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Abstract: The gravity force of a gravity field generated by a non-rotating level ellipsoid of revolution
enclosing mass M is given as a solution of a partial differential equation along with a boundary
condition of Dirichlet type. The partial differential equation is formulated herein on the basis of
the behavior of spherical gravity fields. A classical solution to this equation is represented on
the basis of spherical harmonics. The series representation of the solution is exploited in order to
conduct a rigorous asymptotic analysis with respect to eccentricity. Finally, the Dirichlet boundary
problem is solved for the case of an ellipsoid of revolution (spheroid) with low eccentricity. This
has been accomplished on the basis of asymptotic analysis, which resulted in the determination of
the coefficients participating in the spherical harmonics expansion. The limiting case of this series
expresses the gravity force of a non-rotating sphere.
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1. Introduction

The gravity field which is under consideration is generated by a non-rotating ellipsoid
of revolution with semiaxes (a, b), (with a > b).In our case, it has an equipotential surface
(level ellipsoid).According to [1], this gravity field was first given by Pizzetti in 1894 and
was further elaborated upon by C. Somigliana in 1929.Descriptions of this field can be
found in several books, for example, in [2–4].

According to Xiong Li [3], although the Earth is not an exact ellipsoid, the equipotential
ellipsoid furnishes a simple, consistent, and uniform reference system for all purposes of
geodesy, as well as geophysics.

The gravity field of an ellipsoid is of fundamental practical importance because it
is easy to handle mathematically, and the deviations of the actual gravity field from the
ellipsoidal “theoretical” or “normal” field are small. This splitting of the Earth’s gravity
field into a “normal” and a remaining small “disturbing” or “anomalous” field considerably
simplifies many problems, including the determination of the geoid (for geodesists) and
the use of gravity anomalies to understand the Earth’s interior (for geophysicists). In
addition [5], this kind of gravity field plays a significant role in planetary geodesy since
the shape of large bodies in the solar system can be well approximated by ellipsoids of
revolutions (case of planets) or [6,7] by triaxial ellipsoids (case of many natural satellites).

Various relations which were formulated for the description of this field gravity force
are given for the surface of the ellipsoid in several coordinate systems (see, for example, [8])
and for the outer space of the ellipsoid. Although these formulae are widely used, they are
not solutions to some partial differential equation (for example, in contrast to the gravity
potential, which is a solution of the Laplace equation).
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In this work, we prove the fact that the gravity force constitutes the solution toa suitable
boundary value problem consisting of a partial differential equation and a boundary
condition of the Dirichlet type. This is exploitable in the sense that the spectral analysis
of the boundary value problem offers the possibility to express the solution in terms of
adequate eigenfunctions involving the well-known Legendre functions.

Having introduced the appropriate basis inspired by the boundary value problem, the
gravity force acquires a very efficient representation. Via this representation, the unknown
character of the problem has been transferred from the gravity force to the coefficients
of expansion in terms of the structural elements related to the aforementioned partial
differential equation.

The eccentricity of the ellipsoid, which is a small parameter, plays an important
role in defining the deviation from the spherical case. Its particular involvement in the
problem via the implication of spherical functions is convenient for the application of
asymptotic techniques, establishing, in a rigorous manner, a robust determination of the
aforementioned expansion coefficients.

2. Formulation of a Partial Differential Equation Related to Spherical Gravity Force

Let S be a sphere of radius R and mass M. Let W be the gravity potential of this gravity
field. The equipotential surfaces of this field are spheres which have the same center as the
sphere S.

Let (X, Y, Z) be a Cartesian system, and the equation of the sphere is

X2 + Y2 + Z2 = R2 (1)

The gravity field outside of the sphere in Cartesian coordinates is a function:

ξ : V → <3 : (X, Y, Z)→ ξ(X, Y, Z) = (WX(X, Y, Z), WY(X, Y, Z), WZ(X, Y, Z)) (2)

where WX, WY, and WZ are the first-order partial derivatives of the potential W, and V is
the part of the three dimensional space which is outside of the sphere. The family of the
equipotential surfaces of this gravity field is spheres and can be represented as

W(X, Y, Z) = w , 0 < w ≤ w0 (3)

A point P with coordinates (XP,YP,ZP) is on an arbitrary equipotential surface with
gravity potential WP. This equipotential surface is also referred to as W = WP.

In addition, let (x, y, z) be a Cartesian system with its center at point P. The x-axis is
tangent to the meridian of the equipotential surface (pointing to the North Pole), the z-axis
is vertical to the tangent plane of the equipotential surface at point P (pointing outwards),
and y-axis makes the system right-handed. The rotation matrix between the axles X, Y, Z
and x, y, z is as follows [9]:X− XP

Y−YP
Z− ZP

 =

cos θ cos λ − sin λ sin θ cos λ
cos θ sin λ cos λ sin θ sin λ
− sin θ 0 cos θ


P

x
y
z

 (4)

The angles θ and λ are spherical angles, i.e.,

X = r sin θ cos λ
Y = r sin θ sin λ
Z = r cos θ

(5)

In this system, Wz(P) is not zero, and from the implicit function theorem, we knowthat
the vector equation of the equipotential surface W = WP around point P is

s : (−ε1, ε1)× (−ε1, ε1)→ <3 : (x, y)→ s(x, y) = (x, y, z(x, y)) (6a)
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The first-order partial derivatives of the above vector equation are

sx(x, y) =
(

1, 0,−Wx

Wz

)
(6b)

sy(x, y) =
(

0, 1,−
Wy

Wz

)
(6c)

The fundamental elements of the first kind [10] of the equipotential surface are defined
to be

E(x, y) ≡ E = 〈sx, sx〉 = 〈
(

1, 0,−Wx

Wz

)
,
(

1, 0,−Wx

Wz

)
〉 = W2

x + W2
z

W2
z

(7a)

F(x, y) ≡ F = 〈sx, sy〉 = 〈
(

1, 0,−Wx

Wz

)
,
(

1, 0,−
Wy

Wz

)
〉 =

WxWy

W2
z

(7b)

G(x, y) ≡ G = 〈sy, sy〉 = 〈
(

1, 0,−
Wy

Wz

)
,
(

1, 0,−
Wy

Wz

)
〉 =

W2
y + W2

z

W2
z

(7c)

The normal vector and the unit normal vector are

NC(x, y) =
∂s
∂x
× ∂s

∂y
=

(
Wx

Wz
,

Wy

Wz
, 1
)

(8)

N(x, y) = |Wz|
1√

W2
x + W2

y + W2
z

NC(x, y) = |Wz|
1

g(x, y)
NC(x, y) (9)

The gravity force g in the above relation is equal to

g(x, y) =
√

W2
x + W2

y + W2
z (10a)

The fundamental quantities of the second kind L, M, and N of the equipotential surface
describe the projections of the vectors

sxx , sxy , syy (10b)

on the axis of the unit normal vector of the equipotential surface. The above vectors are the
second-order partial derivatives of the vector equation of the equipotential surface. The
fundamental quantities L, M, and N [10] are defined to be

L(x, y) = 〈N, sxx〉 = |Wz|
−WxxW2

z + 2WxzWxWz −WzzW2
x

W3
z g

(11)

M(x, y) = 〈N, sxy〉 = |Wz|
WyWzWxz + WxWzWyz −WxyW2

z −WzzWxWy

W3
z g

(12)

N(x, y) = 〈N, syy〉 = |Wz|
−WyyW2

z + 2WyzWyWz −WzzW2
y

W3
z g

(13)

The expressions of the fundamental elements and gravity force at point P in (x, y, z)
coordinates are

E(0, 0) ≡ E(P) = 1 , F(P) = 0 , G(P) = 1 (14)

L(P) = − |Wz|
Wz

∣∣∣∣
P

Wxx

g

∣∣∣∣
P

(15)
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M(P) = − |Wz|
Wz

∣∣∣∣
P

Wxy

g

∣∣∣∣
P

(16)

N(P) = − |Wz|
Wz

∣∣∣∣
P

Wyy

g

∣∣∣∣
P

(17)

g(P) = |Wz(P)| (18)

The gravity vector at point P has the opposite direction of the z-axis; therefore,
Wz(P) < 0. Hence, the above three formulae become

L(P) =
Wxx

g

∣∣∣∣
P

(19)

M(P) =
Wxy

g

∣∣∣∣
P

(20)

N(P) =
Wyy

g

∣∣∣∣
P

(21)

Since F(P) = 0, the parametric lines x = 0 and y = 0 are vertical to one another.
The equipotential surface is a spherical surface; therefore, all directions are principal
directions, i.e.,

M(P) = 0⇒Wxy(P) = 0 (22)

The curvatures along the x-direction and y-direction, respectively, are

k1(P) =
Wxx

g

∣∣∣∣
P

(23)

k2(P) =
Wyy

g

∣∣∣∣
P

(24)

The first-order partial derivatives of the gravity force g (see Equation (10a)) at point P
in the (x, y, z) system are

gx(P) =
1

g(P)
(WxWxx + WyWxy + WzWxz)P (25)

gy(P) =
1

g(P)
(WxWxy + WyWyy + WzWyz)P (26)

gz(P) =
1

g(P)
(WxWxz + WyWyz + WzWzz)P (27)

The second-order partial derivatives of the gravity force g are defined as follows, if
Equations (10) and (18) are taken into account:

gxx(P) =
{
[W2

xx + W2
xz + WzWxxz]

1
g
− W2

xz
g

}
P

(28)

gyy(P) =

{
[W2

yy + W2
yz + WzWyyz]

1
g
−

W2
yz

g

}
P

(29)

gzz(P) =
{
[W2

xz + W2
yz + W2

zz + WzWzzz]
1
g
− W2

zz
g

}
P

(30)
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Adding the three above relations and taking into consideration that W is an harmonic
function,

Wxx + Wyy + Wzz = 0 (31)

Wxxz + Wyyz + Wzzz = 0 (32)

we find that

gxx(P) + gyy(P) + gzz(P) =
{
[W2

xx + W2
xz + WzWxxz]

1
g −

W2
xz

g +

+[W2
yy + W2

yz + WzWyyz]
1
g −

W2
yz

g + [W2
xz + W2

yz + W2
zz + WzWzzz]

1
g −

W2
zz

g

}
P

(33)

or

gxx(P) + gyy(P) + gzz(P) =

(
W2

xx
g

+
W2

yy

g
+

W2
xz

g
+

W2
yz

g

)
P

(34)

Along the plumbline which passes at point P, it holds that

dx
dt

∣∣∣∣
P
= Wx(P) = 0 (35)

dy
dt

∣∣∣∣
P
= Wy(P) = 0 (36)

dz
dt

∣∣∣∣
P
= Wz(P) (37)

d2x
dt2

∣∣∣∣
P
= (WxxWx + WxyWy + WxzWz)P = Wxz(P)Wz(P) (38)

d2y
dt2

∣∣∣∣
P
= (WxyWx + WyyWy + WyzWz)P = Wyz(P)Wz(P) (39)

d2z
dt2

∣∣∣∣
P
= (WxzWx + WyzWy + WzzWz)P = Wzz(P)Wz(P) (40)

The curvature of the plumbline at point P is equal to

kpl(P) =
‖ dr

dt

∣∣∣
P
× d2r

dt2

∣∣∣
P
‖

‖ dr
dt

∣∣∣
P
‖

3 =

∣∣Wyz
∣∣

Wz

∣∣∣∣∣
P

(41)

Since the plumblines of the gravity field ξ are straight lines, then kpl(P) = 0, and,
consequently, Wxz(P) = Wyz(P) = 0. The relation (34) now becomes

(gxx + gyy + gzz)P = (k2
1 + k2

2 + k2
pl)P

g(P) (42)

or
(∇2g)(P)− (k2

1 + k2
2)Pg(P) = 0 (43)

However, the value of the curvature along the x-direction and y-direction of the
spherical equipotential surface is equal to 1/R. Hence, Equation (43) becomes

(∇2g)(P)− 2
R2 g(P) = 0 (44)



Mathematics 2023, 11, 1974 6 of 19

The above relation holds for point P. This relation can be considered as an operator, i.e.,

∇2 − 2
r2 (45)

The above operator is invariant under rotations; therefore, the following partial differ-
ential equation holds:

∇2g− 2
r2 g = 0 (46)

where g is the gravity force.

3. Solution to the Partial Differential Equation

Expressing the above partial differential equation in spherical coordinates, (r, θ′, λ) becomes

grr +
2
r

gr +
1
r2 gθθ +

tan θ′

r2 gθ +
1

r2 cos2 θ′
gλλ −

2
r2 g = 0 (47)

x = r cos θ′ cos λ
y = r cos θ′ sin λ
z = r sin θ′

(48)

A classical solution to the above partial differential equation can be found with the
method of separating variables [11], hence:

g(r, θ, λ) = F1(r)F2(θ
′)F3(λ) (49)

and substituting to the equation, we have the following system:

F3,λλ + m2F3 = 0 (50)

cos2 θ′F2,θθ − 2 sin θ′F2,θ +

(
n(n + 1)− m2

cos2 θ′

)
F2 = 0 (51)

F1,rr +
2
r

F1,r −
[

2
r2 +

n(n + 1)
r2

]
F1 = 0 (52)

The first two differential equations have the following solutions:

F3(λ) = c31 cos mλ + c32 sin mλ (53)

F2(θ) = c21Pnm(sin θ′) + c22Qnm(sin θ′) (54)

The third differential equation is an Euler equation, and in order to find the general
solution, we set F1 = ra and the equation becomes

a(a− 1)ra−2 + 2ara−2 − 2
[

n(n + 1)
2

+ 1
]

ra−2 = 0 (55)

Since r is not zero, the unknown a will be determined from the second-order alge-
braic equation

a2 + a− 2
[

n(n + 1)
2

+ 1
]
= 0 (56)

a1 =
−1 +

√
9 + 4n(n + 1)

2
(57)

a2 =
−1−

√
9 + 4n(n + 1)

2
(58)



Mathematics 2023, 11, 1974 7 of 19

Hence, the solution to this Euler equation is

F1(r) = c1r
−1+
√

9+4n(n+1)
2 + c2r

−1−
√

9+4n(n+1)
2 (59)

We combine Equations (53), (54) and (59) to construct the separate eigensolutions F1(r),
F2(θ′),and F3(λ). The general solution to Equation (47) is expanded upon in terms of these
eigensolutions as follows:

g(r, θ′, λ) =
+∞

∑
n=0

r
−1+
√

9+4n(n+1)
2

n

∑
m=0

[anmPnm(sin θ′) cos mλ + bnmPnm(sin θ′) sin mλ] (60)

g(r, θ′, λ) =
+∞

∑
n=0

r
−1−
√

9+4n(n+1)
2

n

∑
m=0

[anmPnm(sin θ′) cos mλ + bnmPnm(sin θ′) sin mλ] (61a)

The coefficients αnm and bnm are real numbers. Making all coefficients equal to zero except
the term a00, we have two cases: In the first case, a00 = GM/a3, and Equation (60) becomes

gint(r, θ′, λ) =
GM
a3 r (61b)

which describes the gravity force inside of a sphere of radius a and mass M. In the second
case, a00 = GM, and Equation (61) becomes

gext(r, θ′, λ) =
GM
r2 (61c)

which describes the gravity force outside of a sphere of radius a and mass M. On the surface
of the sphere, Equations (61b) and (61c) give the same result, and, therefore, are compatible:

gext(a, θ′, λ) = gint(a, θ′, λ) =
GM
a2 (61d)

4. The Gravity Force Generated by a Non-Rotating Ellipsoid of Revolution as a
Solution of a Dirichlet Problem of the Suggested Partial Differential Equation

The level ellipsoid has constant gravity potential W0 on its surface. This surface is
described in geodetic coordinates [12] as

(x(φ, λ), y(φ, λ), z(φ, λ)) =
1√

1− e2 sin2 φ
(a cos φ cos λ, a cos φ sin λ, a(1− e2) sin φ) (62)

where e is the ellipsoid’s first eccentricity. The gravity force on the surface of the ellipsoid is
equal to [2]:

g(φ) =
aga cos2 φ + bgb sin2 φ√

a2 cos2 φ + b2 sin2 φ
(63)

The symbols “gα” and “gb” stand for the value of gravity force on the equator and at
the poles, respectively. Their values are equal to

ga =
GM
ab

(64)

gb =
GM
a2 (65)
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From Equation (62), we know that

r =
√

x2 + y2 + z2 ⇒ r =
a√

1− e2 sin2 φ

√
cos2 φ + (1− e2)2 sin2 φ (66)

From Equations (62) and (66), we derive the relationship between spherical latitude θ′

and geodetic latitude ϕ:

cos2 φ =
(1− e2)

2 cos2 θ′

sin2 θ′ + (1− e2)2 cos2 θ′
(67)

sin2 φ =
sin2 θ′

sin2 θ′ + (1− e2)2 cos2 θ′
(68)

Hence, the gravity force on the surface S of the ellipsoid becomes

g(θ) =
a(1− e2)

2ga cos2 θ′ + bgb sin2 θ′√
sin2 θ′ + (1− e2)2 cos2 θ′

√
a2(1− e2)2 cos2 θ′ + b2 sin2 θ′

(69)

The Dirichlet problem for the determination of the gravity force g is

∇2g− 2
r2 g = 0 (70)

g|S(θ) = g(θ) =
a(1− e2)

2ga cos2 θ′ + bgb sin2 θ′√
sin2 θ′ + (1− e2)2 cos2 θ′

√
a2(1− e2)2 cos2 θ′ + b2 sin2 θ′

(71)

x = r cos θ′

z = r sin θ′
(72)

Replacing Equations (67) and (68) in Equation (66),we obtain the following relation:

r =
a
√

1− e2
√

1− e2 cos2 θ′
(73)

Let D = (x0, z0) be an arbitrary point on the ellipse (see Figure 1). We consider point Z
with coordinates (x0e2, 0), whose position is illustrated in Figure 1 (e is the first eccentricity
of the ellipse).
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From the triangle ZOD, it holds that ϕ = θ′+ ω, and

sin φ = sin(θ′ + ω) = sin θ′ cos ω + cos θ′ sin ω (74)

Line segment OD is equal to r. Line segment DZ is equal to

DZ =
√

x2
0(1− e2)2 + z2

0 = r
√
(1− e2)2 cos2 θ′ + sin2 θ′ (75)

In addition,

OZ2 = OD2 + DZ2 − 2OD · DZ cos ω ⇒ cos ω =
OD2 + DZ2 −OZ2

2OD · DZ
(76)

cos ω = r2+r2[(1−e2)
2 cos2 θ′+sin2 θ′]−e4r2 cos2 θ′

2r2
√
(1−e2)

2 cos2 θ′+sin2 θ′
=

= 1+cos2 θ′+e4 cos2 θ′−2e2 cos2 θ′+sin2 θ′−e4 cos2 θ′

2
√
(1−e2)

2 cos2 θ′+sin2 θ′
= (1−e2 cos2 θ′)√

(1−e2)
2 cos2 θ′+sin2 θ′

(77)

Hence

cos ω =
1− e2 cos2 θ′√

1− e2(2− e2) cos2 θ′
(78)

and

sin ω =
e2 sin θ′ cos θ′√

1− e2(2− e2) cos2 θ′
(79)

Therefore,

P2n(sin φ) = P2n(sin(θ′ + ω)) = P2n(sin θ′ cos ω + cos θ′ sin ω)

= P2n

(
1−e2 cos2 θ′√

1−e2(2−e2) cos2 θ′
sin θ′ + e2 sin θ′ cos θ′√

1−e2(2−e2) cos2 θ′
cos θ′

)
= P2n

(
sin θ′−e2 cos2 θ′ sin θ′+e2 sin θ′ cos2 θ′√

1−e2(2−e2) cos2 θ′

)
= P2n

(
sin θ′√

1−e2(2−e2) cos2 θ′

) (80)

Equation (73) can also be written as

r =
b√

1− e2 cos2 θ′
(81)

sin θ′√
1−e2(2−e2) cos2 θ′

= sin θ′[1− e2(2− e2) cos2 θ′]
− 1

2

= sin θ′
[

1− e2(2−e2)
2 cos2 θ′ + 3e4(2−e2)

2

8 cos4 θ′ − 15e6(2−e2)
4

36 cos6 θ′ + . . .
] (82)

b√
1−e2 cos2 θ′

= b(1− e2 cos2 θ′)
− 1

2

= b
(

1 + e2

2 cos2 θ′ − 3e4

8 cos4 θ′ + 15e6

36 cos6 θ′ − 105e8

192 cos8 θ′ − . . .
) (83)

We intend to find a solution to this Dirichlet problem, making a first-level approxima-
tion of gravity force g while keeping only terms of e2. The gravity field of the level ellipsoid
has rotational symmetry and equatorial plane symmetry. Therefore, the solution contains
only Legendre polynomials of even degrees. For small eccentricities, we knowthat (we set
ε2 = e2(2 − e2))

P2n(sin φ) = P2n

(
sin θ′ − ε2

2
sin θ′ cos2 θ′

)
(84)
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and

P2n

(
sin θ′ − ε2

2
sin θ′ cos2 θ′

)
= P2n(sin θ′) + P2n

′(sin θ′)
ε2

2
sin θ′ cos2 θ′ (85)

The prime on Legendre polynomials means derivation with respect to the argument θ′.
Equation (83) becomes

b√
1− e2 cos2 θ′

= b
(

1 +
e2

2
cos2 θ′ − 3e4

8
cos4 θ′

)
(86)

The crucial Equation (69) must be subjected to similar approximation with respect to
eccentricity. We remark that

[sin2 θ′ + (1− e2)
2

cos2 θ′]
− 1

2
= (sin2 θ′ + cos2 θ′ − ε2 cos2 θ′)

− 1
2 = 1− ε2

2
cos2 θ′ (87)

[a2(1− e2)
2 cos2 θ′ + b2 sin2 θ′]

− 1
2
= b−1[(1− e2) cos2 θ′ + sin2 θ′]

− 1
2

= b−1(1− e2 cos2 θ′)
− 1

2 = 1
b

(
1 + e2

2 cos2 θ′ − 3e4

8 cos4 θ′
) (88)

a(1− e2)
2
ga cos2 θ′ + bgb sin2 θ′ = aga cos2 θ′ + bgb sin2 θ′ − ε2aga cos2 θ′ (89)

The Dirichlet condition now becomes

g(θ′) =
(

1− ε2

2 cos2 θ′
)(

1 + e2

2 cos2 θ′ − 3e4

8 cos4 θ′
)

·[(1− ε2) 1√
1−e2 ga cos2 θ′ + gb sin2 θ]

=
(

1 + e2

2 cos2 θ′ − 3e4

8 cos4 θ′ − ε2

2 cos2 θ′
)[

(1− ε2)
(

1 + e2

2 −
3e4

8

)
ga cos2 θ′ + gb sin2 θ

] (90)

Replacing ε2 = −e4 + 2e2, we have that(
1 + e2

2 cos2 θ′ − 3e4

8 cos4 θ′ − ε2

2 cos2 θ′
)[

(1− ε2)
(

1 + e2

2 −
3e4

8

)
ga cos2 θ′ + gb sin2 θ

]
=
(

1 + e2

2 cos2 θ′ − 3e4

8 cos4 θ′ − −e4+2e2

2 cos2 θ′
)
·[

(1 + e4 − 2e2)
(

1 + e2

2 −
3e4

8

)
ga cos2 θ′ + gb sin2 θ

]
=

=
(

1− e2

2 cos2 θ′ − 3e4

8 cos4 θ′ + e4

2 cos2 θ′
)
·[

(1 + e4 − 2e2)ga cos2 θ′ − e2(e2 + 2
)

ga cos2 θ′ + gb sin2 θ
]

(91)

Therefore,

g(θ′) = (1 + e4 − 2e2)ga cos2 θ′ − e2(e2 + 2)ga cos2 θ′ + gb sin2 θ

− e2

2 (1− 2e2)ga cos4 θ′ + e4ga cos4 θ′ − e2

2 gb cos2 θ′ sin2 θ′ − 3e4

8 ga cos6 θ′

− 3e4

8 gb cos4 θ′ sin2 θ′ + e4

2 ga cos4 θ′ + e4

2 gb cos2 θ′ sin2 θ′
(92)

Keeping only the e2 terms, we transform the above relation as follows:

g(θ′) = (1− 2e2)ga cos2 θ′ − 2e2ga cos2 θ′ + gb sin2 θ − e2

2 ga cos4 θ′

− e2

2 gb cos2 θ′ sin2 θ′ =

ga cos2 θ′ + gb sin2 θ − 4e2ga cos2 θ′ − e2

2 ga cos4 θ′ − e2

2 gb cos2 θ′ sin2 θ′
(93)

The solution is a series expansion of the form

g(r, θ′) =
+∞
∑

n=0
a2nr−

1+
√

9+4n(n+1)
2 P2n

(
sin θ′ − ε2

2 sin θ′ cos2 θ′
)

=
+∞
∑

n=0
a2nr−

1+
√

9+4n(n+1)
2 P2n(sin θ′) + ε2

2

+∞
∑

n=0
a2nr−

1+
√

9+4n(n+1)
2 P2n

′(sin θ′) sin θ′ cos2 θ′
(94)
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On the surface of the ellipsoid, it holds that (again, we keep only the e2 terms and
replace ε2 = −e4 + 2e2 on the right-hand side of the equation)

ga cos2 θ′ + gb sin2 θ − 4e2ga cos2 θ′ − e2

2 ga cos4 θ′ − e2

2 gb cos2 θ′ sin2 θ′

=
+∞
∑

n=0
a2nr−

1+
√

9+4n(n+1)
2 P2n(sin θ′) + e2

+∞
∑

n=0
a2nr−

1+
√

9+4n(n+1)
2 P2n′(sin θ′) sin θ′ cos2 θ

(95)

We intend to determine the coefficients a2n. Integrating both parts and substituting
the radial distance from the e2 approximation of Equation (86), the above relation becomes

1∫
−1

[ga cos2 θ′ + gb sin2 θ − 4e2ga cos2 θ′ − e2

2 ga cos4 θ′ − e2

2 gb cos2 θ′ sin2 θ′]

·P2m(sin θ′)d(sin θ′) =
1∫
−1

+∞
∑

n=0
a2n

[
b(1− e2 cos2 θ′)

− 1
2

]− 1+
√

9+4n(n+1)
2

·[P2n(sin θ′) + e2P2n
′(sin θ′) sin θ′ cos2 θ]P2m(sin θ′)d(sin θ′)

(96)

We first determine [13] the integrals involving the terms gacos2θ′ and gbsin2θ′on the
left-hand side of Equation (96). This material is shown in Appendix A.

For a chosen truncation value n = n0, Equation (96) can be written in a matrix form:

(A + k2B)X = C (97)

The involved terms are those for which it holds that n = m − 1, n = m, and n = m + 1.
Establishing

â2n =
a2n

b
1+
√

9+4n(n+1)
2

(98)

the matrix A is a diagonal matrix of the form

A =



1 0 0 0 . . . 0
0 A22 0 0 . . . 0
0 0 A33 0 . . . 0
0 0 0 . . . . . . 0

. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . An0n0

 (99)

Along a column m = const. and along a line n = const., the Aii terms (i = 1,2,3, . . . , n0)
are the fundamental terms of the expansions and constitute independent terms of the
eccentricity (see Equations (A20), (A25) and (A28)). Matrix B is a matrix of the form

B = k2



B11 B12 0 0 . . . 0
B21 B22 B23 0 . . . 0
0 B32 B33 B34 . . . 0
0 0 B43 B44 B45 . . .

. . . . . . . . . . . . . . . Bn0n0−1
0 0 . . . 0 Bn0−1n0 Bn0n0

 (100)

Matrix B, in its original form, has a very interesting structure. The principal diagonal
is built again with terms which are eccentricity insensitive, while the adjacent diagonals
have elements of order O(k2j) (see Equations (A24)–(A33)), where j refers to the diagonal
numbering (enumeration away from the principal one).

Omitting all terms which offer O(k4) contribution, the final form of matrix B is a
diagonal matrix. The matrix X is of the form

X =
[
â0 â2 â4 â6 . . . â2n0

]T (101)
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The matrix C is of the form

C =
[
c0 c1 c2 c3 . . . cn0

]T (102)

The term c0 involves the already-determined integral of Equation (96) for m = 0, i.e.,
for the integral

c0 =
1∫
−1

[ga cos2 θ′ + gb sin2 θ − 4e2ga cos2 θ′ − e2

2 ga cos4 θ′ − e2

2 gb cos2 θ′ sin2 θ′]

d(sin θ′)

(103)

Term l1 contains another family of calculated integrals:

c1 =
1∫
−1

[ga cos2 θ′ + gb sin2 θ − 4e2ga cos2 θ′ − e2

2 ga cos4 θ′ − e2

2 gb cos2 θ′ sin2 θ′]

·P2(sin θ′) + e2(ga cos2 θ′ + gb sin2 θ)P2
′(sin θ′) sin θ′ cos2 θ′d(sin θ′)

(104)

which appear on the left-hand side of Equation(96) for m = 1, and so on for the rest of the
coefficients ci. In conclusion, we have the following system:



1 0 0 0 . . . 0
0 A22 0 0 . . . 0
0 0 A33 0 . . . 0
0 0 0 . . . . . . 0

. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . An0n0

+

+k2



B11 B12 0 0 . . . 0
B12 B22 B23 0 . . . 0
0 B23 B33 B34 . . . 0
0 0 B43 B44 B45 . . .

. . . . . . . . . . . . . . . Bn0−1 , n0

0 0 . . . 0 Bn0 ,n0−1 Bn0 , n0







â0
â2
â4
â6
. . .

â2n0

 =



c0
c1
c2
c3
. . .
cn0



(105)

We suppose that b > 1, k2 << 1 (since e2 << 1); therefore, the above system can be
solved. It holds that

(A + k2B)X = C ⇒ [A(I + k2 A−1B)]X = C ⇒ X = [A(I + k2 A−1B)]−1C
⇒ X = (I − k2 A−1B)A−1C ⇒ X = (A−1 − k2 A−1BA−1)C

(106)

The above relation gives the coefficients in Equation (101) up to n = n0. It is worth
mentioning that in the limiting case for which e2 = 0 (b = a), Equation (96) becomes

1∫
−1

gaP2m(sin θ′)d(sin θ′) =
+∞

∑
n=0

a−
1+
√

9+4n(n+1)
2 a2n

1∫
−1

P2n(sin θ′)P2m(sin θ′)d(sin θ′) (107)

For n = 0 and m = 0,

1∫
−1

gaP0(sin θ′)d(sin θ′) = 2ga =
2GM

a2 (108)

+∞

∑
n=0

a−
1+
√

9+4n(n+1)
2 a2n

1∫
−1

P2n(sin θ′)P2m(sin θ′)d(sin θ′) =
1
a2 a0

1∫
−1

d(sin θ′) =
2a0

a2 (109)
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Therefore,
2GM

a2 =
2a0

a2 ⇒ a0 = GM (110)

Making all other coefficients a2n (n = 1, 2, 3, . . . ) equal to zero, we end up with the
gravity force of a sphere with mass M and radius a.

g(r, θ′) =
GM
a2 (111)

From system (105), we have the degenerate case


1 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . 0





a0
a2

0
0
0

. . .
0

 =



GM
a2

0
0
0

. . .
0

 (112)

Since the coefficients a2n (n = 1, 2, 3, . . . , n0) are known, the desired expression for the
gravity force of the non-rotating level ellipsoid of revolution is (see Equations (61a), (86)
and (94))

g(r, θ′) =
n0
∑

n=0
a2nr−

1+
√

9+4n(n+1)
2 P2n(sin θ′)

+e2
n0
∑

n=0
a2nr−

1+
√

9+4n(n+1)
2 P2n

′(sin θ′) sin θ′ cos2 θ′
(113)

or [14]

g(r, θ′) =
n0
∑

n=0
a2nr−

1+
√

9+4n(n+1)
2 P2n(sin θ′)

+e2
n0
∑

n=0
a2nr−

1+
√

9+4n(n+1)
2 (2n + 1) sin θ′[P2n(sin θ′) sin θ′ − P2n+1(sin θ′)]

(114)

or

g(r, θ′) =
n0
∑

n=0
a2nr−

1+
√

9+4n(n+1)
2

·
{

P2n(sin θ′) + e2(2n + 1) sin θ′[P2n(sin θ′) sin θ′ − P2n+1(sin θ′)]
} (115)

with (see Equation(81))

r ≥ b√
1− e2 cos2 θ′

(116)

5. Conclusions

In this work, we expressed the gravity force of a non-rotating level ellipsoid of rev-
olution, containing mass M, as a series of spherical harmonics. In the second section
(“Formulation of a partial differential equation which is related to the spherical gravity
force”), we demonstrated that it is possible to formulate a partial differential equation
which can be used in order to solve our problem.

In the third section, a classical solution to this partial differential equation was ex-
pressed as a series of spherical harmonics. A significant difference of this series (compared
to other similar series) was that the powers of the radial distance were irrational numbers
(except the first term).

In the fourth section, a Dirichlet problem was formulated in order to find an expression
for the gravity force, which was generated by a non-rotating level ellipsoid of revolution.
To solve this problem, we imposed a restriction, i.e., the eccentricity of the ellipsoid should
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be very small. This allowed us to make several approximations, which were for the radial
distance of the ellipsoid’s points, the Dirichlet condition, and the Legendre polynomials.

The purpose of future works should be to better define the level of accuracy of the
results by incorporating higher powers of eccentricity.

Funding: This research received no external funding.

Data Availability Statement: No data was used.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

The relation under consideration is

1∫
−1

[ga cos2 θ′ + gb sin2 θ − 4e2ga cos2 θ′ − e2

2 ga cos4 θ′ − e2

2 gb cos2 θ′ sin2 θ′]

·P2m(sin θ′)d(sin θ′) =
1∫
−1

+∞
∑

n=0
a2n

[
b(1− e2 cos2 θ′)

− 1
2

]− 1+
√

9+4n(n+1)
2

·[P2n(sin θ′) + e2P2n
′(sin θ′) sin θ′ cos2 θ]P2m(sin θ′)d(sin θ′)

(A1)

It holds that [13]

1∫
−1

P2m(sin θ′)ga cos2 θ′d(sin θ′) = ga
1∫
−1

P2m(sin θ′)(1− sin2 θ′)d(sin θ′)

= ga
1∫
−1

P2m(sin θ′)d(sin θ′)− ga
1∫
−1

P2m(sin θ′) sin2 θ′d(sin θ′)

= −ga
1∫
−1

P2m(sin θ′) sin2 θ′d(sin θ′) =


−ga

22m+1

3

(
m + 1

2m

)
(

2m + 3
2

) = 0
, m = 0, 1

0 , m ≥ 2

(A2)

1∫
−1

P2m(sin θ′)gb sin2 θ′d(sin θ′) = gb

1∫
−1

P2m(sin θ′) sin2 θ′d(sin θ′)

=


gb

22m+1

3

(
m + 1

2m

)
(

2m + 3
2

) = 0
, m = 0, 1

0 , m ≥ 2

(A3)

The remaining terms on the left-hand side of Equation (A1) can be written as

−e2
1∫
−1

(1− sin2 θ′)

[
4ga −

1
2

ga(1− sin2 θ′)− 1
2

gb sin2 θ′
]

P2m(sin θ′)d(sin θ′) (A4)

The above relation is split into two parts:

−e2
1∫
−1

[
4ga −

1
2

ga(1− sin2 θ′)− 1
2

gb
′ sin2 θ′

]
P2m(sin θ′)d(sin θ′) (A5)
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and

−e2
1∫
−1

(− sin2 θ′)
[
4ga − 1

2 ga(1− sin2 θ′)− 1
2 gb
′ sin2 θ′

]
P2m(sin θ′)d(sin θ′)

= −4e2ga
1∫
−1

P2m(sin θ′) sin2 θ′d(sin θ′)− e2

2 ga
1∫
−1

sin2 θ′P2m(sin θ′)d(sin θ′)

+ e2

2 ga
1∫
−1

sin4 θ′P2m(sin θ′)d(sin θ′)− e2

2 gb

1∫
−1

sin4 θ′P2m(sin θ′)d(sin θ′)

(A6)

For Equation (A5), we know that

1∫
−1

(
−4gae2 +

e2

2
ga

)
P2m(sin θ′)d(sin θ′) = 0 , m 6= 0 (A7)

1∫
−1

(
−4gae2 +

e2

2
ga

)
P2m(sin θ′)d(sin θ′) = −7e2ga , m = 0 (A8)

− e2

2 ga
1∫
−1

P2m(sin θ′) sin2 θ′d(sin θ′)

=


− e2

2 ga
22m+1

3

(
m + 1

2m

)
(

2m + 3
2m

) = 0
, m = 0, 1

0 , m ≥ 2

(A9)

e2

2
gb

1∫
−1

P2m(sin θ′) sin2 θ′d(sin θ′) =


e2

2 gb
22m+1

3

(
m + 1

2m

)
(

2m + 3
2

) = 0
, m = 0, 1

0 , m ≥ 2

(A10)

From Equation (A6), we know that

−4gae2
1∫
−1

P2m(sin θ′) sin2 θ′d(sin θ′)

=


−4e2 ga

22m+1

3

(
m + 1

2m

)
(

2m + 3
2m

) = 0
, m = 0, 1

0 , m ≥ 2

(A11)

− e2

2
ga

1∫
−1

sin2 θ′P2m(sin θ′)d(sin θ′) =


− e2

2 ga
22m+1

3

(
m + 1

2m

)
(

2m + 3
2

) = 0
, m = 0, 1

0 , m ≥ 2

(A12)
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e2

2 ga
1∫
−1

sin4 θ′P2m(sin θ′)d(sin θ′)

=


e2

2 ga
22m+1

5

(
m + 2

2m

)
(

2m + 5
4

)
0 , m ≥ 3

, m = 0, 1, 2
(A13)

− e2

2
gb

1∫
−1

sin4 θ′P2m(sin θ′)d(sin θ′) =


− e2

2 gb
22m+1

5

(
m + 2

2m

)
(

2m + 5
4

)
0 , m ≥ 3

, m = 0, 1, 2 (A14)

The following integral

1∫
−1

+∞
∑

n=0
a2n

[
b(1− e2 cos2 θ′)

− 1
2

]− 1+
√

9+4n(n+1)
2

·[P2n(sin θ′) + e2P2n
′(sin θ′) sin θ′ cos2 θ]P2m(sin θ′)d(sin θ′)

(A15)

was determined with the program Mathematica. Making the transformation

(1− e2 cos2 θ′) = (1− e2 + e2 sin2 θ′) = (1− e2)
(

1 + e2

1−e2 sin2 θ′
)

= (1− e2)(1 + k2 sin2 θ′)
(A16)

the integral in Equation (A15) is equal to

+∞
∑

n=0
a2n(1− e2)

1+
√

9+4n(n+1)
4 b−

1+
√

9+4n(n+1)
2

1∫
−1

(1 + k2 sin2 θ′)
1+
√

9+4n(n+1)
4

·[P2n(sin θ′) + e2P2n
′(sin θ′) sin θ′ cos2 θ]P2m(sin θ′)d(sin θ′)

(A17)

In order to proceed to the integration procedure, we set

I(sin θ′, k, 1+
√

9+4n(n+1)
4 , n, m)

=
1∫
−1

(1 + k2 sin2 θ′)
1+
√

9+4n(n+1)
4 [P2n(sin θ′) + e2P2n

′(sin θ′) sin θ′ cos2 θ]

·P2m(sin θ′)d(sin θ′)

(A18)

The determination of the above integral involved the hypergeometric function [15]

2F1(a, b, c, d) = 1 +
+∞

∑
l=1

a(a + 1) . . . (a + l − 1)b(b + 1) . . . (b + l − 1)
l!c(c + 1) . . . (c + l − 1)

dl (A19)

Integral (A18) can be determined for chosen indices m and n. We give some examples:
For n = m = 0,

I(sin θ′, k, 1, 0, 0) = 2 +
2k2

3
(A20)
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For n = 2 and m = 0,

I
(

sin θ′, k, 1+
√

33
4 , 2, 0

)
= 1

8(1+k2)

[
6(1 + k2)2F1

(
1
2 ,− 1+

√
33

4 , 3
2 ,−k2

)
−20(1 + 3k2)2F1

(
3
2 ,− 1+

√
33

4 , 5
2 ,−k2

)
+ (14 + 94k2)2F1

(
5
2 ,− 1+

√
33

4 , 7
2 ,−k2

)
+40k2

2F1

(
7
2 ,− 1+

√
33

4 , 9
2 ,−k2

)] (A21)

For n = m = 1,

I
(

sin θ′, k, 1+
√

17
4 , 1, 1

)
= − 1

4(1+k2)

[
−2(1 + k2)2F1

(
1
2 ,− 1+

√
17

4 , 3
2 ,−k2

)
+2(1 + 2k2)2F1

(
3
2 ,− 1+

√
17

4 , 5
2 ,−k2

)
+ (2 + 4k2)2F1

(
3
2 ,− 1+

√
17

4 , 5
2 ,−k2

)
+ 42

35 (3 + 11k2)2F1

(
5
2 ,− 1+

√
17

4 , 7
2 ,−k2

)
− 180

35 k2
2F1

(
7
2 ,− 1+

√
17

4 , 9
2 ,−k2

)] (A22)

For n = m = 2,

I
(

sin θ′, k, 1+
√

33
4 , 2, 2

)
= − 1

64(1+k2)

[
−18(1 + k2)2F1

(
1
2 ,− 1+

√
33

4 , 3
2 ,−k2

)
+120(1 + 2k2)2F1

(
3
2 ,− 1+

√
33

4 , 5
2 ,−k2

)
− (444 + 1404k2)2F1

(
5
2 ,− 1+

√
33

4 , 7
2 ,−k2

)
+
(

600 + 21240
7 k2

)
2F1

(
7
2 ,− 1+

√
33

4 , 9
2 ,−k2

)
−
(

2450+24850k2

9

)
2F1

(
9
2 ,− 1+

√
33

4 , 11
2 ,−k2

)
+ 9800

11 k2
2F1

(
11
2 ,− 1+

√
33

4 , 13
2 ,−k2

)] (A23)

The integral I for n = m include a constant term; for m = n + 1, only O(k4) terms; for
m = n + 2, only O(k6) terms; and so on. Since we do not have a general formula for the
integral I, we provide some examples which were solved by Mathematica. These examples
involve Taylor series (keeping the principal terms) of integral I for specific values of n
and m.

For n = 1 and m = 0,

T
[

I
(

sin θ′, k, 1+
√

17
4 , 1, 0

)]
= −454+110

√
17

−375+90
√

17
k2 − −146+34

√
17

−875+90
√

17
k4

+ −2682+626
√

17
−7875+1890

√
17

k6 + O(k8)
(A24)

For n = 1 and m = 1,

T
[

I
(

sin θ′, k, 1+
√

17
4 , 1, 1

)]
= 2

5 +
(

1
6 + 11

√
17

210

)
k2 +

(
− 3

280 +
√

17
56

)
k4

+
(

1349
18480 −

1289
√

17
55440

)
k6 + O(k8)

(A25)

For n = 1 and m = 2,

T
[

I
(

sin θ′, k, 1+
√

17
4 , 1, 2

)]
= 2

105 (−7 +
√

17)k2 +
(

599
3465 −

13
√

17
693

)
k4

+
(
− 53

308 + 3691
√

17
180180

)
k6 + O(k8)

(A26)

For n = 1 and m = 3,

T

[
I

(
sin θ′, k,

1 +
√

17
4

, 1, 3

)]
= −1 + 9

√
17

1001
k4 +

(
− 29

2310
+

1037
√

17
90090

)
k6 + O(k8) (A27)

For n = 2 and m = 2,

T
[

I
(

sin θ′, k, 1+
√

33
4 , 2, 2

)]
= 2

9 +
(

17
198 + 14

13
√

33

)
k2 + 12215+2151

√
33

360360 k4

+
(

4567
144144 −

61
336
√

33

)
k6 + O(k8)

(A28)
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For n = 2 and m = 1,

T
[

I
(

sin θ′, k, 1+
√

33
4 , 2, 1

)]
= 2

105 (21 +
√

33)k2 +
(
− 25

99 + 173
105
√

33

)
k4

+
(

107
252 −

2027
1092
√

33

)
k6 + O(k8)

(A29)

For n = 2 and m = 0,

T

[
I

(
sin θ′, k,

1 +
√

33
4

, 2, 0

)]
=

2
315

(35 + 19
√

33)k4 +

(
13
126
− 97

42
√

33

)
k6 + O(k8) (A30)

For n = 2 and m = 3,

T
[

I
(

sin θ′, k, 1+
√

33
4 , 2, 3

)]
= 5

429 (−15 +
√

33)k2 +
(

541
2574 −

421
546
√

33

)
k4

+
(
− 292517

1225224 + 34603
37128

√
33

)
k6 + O(k8)

(A31)

For n = 2 and m = 4,

T
[

I
(

sin θ′, k, 1+
√

33
4 , 2, 4

)]
= −

(
14

21879 + 14
39
√

33

)
k4

+
(
− 1397

37791 + 461
969
√

33

)
k6 + O(k8)

(A32)

For n = 2 and m = 5,

T

[
I

(
sin θ′, k,

1 +
√

33
4

, 2, 5

)]
=

(
− 10

969
+

350
12597

√
33

)
k6 + O(k8) (A33)
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