅;
3. E∗(u∗, v∗) is unstable for τ ∈ (τ∗, τ∗ + ε) for some ε > 0 when S1 ∪ S2 6= ∅;
4. Hopf bifurcation occurs at (u∗, v∗) when τ = τ

j,+
n (τ = τ

j,−
n ), j ∈ N0, n ∈ S1 ∪ S2.

Because stability switching is a highly concerned dynamic phenomenon [30–32], we pro-
vide the following remark about stability switching.

Remark 1. According to lemma 3, we know that Re( dλ
dτ )|τ=τ

j,+
n

> 0, Re( dλ
dτ )|τ=τ

j,−
n

< 0. If

W2 6= ∅ and there exist τ∗ = τ0,+
n1 < τ0,−

n1 , τ∗ = τ0,+
n1 < τ0,+

n2 < τ0,−
n2 < τ0,−

n1 , τ∗ = τ0,+
n1 <

τ0,+
n2 < · · · < τ0,+

nj < τ0,−
nj < · · · < τ0,−

n2 < τ0,−
n1 , or other alternating forms of τ

j,±
n . Then,

stability switching may exist.
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3. Properties of Hopf Bifurcation

From [33,34], we learned how to analyze the properties of Hopf bifurcation. For
fixed j ∈ N0 and n ∈ S1 ∪ S2, we define τ̃ = τ

j,±
n . Let ū(x, t) = u(x, τt) − u∗ and

v̄(x, t) = v(x, τt)− v∗. By ignoring the bar, (4) becomes
∂u
∂t

= τ[d1∆u + (u + u∗)
(

1− 1
lπ

∫ lπ

0
(u(y, t) + u∗)dy

)
(u + u∗ − a)− c(v + v∗)

1 + s(v + v∗)
],

∂v
∂t

= τ[d2∆v +
r(v + v∗)

1 + s(v + v∗)

(
1− v(t− 1) + v∗

u(t− 1) + u∗

)
].

(16)

Then, we rewrite (16) in the following form:
∂u
∂t

=τ[d1∆u + a1u + a2v− âû + α1u2 + (a− 2u∗)uû + α2uv + α3v2 + α4uv2 + α5v3] + h.o.t.,

∂v
∂t

=τ[d2∆v− ησv + b1u(t− 1)− b1v(t− 1) + β1u2(t− 1) + β2u(t− 1)v + β3u(t− 1)v(t− 1) + β4vv(t− 1)

+ β5u3(t− 1) + β6u2(t− 1)v + β7u(t− 1)v2 + β8u2(t− 1)v(t− 1)] + h.o.t.,

(17)

where α1 = 1− u∗, α2 = − c
(1+su∗)2 , α3 = csu∗

(1+su∗)3 , α4 = cs
(1+su∗)3 , α5 = − cs2u∗

(1+su∗)4 , β1 =

− r
u∗(1+su∗)

, β2 = r
u∗(1+su∗)2 , β3 = r

u∗(1+su∗)
, β4 = − r

u∗(1+su∗)2 , β5 = r
u2∗(1+su∗)

, β6 =

− r
u2∗(1+su∗)2 , β7 = − rs

u∗(1+su∗)3 , and β8 = − r
u2∗(1+su∗)

.

We define a space, X :=
{
(u, v)T : u, v ∈ H2(0, lπ), (ux, vx)|x=0,lπ = 0

}
, which is

called real-valued Sobolev. XC is the complexification of X, which has the form XC :=
X⊕ iX = {u + iv| u, v ∈ X}. Then, we define the inner product: < ũ, ṽ >:=

∫ lπ
0 u1v1dx +∫ lπ

0 u2v2dx, where ũ = (u1, u2)
T ∈ XC, ṽ = (v1, v2)

T ∈ XC.
We define the phase space, C := C([−1, 0], X), which is with the sup norm. Then,

we have ϕt ∈ C , ϕt(σ) = ϕ(t + σ) for σ ∈ [−1, 0]. To define the subspace of C , we
made the following definitions: α

(1)
n (u) = (γn(u), 0)T , α

(2)
n (u) = (0, γn(u))T , and αn =

{α(1)n (u), α
(2)
n (u)}, where {α(i)n (u)} is an orthonormal basis of X. Then, we define the

subspace of C as Bn := span{< ϕ(·), α
(j)
n > α

(j)
n |ϕ ∈ C , j = 1, 2}, n ∈ N0. For θ ∈ [−1, 0]

and ϕ ∈ C , the 2× 2 matrix function (ηn(θ, τ̃)) can satisfy the following: −τ̃D n2

l2 ϕ(0) +

τ̃L(ϕ) =
∫ 0
−1 dηn(θ, τ)ϕ(θ). Then, Equation (18) defines the bilinear form on C ∗ × C for

ψ ∈ C , φ ∈ C ∗.

(φ, ψ) = φ(0)ψ(0)−
∫ 0

−1

∫ θ

ξ=0
φ(ξ − θ)dηn(θ, τ̃)ψ(ξ)dξ, (18)

Let τ = τ̃ + µ. When µ = 0, the characteristic equation of the system has a pair
of purely imaginary roots (±iωn0), and the system undergoes Hopf bifurcation at (0, 0).
Assume that A represents the infinitesimal generators of the semigroup, and A∗ represents
the formal adjoint of A under the bilinear form (18).

We define

δ(n0) =

{
1 n0 = 0,
0 n0 ∈ N.

(19)

Let ηn0(0, τ̃) = τ̃[(−n2
0/l2)D + L1 + L3δ(nn0)], ηn0(−1, τ̃) = −τ̃L2, and ηn0(σ, τ̃) = 0

for σ ∈ [−1, 0]. We define p(θ) = p(0)eiωn0 τ̃θ (θ ∈ [−1, 0]) as the eigenfunction of A(τ̃)

for iωn0 τ̃, and q(ϑ) = q(0)e−iωn0 τ̃ϑ (ϑ ∈ [0, 1]) is the eigenfunction of A∗ for iωn0 τ̃. Let
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p(0) = (1, p1)
T , q(0) = M(1, q2), where p1 = 1

a2
(iωn0 + d1n2

0/l2 − a1 − âδ(n0)), q2 =
a2

iωn0+b1eiωn0 +d2n2/l2
, and M = (1 + p1q2 + τ̃q2b1(1− p1)e−iωn0 τ̃)−1. Then, (16) becomes

dU(t)
dt

= (τ̃ + µ)D∆U(t) + (τ̃ + µ)[L1U(t) + L2U(t− 1) + L3Û(t)] + F(µ, Ut, Ût), (20)

where

F(φ, µ) = (τ̃ + µ)


α1φ1(0)2 − (2u∗ − β)φ1(0)φ̂1(0) + α2φ1(0)φ2(0) + α3φ2(0)2 + α4φ3

1(0)
+α5φ2

1(0)φ2(0) + α6φ1(0)φ2
2(0) + α7φ3

2(0)
β1φ2

1(−1) + β2φ1(−1)φ2(−1) + β3φ2
2(−1) + β4φ3

1(−1) + β4φ2
1(−1)φ2(−1)

+β6φ1(−1)φ2
2(−1) + β7φ3

2(−1)

 (21)

for φ = (φ1, φ2)
T ∈ C and φ̂1 = 1

lπ

∫ lπ
0 φdx. Then, we decompose the space (C ) as

C = P ⊕ Q, where P = {zpγn0(x) + z̄ p̄γn0(x)|z ∈ C}, Q = {φ ∈ C |(qγn0(x), φ) =
0, and (q̄γn0(x), φ) = 0}. Then, (21) is rewritten as Ut = z(t)p(·)γn0(x) + z̄(t) p̄(·)γn0(x) +
ω(t, ·), and Ût =

1
lπ

∫ lπ
0 Utdx, where

z(t) = (qγn0(x), Ut), ω(t, θ) = Ut(θ)− 2Re{z(t)p(θ)γn0(x)}. (22)

We found that ż(t) = iωn0 τ̃z(t) + q̄(0) < F(0, Ut), βn0 >. Then, C0 and ω can have the
following form near (0, 0):

ω(t, θ) = ω(z(t), z̄(t), θ) = ω20(θ)
z2

2
+ ω11(θ)zz̄ + ω02(θ)

z̄2

2
+ · · · . (23)

We restrict the system to C0 such that ż(t) = iωn0 τ̃z(t) + g(z, z̄). Let g(z, z̄) = g20
z2

2 +

g11zz̄ + g02
z̄2

2 + g21
z2 z̄
2 + · · · . By direct computation, we have

g20 = 2τ̃M(ς1 + q2ς2)I3, g11 = τ̃M($1 + q2$2)I3, g02 = ḡ20,

g21 = 2τ̃M[(κ11 + q2κ21)I2 + (κ12 + q2κ22)I4],

where I2 =
∫ lπ

0 γ2
n0
(x)dx, I3 =

∫ lπ
0 γ3

n0
(x)dx, I4 =

∫ lπ
0 γ4

n0
(x)dx, ς1 = (a − 2u∗)δn0 +

(α1 + p1(α2 + α3 p1)), ς2 = e−2iτωn
(

β1 + 2β8 + eiτωn(β2 + 2β3β4)p1
)
, $1 = 1

4 (2α1 + 2(a−
2u∗)δn0 + 2α3 p̄1 p1 + α2( p̄1 + p1)), $2 = 1

4 e−iτωn(2eiτωn(β1 + 2β8) + (β2 + 2β3β4) p̄1 +

e2iτωn(β2 + 2β3β4)p1), κ11 = 2W(1)
11 (0)(2α1 + a(1 + δn0) − 2u∗(1 + δn0) + α2 p1) +

2 W(2)
11 (0)(α2 + 2α3 p1) + W(1)

20 (0)(2α1 + a(1 + δn0)− 2u∗(1 + δn0) + α2 p̄1)+ W(2)
20 (0)(α2 +

2α3 p̄1), κ12 = 2e−iτωn W(2)
11 (0)(β2 + 2β3β4) + eiτωnW(2)

20 (0)(β2 + 2β3β4) +

2e−iτωnW(1)
11 (−1)

(
2β1 + 4β8 + eiτωn(β2 + 2β3β4)p1

)
+ W(1)

20 (−1)(2eiτωn(β1 + 2β8) +

(β2 + 2β3β4) p̄1), κ21 = 1
2 p1(3α5 p̄1 p1 + α4(2p̄1 + p1)), κ22 = 1

2 e−2iτωn (e3iτωn β7 p2
1 + p̄1(β6 +

3β3β4 p1) + eiτωn(3β5 + β8 p̄1 + 2β8 p1 + 2β7 p̄1 p1) + e2iτωn p1(2β6 + 3β3β4( p̄1 + p1))).
Next, for θ ∈ [−1, 0], we compute W20 and W11 to obtain g21. According to (22),

we have
ω̇ = U̇t − żpγn0(x)− ˙̄zp̄γn0(x) = Aω + H(z, z̄, θ), (24)

where

H(z, z, θ) = H20(θ)
z2

2
+ H11(θ)zz + H02(θ)

z2

2
+ · · · . (25)

By comparing the coefficients of (23) with those of (24), we have

(A− 2iωn0 τ̃ I)ω20 = −H20(θ), Aω11(θ) = −H11(θ). (26)
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Then, we have

ω20(θ) =
−g20

iωn0 τ̃
p(0)eiωn0 τ̃θ − ḡ02

3iωn0 τ̃
p̄(0)e−iωn0 τ̃θ + E1e2iωn0 τ̃θ ,

ω11(θ) =
g11

iωn0 τ̃
p(0)eiωn0 τ̃θ − ḡ11

iωn0 τ̃
p̄(0)e−iωn0 τ̃θ + E2,

(27)

where E1 = ∑∞
n=0 E(n)

1 , E2 = ∑∞
n=0 E(n)

2 ,

E(n)
1 = (2iωn0 τ̃ I −

∫ 0

−1
e2iωn0 τ̃θdηn0(θ, τ̄))−1 < F̃20, βn >,

E(n)
2 = −(

∫ 0

−1
dηn0(θ, τ̄))−1 < F̃11, βn >, n ∈ N0,

< F̃20, βn >=


1

lπ F̂20, n0 6= 0, n = 0,
1

2lπ F̂20, n0 6= 0, n = 2n0,
1

lπ F̂20, n0 = 0, n = 0,
0, other,

< F̃11, βn >=


1

lπ F̂11, n0 6= 0, n = 0,
1

2lπ F̂11, n0 6= 0, n = 2n0,
1

lπ F̂11, n0 = 0, n = 0,
0, other,

and F̂20 = 2(ς1, ς2)
T , F̂11 = 2($1, $2)

T .
Thus, we can obtain

c1(0) =
i

2ωnτ̃
(g20g11 − 2|g11|2 −

|g02|2
3

) +
1
2

g21, µ2 = −Re(c1(0))
Re(λ′(τ̃))

,

T2 = − 1
ωn0 τ̃

[Im(c1(0)) + µ2Im(λ′(τ
j
n))], β2 = 2Re(c1(0)).

(28)

Theorem 2. The following results are true for any critical value (τ j
n (n ∈ S, j ∈ N0)).

1. If µ2 > 0 (or <0), the Hopf bifurcation is forward (or backward);
2. If β2 < 0 (or >0), the bifurcating periodic solutions on C0 are orbitally asymptotically stable

(or unstable);
3. If T2 > 0 (or T2 < 0), the period increases (or decreases).

4. Numerical Simulations

To analyze the influence of the fear effect parameter (s), the strong Allee effect parameter
(a), and gestation delay (τ) on model (4), we performed the following numerical simulations.

We fixed
c = 0.1, r = 0.25, d1 = 0.5, d2 = 0.1, l = 1.5.

The existence of a positive equilibrium is provided in Figure 1. Obviously, the equilib-
rium (u2, v2) is unstable through the following analysis, so we pay attention to the stability
of the equilibrium (u1, v1), which is positive. The bifurcation diagrams of model (4) with
parameters s and a are provided in Figures 2 and 3, respectively. In Figure 2, we can observe
that increasing parameter s can increase the stable region of the equilibrium and eliminate
the periodic oscillation. In Figure 3, we find that increasing parameter a can decrease the
stable region of the equilibrium and induce periodic oscillation.

If we choose a = 0.05 and s = 0.1, then model (4) has two coexisting equilibria:
(u1, v1) ≈ (0.9029, 0.9029) and (u2, v2) ≈ (0.0559, 0.0559). By direct calculation, the
hypothesis (H1) holds for (u1, v1) and does not hold for (u2, v2). Therefore, we mainly
analyze the coexisting equilibrium (u1, v1). By direct computation, we have S1 = {0, 1, 2}
and S2 = S3 = ∅, as well as τ∗ = τ0

1 ≈ 5.9478 < τ0
0 ≈ 6.1053. Theorem 1 shows that the

coexisting equilibrium (u1, v1) is locally asymptotically stable if τ ∈ [0, τ∗) (Figure 4). For
model (4), Hopf bifurcation occurs if τ = τ∗. According to Theorem 2, we have

µ2 ≈ 16.1916 > 0, β2 ≈ −0.6295 < 0, T2 ≈ 0.5672 > 0.
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Therefore, when τ > τ∗, the bifurcating periodic solutions are stably spatially inhomo-
geneous (Figure 5). When we continue to increase parameter τ, the bifurcating periodic
solutions are still stably spatially inhomogeneous (Figure 6).

0.1 0.2 0.3 0.4 0.5
s

6.0
6.5
7.0
7.5
8.0
8.5
9.0

Τ

Τ0HsL

Τ1HsL

Τ2HsL

Stable region

Hopf-Hopf bifurcation point

1 2 3 4 5
s

10

20

50

100

200

500

1000

Τ

Figure 2. Bifurcation diagram for s and τ with a = 0.05 at the coexisting equilibrium (u1, v1).

0.1 0.2 0.3 0.4 0.5
a

5.4

5.6

5.8

6.0

6.2

Τ

Τ0
0HaL

Τ1
0HaL

Τ2
0HaL

Stable region

Hopf-Hopf bifurcation point

0.1 0.2 0.3 0.4 0.5
a

6.

8.

10.

12.

Τ

Figure 3. Bifurcation diagram for a and τ with s = 0.1 at the coexisting equilibrium (u1, v1).

(a) (b)

Figure 4. Numerical simulations for model (4) when τ = 5.92 < τ0
1 and for the initial values of

u0(x) = u∗ + 0.001cosx, v0(x) = v∗ − 0.001cosx. (a) Prey. (b) Predator.
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(a)

(c)

(b)

(d)

Figure 5. Numerical simulations for model (4) when τ = 6.05 ∈ (τ0
1 , τ0

0 ) and for the initial values of
u0(x) = u∗ + 0.001cosx, v0(x) = v∗ − 0.001cosx. (a,c) Prey. (b,d) Predator.

(a)

(c)

(b)

(d)

Figure 6. Numerical simulations for model (4) when τ = 6.2 > τ0
1 and for the initial values of

u0(x) = u∗ + 0.001cosx, v0(x) = v∗ − 0.001cosx. (a,c) Prey. (b,d) Predator.

If we choose a = 0.2 and s = 0.1, then model (4) has two coexisting equilibria:
(u1, v1) ≈ (0.8811, 0.8811) and (u2, v2) ≈ (0.2290, 0.2290). By direct calculation, the
hypothesis (H1) holds for (u1, v1) and does not hold for (u2, v2). Therefore, we mainly
analyzed the coexisting equilibrium (u1, v1). By direct computation, we have S1 = {0, 1, 2}
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and S2 = S3 = ∅, as well as τ∗ = τ0
0 ≈ 5.8910 < τ1

0 ≈ 5.9517. Theorem 1 shows that the
coexisting equilibrium (u1, v1) is locally asymptotically stable if τ ∈ [0, τ∗). For model (4),
Hopf bifurcation occurs if τ = τ∗. Theorem 2 shows that

µ2 ≈ 43.8547 > 0, β2 ≈ −1.6464 < 0, T2 ≈ 10.3338 > 0.

Thus, when τ > τ∗, the bifurcating periodic solutions are stably spatially homogeneous
(Figure 7). When we continue to increase parameter τ, the bifurcating periodic solutions
are still stably spatially homogeneous (Figure 8).

(a) (b)

(c) (d)

Figure 7. Numerical simulations for model (4) when τ = 5.92 ∈ (τ0
0 , τ0

1 ) and for the initial values of
u0(x) = u∗ + 0.001cosx, v0(x) = v∗ − 0.001cosx. (a,c) Prey. (b,d) Predator.

(a)

(c)

(b)

(d)

Figure 8. Numerical simulations for model (4) when τ = 6.05 > τ0
1 and for the initial values of

u0(x) = u∗ + 0.001cosx, v0(x) = v∗ − 0.001cosx. (a,c) Prey. (b,d) Predator.
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5. Conclusions and Discussion

In this work, we propose a delayed self-diffusive predator–prey model with a strong
Allee effect on the prey and a fear effect on the predator. Unlike [17], in this paper, we
added a time delay, self-diffusion, and nonlocal competition to the model, which makes
the model more consistent with actual situations in nature and leads to homogeneous and
inhomogeneous periodic solutions. By analyzing the eigenvalue spectrum, we studied the
local stability of the coexisting equilibrium and the existence of Hopf bifurcation. By using
the method of the center manifold theorem and the normal form method, we investigated
the properties of Hopf bifurcation.

Next, we will discuss the influences of the fear effect and the strong Allee effect.
The following conclusions can be drawn. Increasing the fear effect on the predator is
beneficial to the uniform distribution of the prey and predator populations in space because
the stable region of coexistence increases with the increase in the fear effect, and with
the increase in the fear effect, a spatially inhomogeneous periodic solution appears first.
However, when the fear effect is greater than a critical value, a spatially homogeneous
periodic solution appears. However, increasing the strong Allee effect on the prey is
not beneficial to the stability of the coexisting equilibrium because the stable region of
coexistence decreases with the increase in the strong Allee effect. Whether the bifurcated
periodic solution is spatially homogeneous or inhomogeneous depends on the strong Allee
effect and the fear effect because with the increase in the strong Allee effect (or fear effect),
a spatially inhomogeneous periodic solution appears first. However, when the strong
Allee effect (or fear effect) is greater than a critical value, a spatially homogeneous periodic
solution appears.

The main findings show that a strong Allee effect and the fear effect can be used to
control the growth of prey and predator populations. For example, we could produce
predation risk and affect the reproduction of sparrows by broadcasting their natural en-
emies’ sounds (such as those of magpies, shrikes, sparrow eagles, etc.) during sparrows’
entire breeding season. In this way, we can protect sparrows from direct killing and ensure
that any effects on reproduction will only be ascribed to fear; this is the direction of our
future research. Moreover, we found a Hopf–Hopf bifurcation point in the course of our
research, which complicates the dynamic behavior of predator–prey systems and also
requires further investigation.

However, questions remains as to whether emulating fear during an entire breeding
season of a species is realistic, whether doing so would have other damaging consequences
on the behavior of the species, and whether it would result in the species becoming
acquainted with such sounds and no longer feeling fear (if the sounds perpetuate without
any predation, the prey might consider that there is no danger after a while). This is also
worth further research, especially in cooperation with biological experts.
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