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Abstract: Federated Learning (FL) is a newly emerged federated optimization technique for dis-
tributed data in a federated network. The participants in FL that train the model locally are classified
into client nodes. The server node assumes the responsibility to aggregate local models from client
nodes without data moving. In this regard, FL is an ideal solution to protect data privacy at each
node of the network. However, the raw data generated on each node are unlabeled, making it
impossible for FL to apply these data directly to train a model. The large volume of data annotating
work prevents FL from being widely applied in the real world, especially for online scenarios, where
the data are generated continuously. Meanwhile, the data generated on different nodes tend to be
differently distributed. It has been proved theoretically and experimentally that non-independent
and identically distributed (non-IID) data harm the performance of FL. In this article, we design a
semi-federated active learning (semi-FAL) framework to tackle the annotation and non-IID problems
jointly. More specifically, the server node can provide (i) a pre-trained model to help each client node
annotate the local data uniformly and (ii) an estimation of the global gradient to help correct the
local gradient. The evaluation results demonstrate our semi-FAL framework can efficiently handle
unlabeled online network data and achieves high accuracy and fast convergence.

Keywords: network data; federated learning; unlabeled data; heterogeneous data
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1. Introduction

Along with the explosion of data in devices and network terminals, an ever-increasing
number of AI applications and services relying on these devices/terminals are emerging.
Nevertheless, subject to laws on data privacy protection, the traditional centralized or
decentralized training paradigm of the AI model is no longer feasible in many scenarios [1].
The phenomenon that devices/terminals are unwilling to share their private data which
hinders the centralized training is called “data island”. To this end, Federated Learning
(FL) [2], a novel AI model training and inference framework, is promoted and introduced
in many network edge intelligence applications, e.g., network anomaly detection [3] and
internet traffic classification [4]. As an effective solution to deal with the “data island”
problem and protect data privacy, FL aggregates various network nodes and uses their
local parameters or gradient information. Therefore, it trains

a global model together without data moving and sharing. It is practical with respect
to protecting data privacy.

In an FL application, the task is defined before learning begins, making FL a typical
task-driven learning paradigm. Thus, as a task-driven approach [5], supervised learning is
widely used to train a model with explicit functions in FL. For example, models for anomaly
detection and attack classification in cybersecurity [6] are all trained via supervised learning.
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Note that model training through supervised learning usually needs a large amount of
labeled data, whereas data generated in most network nodes lack labels. Consequently, FL
cannot be directly applied for secure model training with network data.

In previous work, efforts have been made to address the typical challenges of FL,
i.e., communication efficiency, heterogeneous data, limited computation, incentive mecha-
nism, etc. Unfortunately, almost all of the previous works have assumed that the local data
of each node are perfectly ready to be used for training. Network data are unprocessed
and unlabeled, while model training is completed via supervised learning with labeled
data in most scenarios. Thus, it is impractical to execute model training directly with local
unlabeled data.

Due to the particular characteristics of network data, we face several challenges when
applying FL to network data. First, it is hard to label all the data (namely data annotation)
in network applications. For those online network applications, e.g., network anomaly de-
tection [3], data are constantly being generated, making accurate data annotation extremely
costly. Thus, it is critical and challenging to minimize the cost of data annotation while
maximizing the model benefit. Second, due to the independence of data annotation on each
node, the annotated labels could be inconsistent, i.e., different labels may appear for the
same data class. For example, in labeling the types of network attacks, the denial of service
can be marked as “DoS” in a node, while “DDoS” is used as the label in another node.
This issue could bring trouble to FL model training since the standard and uniform label is
required for single-task model training. Nevertheless, besides the challenges of annotating
data, non-IID data are another crucial challenge in FL, especially in scenarios where local
data are unlabeled. As one of the basic technologies in the field of cyberspace security,
internet traffic classification is also affected by non-IID data [4]. In addition, experimental
studies in [7] show that even the existing state-of-the-art FL algorithms could not be optimal
in all scenarios of non-IID data.

In summary, although FL learning could solve the “data island” problem and protect
the privacy of data, it suffers from the gradient variance intensified by non-IID data. In
addition, the pre-trained model and the global gradient estimation require the server to
prepare the task-related data in advance. However, in reality, the local data are constantly
generated and unable to be fully labeled, which deviates from the assumption of much state-
of-art research. The above challenges have inspired us to design a new FL framework that
could jointly address data annotation and non-IID issues. In this way, the new framework
is expected to be used for network data. More specifically, we aim to answer the following
significant questions in this work: (i) Is it possible to reduce the annotation workload by
screening out the most crucial instances in current model training? (ii) Combined with
data annotation, is there any way to address the issue caused by non-IID data during the
federated optimization?

In this work, we pursue fast convergence of model training and high accuracy of
model inference with unlabeled non-IID network data. The paper makes the following
major contributions:

• To reduce the cost of data annotation, we introduce the idea of active learning [8]
that a pre-trained model is used to test current unlabeled data and the instances with
the wrong test result are selected to annotate manually. These manually annotated
instances are used to train and update the pre-trained model.

• To eliminate the negative impact of non-IID data, we consider designing a gradient
correction mechanism in which an unbiased estimation of the global gradient is used
to correct the local gradient so that the gradient variance caused by non-IID data can
be eliminated.

• Combining the advantages of active learning and FL, we design an accelerated semi-
federated active learning (semi-FAL) optimization framework to handle the unlabeled
and non-IID issues of local data using existing public historical data. The experiment
result shows the higher accuracy, faster convergence and robustness of the proposed
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framework semi-FAL compared with the other two typical federated learning frame-
works.

The rest of the article is organized as follows. The following section reviews related
literature. Next, the architecture design of semi-federated active learning is presented.
Following that, operation details of semi-FAL are given. Then, the proposed architectures
and mechanisms are evaluated in a case study. The discussion section compares our
method with others. We also discuss future work in this section. The final section concludes
the article.

2. Related Work

This section reviews existing solutions for training with unlabeled data in FL. Then, several
representative methods are introduced to reduce the negative impact of heterogeneous data.

2.1. Solutions of Unlabeled Data Challenge

Data annotation is a practical challenge for the implementations of FL since the cost
of annotation is generally high. Some studies have been conducted to find solutions for
training with unlabeled data [9–11]. Federated Active Learning (F-AL) [9] is proposed
to reduce the annotation cost through active learning and sample strategies. In F-AL,
instances would be scored by an auxiliary model trained via FL and the instances with the
highest scores would be annotated. Unsupervised learning is introduced in [10] and the
federated of unsupervised learning method (FedUL) is proposed. In FedUL, the unlabeled
client data are transformed into surrogate labeled data and the client model is modified to
form a surrogate supervised FL task so that existing FL methods can be used. Dong et al.
expected to make efficient use of distributed unlabeled medical data via a robust federated
contrastive learning framework [11].

2.2. Solutions of Statistical Challenge

The statistical heterogeneity caused by non-IID data is a crucial factor, which impacts
the practical application of FL. Currently, the performance of most FL algorithms can be
better guaranteed with the IID data [2], while the convergence would be slowed down
in non-IID settings [12]. A lot of studies have been conducted to tackle this issue [13–25].
These solutions are proposed from three aspects, i.e., local data, server setting and update
rule. Zhao et al. expected to improve the local non-IID data by sharing a small subset
dataset globally in [13]. Jeong et al. applied distillation and augmentation to improve
the data distribution structure [14]. In addition, local batch normalization is also used to
alleviate the feature shift caused by non-IID data in [16]. Instead of making an effort on
local data, Xie et al. propose a multi-center FL framework where clients are divided into
several groups according to the distribution of their local data [18]. In this multi-center
framework, each center trains a global model. Since clients in the same group have similar
distribution data, the global model trained in each center would not be heavily impacted by
non-IID data. This multi-center FL framework applies a kind of clustering idea. Based on
the clustering idea, more methods have been proposed, such as federated attentive message
passing [21], the experience-driven control framework, FAVOR [22]. Moreover, some novel
update rules have been designed to address the non-IID issue, such as SCAFFOLD [17],
FedProto [19], FedPD [25], ASO-Fed [24]. In SCAFFOLD, control variates are used to
reduce the impact of non-IID data. Instead of aggregating model parameters or gradients,
FedProto transmits and aggregates prototypes. FedPD is designed from the primal-dual
optimization perspective. An asynchronous update strategy is applied in ASO-Fed to tackle
the heterogeneous issue.

All the above solutions are proposed under the assumption that local data have been
annotated with the uniform rule, i.e., local data could be used to train the local and global
models directly. However, data are often unlabeled after being generated in practice,
especially in online scenarios. Motivated by the requirement to handle the challenges
of data annotation and heterogeneous data together, we design an accelerated federated
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optimization framework, semi-FAL, for unlabeled data in the online network. In our
semi-FAL, a server is expected to supply the pre-trained model and the global gradient
estimation for clients. For this target, a task-driven federated network building architecture
is designed to find a node with sufficient computing and data resources as the server
from the global perspective. Focus on the local of each node in the federated network, the
data-driven collaborative annotation and computation architecture is designed to address
the data annotation and non-IID data issues. Then, we propose two-phase model training
operations under the two designed architectures, respectively. In phase I, we strategically
match the data of network nodes with the task, choosing an optimal node with task-related
historical data and plenty of computing resources as the server and other nodes possessing
task-related data to form a client set. Accordingly, a basic network of semi-FAL consists
of a server node and several client nodes. In phase II, within the basic network formed in
phase I, the server would provide a pre-trained model to help select crucial instances and
clients would annotate these instances with the unified standard. In addition, an unbiased
estimation of the global gradient would be computed and delivered by the server to clients
to reduce the gradient variance caused by non-IID data.

3. Framework Design of Semi-Federated Active Learning
3.1. Framework Overview and Design Requirements

In the past decade, the scale of the network (e.g., IoT) has increased dramatically,
resulting in massive network data. As the essential part of understanding, managing and
operating modern wide-area, data-center and cellular networks [26], most of these data
would be unlabeled and non-IID. To realize the effective use of these data, we design a
novel FL framework to apply these unlabeled and non-IID data to train a model with fast
convergence and high accuracy, as illustrated in Figure 1. Specifically, the framework could
be divided into two phases: federated network building and collaborative learning. These
two phases have their focus. The former focuses on selecting suitable nodes from the global
network to construct the federated network. At the same time, the significant points of
the latter are the operations on each node to realize the collaborative data annotation and
model training with unlabeled non-IID data. In the design, some basic requirements need
to be followed.
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Figure 1. Semi-Federated Active Learning Framework: (a) task-driven servers and client selection;
(b) server operation; (c) client operation.

• Data Privacy Protection. As the most critical point in data development and utiliza-
tion, data privacy protection is the most important in our framework. To eliminate the
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risk of privacy leakage, the raw data of each network node would be only processed
and used locally. Moreover, the model and the gradient transmitted between the
server and the client would be encrypted.

• Robustness for different data and models. The models and data used to complete
the task are different in different scenarios. Thus, the framework we designed needs
to be able to deal with different datasets and models in various scenarios.

3.2. Global Perspective: Task-Driven Federated Network Building

Instead of randomly selecting a group of network nodes to build a federated network,
we adopt a task-driven server and client selection strategy. Generally speaking, by releasing
the task in the global network, we could receive the response from the target group where
various network nodes would be contained, such as mobile phones, smart cars, enterprises,
etc., as illustrated in Figure 1a. As the base of our semi-FAL, we would like to select a
node having sufficiently idle computing resources and task-related labeled data to be the
server of the federated network. Nodes with good infrastructures, such as enterprises, base
stations and edge servers, usually have more computing resources than those primarily
used to provide applications. In addition, data are produced constantly. For historical data,
it is made to be a public dataset, deleted or stored in some nodes. For example, historical
data that are related to the business would be accessible and found in an enterprise node.
Thus, an optimal node with plenty of computing resources and historical data could be
found among the target group as the server.

Note that the data stored in the server are expected to be labeled and IID so that
the model pre-trained by the server could distinguish each class of data and the global
gradient estimated by the server could be approximately unbiased. The IID data could
be constructed via data augmentation [27], such as flipping, translation, rotation, etc. In
some extreme scenarios, it may be hard to find a node with all data classes to construct
an IID dataset. Multiple nodes could be selected as a server group to pre-train a model
federatively. In addition, the performance of the pre-trained model would be limited since
the data used are just historical data; that is, the pre-training model can only be used as
a coarse-grained model to correctly identify the part of unlabeled data. In the following
section, we disclose more details on how to use the data in the server to help the data
annotation locally and to improve the performance of the final model. In this article, we
name the task-driven server and client selection mechanism phase I operation toward the
semi-FAL.

3.3. Local Perspective: Data-Driven Collaborative Annotation and Computation

As mentioned before, the server of our federated network would not just play a
role in delivering, collecting and aggregating models but also supply some necessary
computation with the data in the server to address the challenges of local unlabeled non-
IID data. To reduce the cost of data annotation and improve the performance of the model
effectively, we further design the collaborative annotation and computation architecture
for FL. Specifically, a data-driven collaborative annotation and computation architecture is
proposed to realize the unified annotation of local data and reduce the impact of non-IID
data on model training. Note that data annotation and model training are interleaved so
that this architecture would still be effective in online network settings.

The architecture and detailed design of a data annotation and training system in the
server and the client are shown in Figure 1b and Figure 1c, respectively. The design includes
two major components: the server and the client.

The Server: As the core of the federated network, the server would continue to under-
take the same basic tasks as the server in general FL: global model design and initialization,
global model broadcast, local model collection and local model aggregation. However,
unlike the server in general FL, the server in our design possesses an IID dataset with
labeled data. Thus, the initial model could be trained with this dataset before broadcasting
the global model to the client. In addition, an unbiased estimation of the gradient for the
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current global model would be computed with the dataset. Then, this gradient would be
delivered with the global model to the client together in each round. This global gradient
would play a significant role in reducing the gradient variance caused by non-IID data.

The Client: The client nodes are usually the terminal devices that are closest to the
users. The data of the client are often raw and produced constantly. To make use of the
data, it is necessary to annotate them first. However, manual annotation is costly; that is, it
would be unreasonable to annotate all the new data generated in each round manually. In
addition, although the cost of automatic annotation via a trained model is low, the effect
of annotation would be inferior. Thus, we draw on the idea of active learning. In each
round of training, the global model is first used to test the local data and then the instances
with wrong test results would be screened out to be annotated manually. After local data
annotation, local training is ready to be executed.

With the support of the above data annotation and model training mechanism, FL
could be executed with unlabeled and non-IID data. More details on the computing of semi-
FAL are disclosed below. Specifically, we name the data-driven collaboration annotation
and computation mechanism phase II operation toward the semi-FAL in this article.

4. Operations of Semi-Federated Active Learning

In this section, we first introduce relevant entities involved in the designed architec-
tures and then present details about the aforementioned two key phases in achieving the
semi-FAL.

4.1. Involved Entities

Cloud Server: A cloud server is selected to complete the overall coordination of the
framework. As illustrated in Figure 1, the cloud server is mainly used to choose suitable
nodes from the global network to build the federated network so that the training task can
be completed. Additionally, the construction of the federated network would directly affect
the total effect of the task with the network data.

Computation-intensive Nodes: The computation-intensive nodes mainly denote net-
work nodes with a well constructed computing environment, such as base stations, edge
servers and enterprises. In addition to sufficient computing resources, some historical data
would be stored in these nodes. The above conditions fit our requirements for the server in
our semi-FAL. Thus, these nodes are the primary candidates for the server in our federated
network. The filtering of these nodes could be done through the feedback of nodes after
releasing the task.

Terminal devices: Terminal devices are the main force of data generation and usually
play the role of the client in a federated network. They are closest to users and the real
environment of various applications. The model trained via FL or our semi-FAL would
finally be deployed in terminal devices to supply the intelligent services. Thus, these nodes
often have the most relevant data for target model training. However, data processing
and model training are both energy-intensive processes and the terminal device, especially
mobile devices, tends to have limited battery storage. The quality of user experience (QoE)
provided by the terminal device is determined by the service response and battery life of
the device. Thus, to ensure a good QoE, the computations performed locally are preferably
lightweight and fast so as not to occupy and consume too many computing and battery
resources. A meaningful way to reduce the cost of model training with unlabeled data is
that only the critical instances are selected to be annotated and used to train the local model.

4.2. Phase I: Establishment of Federated Network

Nodes Sets: To build a federated network for the current task, the first step is to
identify all nodes that are willing and able to participate in the task. According to the actual
conditions of these nodes and the requirements for the server in our semi-FAL, they could
be divided into two sets: the server set dominated by computation-intensive nodes and the
client set dominated by terminal devices. More factors, such as the connectivity with the
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other nodes, the cost to set this node as the server, etc., need to be considered for the server
node. For the client node, whether it could provide the manual annotation of the data also
needs to be considered.

Federated Network: A general federated network consists of a server and several
clients. Given the above two sets of nodes for building the federated network, an optimal
server node is expected to be selected to connect to as many client nodes as possible so
that more network data can be used federatively to optimize the global model. Thus, the
optimal server node would be selected from the server set through careful consideration
of task-related data reserves, idle computing resources, communication resources and
connectivity in the network.

Further Considerations: We also consider some practical constraints in building the
federated network. First, historical data are rare in some emerging fields, so it is hard to
find a node with plenty of computing and data resources as a server. At this point, we
could find a node in the client set via some incentives to serve as a server. Second, the scale
of the client is so large that a server is not enough to sustain the network. Our framework
still works when multiple servers are involved in building the federated network.

4.3. Phase II: Collaborative Data Annotation and Model Training

As we make use of the historical data for the model pre-training, the discrimination
accuracy of the model to fresh unlabeled data cannot be high. Therefore, in phase II,
we leverage the local data to federatively optimize the global model via iterating data
annotation, local training and global aggregation operations, thus further improving the
inference accuracy of the model.

Data Annotation (Minimize the Annotation Cost): In each client, to reduce the man-
ual annotation cost as much as possible, we need to find the critical instances for local
training in each round. As illustrated in Figure 2a, the global model accepted by the client
would be used to annotate local unlabeled data automatically at first. This process is equal
to the model test; that is, input the unlabeled instance into the model and then output
the label of the instance. After outputting the label of all local data, the owner of these
data would determine whether these labels are correct. In this process, the data of the
same label would be presented to the owner in the form of a batch so that the mislabeled
data can be easily detected. These mislabeled instances are the critical instances in this
round of training. Therefore, these instances would be selected and annotated manually
as shown in Lines 5–6 of Algorithm 1. Furthermore, this process could be replaced by
some intelligent methods, such as setting the probability thresholds of model output for a
different label. Note that this would lead to the worse non-IID issue where only the key
instances of each client are used to execute the local training. Thus, we design a gradient
correction mechanism to reduce the negative impact of non-IID data.

Model Training (Reduce the Impact of Non-IID Data): The essence of model training
is to continuously optimize model parameters to adapt to training instances. Thus, different
distributed data would correspond to different optimization directions. In other words, non-IID
data would cause gradient variance, which would make the model deviate from the global
optimal. The essence of reducing the negative impact of non-IID data is to eliminate the gradient
variance. Therefore, we design a novel gradient descent strategy as illustrated in Figure 2b.
After completing the data annotation, for an arbitrary node j, a local gradient estimation g∗j
would be computed with the key instances and the global model. In each epoch of local training,
the gradient descent could be formulated as the following:

wj,r+1 ← wj,r − ηt(∇ f (xr, wj,r)− g∗j + g̃)

where wj,r+1 denotes the local model in epoch r + 1, ηt is the learning rate, f j denotes the
local loss function, xr denotes the data instance and g̃ is the global gradient estimation.
Intuitively, we use the global gradient estimation g̃ calculated in the server as the main
body and the difference between the real, local gradient and the local gradient estimation
(∇ f (xr, wj,r)− g∗j ) as the increment to update the local model as illustrated in Figure 2c.
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The track in yellow is on behalf of the training process of local model wj,r toward wj,r+1 in
the general scenario. The grey line close to it denotes the local gradient estimation g∗j . The
red arrows between the two tracks are key updates for the local model. The dotted line in
grey represents the global gradient estimation g̃. The dotted line in blue is the direction
of using the global gradient. The semi-FAL tries to add the difference (red arrows) to the
global gradient to relieve the gradient variance and preserve the update feature of each
client. Therefore, the local model wj,r is conducted to be wj,r+1. In this way, the model in
each client node would be optimized in a uniform direction so that no gradient variance
would be generated. The update rule of global gradient g̃ and other calculation details are
given in Algorithm 1.

Algorithm 1 Semi-FAL: Semi-Federated Active Learning with Unlabeled Data

1: Input learning rate ηt for clients, learning rate αt for server, model w̃ and global gradient
g̃

2: for each iteration t = 1, 2, . . . , T do
3: St ← (sample a set of devices randomly)
4: for each device j ∈ St in parallel do
5: Yj = w̃(Xj)
6: x∗j ← (select the fault instances manually via Yj)
7: Picks x∗j and computes the local gradient g∗j
8: g∗j = ∇ f (x∗j , w̃)

9: wj,1 = w̃
10: for each local round r = 1, 2, . . . , R do
11: wj,r+1 ← wj,r − ηt(∇ f (xr, wj,r)− g∗j + g̃)
12: end for
13: ∆wj = wj,R − w̃
14: end for
15: server aggregation:
16: w̃← w̃ + αt

1
|St | ∑j∈St ∆wj

17: g̃ = g̃ + 1
|St | ∑j∈St g∗j
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…

… …

…

Global 
Model

<latexit sha1_base64="snSnoX1ZIivuemdUZ1XCEx0IKR8="></latexit>w
(r+1),⇤
j

<latexit sha1_base64="lfql2Sx88cCpA2UsJknyiNWbX8Y="></latexit>wj
(r+1)

<latexit sha1_base64="R9enHtKMXBUbv0f5w9vn6sm1Cf4="></latexit>

g⇤
j

<latexit sha1_base64="nEsKoOwcqMpF6eOsFFNmF8ql1SE="></latexit>

g̃

Local training

<latexit sha1_base64="U3WyITiQiPr7ePjDcN6BjNwfBr8="></latexit>

w
(r)
j

1

2 3

1 Annotate data automatically with
global model.

2 Select mislabeled data.

3 Annotate the data manually.

Local gradient 
estimation

Local gradient 
in each epoch

…

… …

…

…

… …

…

-

+
=

Update 
model

Gradient 
correction

…

… …

…

(a) (b) (c)

…

… …

…

…

… …

…

…

… …

…

…

… …

…

…

… …

…

…

… …

… …

… …

…

…

… …

…

Figure 2. Detailed design of the collaborative data annotation and model training architecture in
each client. (a) The annotation process of semi-FAL. The mislabeled data would be picked and
labeled manually after being labeled by the model. (b) The model training process of semi-FAL. The
semi-FAL uses gradient correction to direct the local gradient. (c) The update direction of local model.

Further Considerations: We further consider some practical considerations during the
data annotation and the model training operations. Even if the semi-FAL could accelerate
the process that experts label the new data, it still requires the expert to browse all labeled
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results generated via the model. Moreover, the framework needs to exchange information
between the server node and client nodes. This might arouse the risk of being attacked.
Security assurance and communication efficiency are essential to the implementation of FL
in reality. To address these issues, we propose some ideas.

First, to ensure that each round of training could be completed quickly, the maximum
amount of data to be annotated in each client should be determined by the local computing
power. Second, as the model and the global gradient are delivered to the client, the cost of
communication in our framework would be higher. Thus, the compression of the global
model and the global gradient should be executed via lossless compression techniques,
such as Sparse Ternary Compression [28] and Sparse Dithering [29], before broadcast. Third,
due to the data of the server being historical data, as new data are generated, the global
gradients calculated using the data of the server would be biased. Therefore, we could
consider computing an unbiased global gradient estimation in a client node with IID data.

5. A Case Study
5.1. Experimental Setting

Scenario: In this case study, we consider completing online image classification tasks
with a federated network consisting of 1 server and 100 clients. A small IID dataset is
pre-deployed in the server to simulate the historical data and this dataset is labeled. For the
client, we control the increase of the local data in each round and these data are unlabeled.
To make the experiment more realistic, the data added to each client node in each round
would match the distribution of the local historical data.

Datasets: We choose two classical image classification datasets, MNIST (http://yann.
lecun.com/exdb/mnist/, accessed on 26 August 2022) and Fashion-MNIST (https://github.
com/zalandoresearch/fashion-mnist, accessed on 26 August 2022), to evaluate the perfor-
mance of our semi-FAL. MNIST is a handwritten digit dataset containing 60,000 train-
ing instances and 10,000 test instances. The Fashion-MNIST dataset consists of 60,000
28× 28 greyscale images in 10 classes, with 6000 images per class. To investigate the ro-
bustness of our proposed framework for non-IID data, two data setting schemes are given: (1)
IID setting: an equal amount of data is allocated to each client randomly. (2) Non-IID setting:
to simulate non-IID data, the dataset is always divided and distributed to clients manually. In
our design, the data are sorted via labels and then two classes of data are assigned to each
client. Note that, to simulate the sequential data in an online network, we control the local
data of each client increasing constantly.

Model: We design two models, logistic regression (LR) for MNIST and convolutional
neural network (CNN) for Fashion-MNIST, in our experiments. Specifically, the CNN is
designed with two 5× 5 convolution layers (the first with 32 channels, the second with 64,
each followed with 2× 2 max pooling), a fully connected layer with 512 units and ReLu
activation and a final softmax output layer (1,663,370 total parameters).

Benchmarks: We compare the performance of our semi-FAL with two typical FL
frameworks, FedAvg [2] and SCAFFOLD (Stochastic Controlled Averaging algorithm) [17].
To ensure the fairness of the comparison, the pre-trained model is set as the initial model
in each setting. Specifically, the model test accuracy from the following four settings
is compared:

• Semi-FAL(UD): The model is trained with unlabeled data (UD) and local training is
executed with the key instances.

• Semi-FAL(LD): The model is trained with labeled data (LD) and local training is
executed with all local data.

• FedAvg: The model is trained with all local labeled data and local models are directly
aggregated via weighted average without gradient correction.

• SCAFFOLD: The model is trained with all locally labeled data through SCAFFOLD. It
uses a control variance to correct the ’client-drift’ in its local updates.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
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5.2. Results and Analysis

Semi-FAL yields higher accuracy with benchmarks. Figure 3 summarizes the per-
formance of semi-FAL compared with benchmarks. Figure 3a shows the result of applying
different FL models using MNIST, LR. The four models using semi-FAL, no matter whether
it is non-IID or IID and unlabeled data or labeled data, could obtain the highest accuracy
after 100 iterations. Other contrast methods behave much worse than semi-FAL. The basic
model FedAvg using non-IID data achieves the lowest accuracy. This means simply taking
the average of the gradient generated from each client node might be inefficient when
data are non-IID; more iterations should occur to increase the accuracy. Figure 3b is the
result of using Fashion-MNIST, CNN also through 100 iterations. Under this scenario, all
of the models behave relevantly unstably. Semi-FAL still obtains the best performance.
Figure 3a,b both show that under the same model and dataset, the performance of the
model trained via semi-FAL with unlabeled non-IID data is close to that of the model
trained with unlabeled IID data. This strongly proves the effectiveness of the gradient
correction mechanism in overcoming non-IID data issues.
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(a) MNIST, LR (b) Fashion-MNIST, CNN

Figure 3. The result of the case study: test accuracy vs. iteration rounds for the MNIST, LR and
FEMNIST, CNN in IID and non-IID data settings.

Semi-FAL achieves faster convergence. In the MNIST, LR scenario, the semi-FAL(UD)
using IID data could obtain high accuracy over 0.8 within 20 iterations but FedAvg and
SCAFFOLD are unable to obtain the proximate performance even beyond 100 iterations. In
the Fashion-MNIST, CNN scenario, the dotted lines show other methods need many more
iterations than semi-FAL if they want to achieve accuracy at the same level. In addition, as
is shown in the graph, the semi-FAL even performs better in unlabeled data than in labeled
data scenarios. That is because semi-FAL could achieve faster convergence and high test
accuracy with unlabeled data than with labeled data. The difference between these two
settings is that a critical instance selection process would be executed before local training
with unlabeled data and only the critical instances would be annotated and used to train
the local model, while all labeled data would be used to train the model directly in the
setting of labeled data. This scheme can select the most helpful instances for current global
model training. In fact, this scheme can also be used in labeled data settings to accelerate
the convergence of the model.

The performance of semi-FAL is robust to the model and data. We apply two dif-
ferent models, LR and CNN, and two different datasets, MNIST and Fashion-MNIST, to
execute the empirical studies. The results in Figure 3 demonstrate that semi-FAL could
achieve the best performance among all benchmarks under different model and data condi-
tions. Note that, in all scenarios of our case study, the local data of each node are added
constantly to simulate the online situation. Our semi-FAL is also robust to the online
network data. However, it is shown that when applying MNIST, LR semi-FAL could
achieve much higher accuracy than applying Fashion-MNIST, CNN after 100 iterations.
This is common for all frameworks; the possible reason might be that the efficiency of
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the CNN is impacted by federated learning and needs more iterations to obtain higher
accuracy. The results inspire us to do more research on applying semi-FAL to different
models and datasets.

6. Discussion

In the experiments, we compared semi-FAL with two typical FL frameworks. The results
show the efficiency of semi-FAL. There are seldom other methods that struggle to combine
active learning and FL. Ref. [30] assumes the participating users are willing to share requested
data between neighbor users. This puts emphasis on using active learning to select critical data
that helps achieve balanced data distribution. However, if the requested data are sensitive, it
would violate the principle of FL. Ref. [31] applies federated active learning on medical images.
However, the goal of the work is to accelerate the training phase of federated learning but it
ignores the impact of non-IID data. Furthermore, it only uses the extant active learning method
and federated learning method, while semi-FAL designs a new method to solve the gradient
variance. Ref. [32] also attaches importance to the application of federated active learning rather
than the improvement of the method. Although ref. [33] touches upon the phenomenon of
non-IID data, the authors do not solve it explicitly. Our semi-FAL is a universal framework that
could be treated as the complement of these methods.

Future work. There are some possible constraints as discussed in Sections 4.2 and 4.3;
we would try to solve them in the next step. In addition, We use typical datasets and
models in the experiments while there are lots of new investigations that use deep learning
methods to process complex images, e.g., [34]. We could do further research concerning
applying semi-FAL on various different models and datasets to check its consistent effi-
ciency. Through our investigation, we found that federal learning is applied to different
scenarios: intrusion detection [33], network traffic prediction [4,35], etc. Our semi-FAL
shows its superiority on the benchmarks, but its performance in the real environment is
still unknown. The gap between reality and experiment is considerable. The predictable
challenges derive from the inherent characteristics of FL and we should make further
improvements in communication efficiency. In the future, we would use the proposed
framework to solve practical problems in reality and test its robustness.

7. Conclusions

In this article, we propose the semi-federated active learning framework to realize
accelerated federated optimization for online network data. It is an FL framework designed
for training with unlabeled network data. The global model annotates the unlabeled local
data automatically. The mislabeled data are viewed as critical instances and they are used
to train the local model. The server would estimate the global gradient and use it to correct
the local gradient to reduce the negative impact of non-IID data. Results from a case study
demonstrate that semi-FAL is effective in dealing with the data annotation and non-IID
data issues to realize the fast convergence and high accuracy of model training.

Author Contributions: Software, Y.H.; Writing—original draft, Y.Z.; Writing—review & editing, J.S.
and R.H.; Project administration, W.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Excellent Youth funding of the Hunan Provincial Education
Department [Grant No. 22B0938] and Hunan Province Legal Youth Research Project [Grant No.
22HNFX-D-004].

Data Availability Statement: The data supporting our reported results is open dataset. MNIST could
be found in http://yann.lecun.com/exdb/mnist/, accessed on 21 March 2023, and Fashion-MNIST
could be found in https://github.com/zalandoresearch/fashion-mnist, accessed on 21 March 2023.

Conflicts of Interest: The authors declare no conflict of interest.

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist


Mathematics 2023, 11, 1972 12 of 13

References
1. Yang, Q.; Liu, Y.; Cheng, Y.; Kang, Y.; Chen, T.; Yu, H. Federated learning. Synth. Lect. Artif. Intell. Mach. Learn. 2019, 13, 1–207.
2. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A. Communication-efficient learning of deep networks from

decentralized data. In Proceedings of the Artificial Intelligence and Statistics, PMLR, Ft. Lauderdale, FL, USA, 20–22 April 2017;
pp. 1273–1282.

3. Zhao, Y.; Wang, L.; Chen, J.; Teng, J. Network anomaly detection based on federated learning. J. Beijing Univ. Chem. Technol. Nat.
Sci. 2021, 48, 92–99.

4. Mun, H.; Lee, Y. Internet traffic classification with federated learning. Electronics 2020, 10, 27. [CrossRef]
5. Sarker, I.H. Machine learning: Algorithms, real-world applications and research directions. SN Comput. Sci. 2021, 2, 1–21.
6. Alazab, M.; Swarna Priya, R.M.; Parimala, M.; Reddy, P.; Gadekallu, T.R.; Pham, Q.V. Federated learning for cybersecurity:

Concepts, challenges and future directions. IEEE Trans. Ind. Inform. 2021, 18, 3501–3509. [CrossRef]
7. Li, Q.; Diao, Y.; Chen, Q.; He, B. Federated learning on non-iid data silos: An experimental study. arXiv 2021, arXiv:2102.02079.
8. Settles, B. Active Learning Literature Survey; University of Wisconsin: Madison, WI, USA, 2009.
9. Ahn, J.H.; Kim, K.; Koh, J.; Li, Q. Federated Active Learning (F-AL): An Efficient Annotation Strategy for Federated Learning.

arXiv 2022, arXiv:2202.00195.
10. Lu, N.; Wang, Z.; Li, X.; Niu, G.; Dou, Q.; Sugiyama, M. Federated Learning from Only Unlabeled Data with Class-Conditional-

Sharing Clients. arXiv 2022, arXiv:2204.03304.
11. Dong, N.; Voiculescu, I. Federated contrastive learning for decentralized unlabeled medical images. In Proceedings of the

International Conference on Medical Image Computing and Computer-Assisted Intervention, Strasbourg, France, 27 September–1
October 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 378–387.

12. Li, X.; Huang, K.; Yang, W.; Wang, S.; Zhang, Z. On the convergence of fedavg on non-iid data. arXiv 2019, arXiv:1907.02189.
13. Zhao, Y.; Li, M.; Lai, L.; Suda, N.; Civin, D.; Chandra, V. Federated learning with non-iid data. arXiv 2018, arXiv:1806.00582.
14. Jeong, E.; Oh, S.; Kim, H.; Park, J.; Bennis, M.; Kim, S.L. Communication-Efficient On-Device Machine Learning: Federated

Distillation and Augmentation under Non-IID Private Data. arXiv 2018, arXiv:1811.11479v1.
15. Briggs, C.; Fan, Z.; Andras, P. Federated learning with hierarchical clustering of local updates to improve training on non-IID data.

In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–9.
16. Li, X.; Jiang, M.; Zhang, X.; Kamp, M.; Dou, Q. Fedbn: Federated learning on non-iid features via local batch normalization.

arXiv 2021, arXiv:2102.07623.
17. Karimireddy, S.P.; Kale, S.; Mohri, M.; Reddi, S.; Stich, S.; Suresh, A.T. Scaffold: Stochastic controlled averaging for federated

learning. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 5132–5143.
18. Xie, M.; Long, G.; Shen, T.; Zhou, T.; Wang, X.; Jiang, J.; Zhang, C. Multi-center federated learning. arXiv 2021, arXiv:2108.08647.
19. Tan, Y.; Long, G.; Liu, L.; Zhou, T.; Lu, Q.; Jiang, J.; Zhang, C. Fedproto: Federated prototype learning over heterogeneous devices.

arXiv 2021, arXiv:2105.00243.
20. Li, T.; Sahu, A.K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V. Federated optimization in heterogeneous networks. Proc.

Mach. Learn. Syst. 2020, 2, 429–450.
21. Huang, Y.; Chu, L.; Zhou, Z.; Wang, L.; Liu, J.; Pei, J.; Zhang, Y. Personalized cross-silo federated learning on non-iid data. In

Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 7865–7873.
22. Wang, H.; Kaplan, Z.; Niu, D.; Li, B. Optimizing federated learning on non-iid data with reinforcement learning. In Proceedings

of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications, Virtual, 6–9 July 2020; pp. 1698–1707.
23. Shoham, N.; Avidor, T.; Keren, A.; Israel, N.; Benditkis, D.; Mor-Yosef, L.; Zeitak, I. Overcoming forgetting in federated learning

on non-iid data. arXiv 2019, arXiv:1910.07796.
24. Chen, Y.; Ning, Y.; Slawski, M.; Rangwala, H. Asynchronous online federated learning for edge devices with non-iid data. In

Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), IEEE, Virtual, 10–13 December 2020; pp. 15–24.
25. Zhang, X.; Hong, M.; Dhople, S.; Yin, W.; Liu, Y. Fedpd: A federated learning framework with optimal rates and adaptivity to

non-iid data. arXiv 2020, arXiv:2005.11418.
26. Warraich, E.; Shahbaz, M. Constructing the face of network data. In Proceedings of the SIGCOMM’21 Poster and Demo Sessions,

Virtual, 23–27 August 2021; pp. 21–23.
27. Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 1–48. [CrossRef]
28. Sattler, F.; Wiedemann, S.; Müller, K.R.; Samek, W. Robust and communication-efficient federated learning from non-iid data.

IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 3400–3413. [CrossRef]
29. Albasyoni, A.; Safaryan, M.; Condat, L.; Richtárik, P. Optimal Gradient Compression for Distributed and Federated Learning.

arXiv 2020, arXiv:2010.03246.
30. Shullary, M.H.; Abdellatif, A.A.; Massoudn, Y. Energy-Efficient Active Federated Learning on Non-IID Data. In Proceedings of

the 2022 IEEE 65th International Midwest Symposium on Circuits and Systems (MWSCAS), Online, 7–10 August 2022; pp. 1–4.
31. Deng, Z.; Yang, Y.; Suzuki, K.; Jin, Z. FedAL: An Federated Active Learning Framework for Efficient Labeling in Skin Lesion

Analysis. In Proceedings of the 2022 IEEE International Conference on Systems, Man and Cybernetics (SMC), Prague, Czech
Republic, 9–12 October 2022; pp. 1554–1559.

32. Ahmed, U.; Lin, J.C.W.; Srivastava, G. Semisupervised Federated Learning for Temporal News Hyperpatism Detection. IEEE
Trans. Comput. Soc. Syst. 2023, 1–12. [CrossRef]

http://doi.org/10.3390/electronics10010027
http://dx.doi.org/10.1109/TII.2021.3119038
http://dx.doi.org/10.1186/s40537-019-0197-0
http://dx.doi.org/10.1109/TNNLS.2019.2944481
http://dx.doi.org/10.1109/TCSS.2023.3247602


Mathematics 2023, 11, 1972 13 of 13

33. Naeem, F.; Ali, M.; Kaddoum, G. Federated-Learning-Empowered Semi-Supervised Active Learning Framework for Intrusion
Detection in ZSM. IEEE Commun. Mag. 2023, 61, 88–94. [CrossRef]

34. Elhanashi, A.; Lowe, D., Sr.; Saponara, S.; Moshfeghi, Y. Deep learning techniques to identify and classify COVID-19 abnormalities
on chest X-ray images. In Proceedings of the Real-Time Image Processing and Deep Learning 2022, Orlando, FL, USA, 3–7 April
2022; Volume 12102, pp. 15–24.

35. Sanon, S.P.; Reddy, R.; Lipps, C.; Schotten, H.D. Secure Federated Learning: An Evaluation of Homomorphic Encrypted
Network Traffic Prediction. In Proceedings of the 2023 IEEE 20th Consumer Communications & Networking Conference (CCNC),
Las Vegas, NV, USA, 8–11 January 2023; pp. 1–6.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/MCOM.001.2200533

	Introduction
	Related Work
	Solutions of Unlabeled Data Challenge
	Solutions of Statistical Challenge

	Framework Design of Semi-Federated Active Learning
	Framework Overview and Design Requirements
	Global Perspective: Task-Driven Federated Network Building
	Local Perspective: Data-Driven Collaborative Annotation and Computation

	Operations of Semi-Federated Active Learning
	Involved Entities
	Phase I: Establishment of Federated Network
	Phase II: Collaborative Data Annotation and Model Training

	A Case Study
	Experimental Setting
	Results and Analysis

	Discussion
	Conclusions
	References

