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Abstract: Label-specific feature learning has become a hot topic as it induces classification models
by accounting for the underlying features of each label. Compared with single-label annotations,
multi-label annotations can describe samples from more comprehensive perspectives. It is generally
believed that the compelling classification features of a data set often exist in the aggregation of label
distribution. In this in-depth study of a multi-label data set, we find that the distance between all
samples and the sample center is a Gaussian distribution, which means that the label distribution
has the tendency to cluster from the center and spread to the surroundings. Accordingly, the double
annulus field based on this distribution trend, named DEPT for double annulusfield and label-specific
features for multi-label classification, is proposed in this paper. The double annulus field emphasizes
that samples of a specific size can reflect some unique features of the data set. Through intra-annulus
clustering for each layer of annuluses, the distinctive feature space of these labels is captured and
formed. Then, the final classification model is obtained by training the feature space. Contrastive
experiments on 10 benchmark multi-label data sets verify the effectiveness of the proposed algorithm.

Keywords: annulus model; hierarchical clustering; label-specific features; multi-label classification

MSC: 68U01

1. Introduction

In multi-label classification tasks, multiple classification models are derived from a
training set for each class label [1]. As a popular paradigm in machine learning, multi-label
learning techniques have been widely employed to solve real-world problems, such as
image annotation [2], where an image may convey various information; medical diagno-
sis [3], where the task is to identify the patient’s disease from its symptoms; and sentiment
analysis [4,5], where an expression can contain many emotions, etc.

To deal with the classification problem for multi-label data, one of the common ap-
proaches is to utilize dependencies between behavioral labels to induce classification
models [6–8]. Although behavioral labels achieve better results in multi-label classification,
this approach might be suboptimal due to ignoring the underlying features for each of
its own class labels. For example, altitude-based features are preferred in distinguishing
the snow and non-snow labels, while moisture-based features tend to recognize sea and
non-sea labels. Therefore, label-specific learning [9–11], which extracts the underlying char-
acteristics of each class label, has excellent research significance in multi-label classification.

It needs to be emphasized that the degree of data aggregation intuitively reflects
potentially label-specific features. Therefore, some existing methods utilize spherical
random clustering, i.e., k-means [9,12], to extract label-specific features by evaluating the
similarity between different instances for each label through Euclidean distance. The
apparent advantage of the random clusters can be summarized in two points. On the one
hand, the iterative process that minimizes squared error between instances and cluster
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centers is easy to implement and also has low time complexity. On the other hand, favorable
adaptability can be obtained, such as rapid convergence and better cluster effect. In
particular, it has good scalability for extensive data conforming to the Gaussian distribution.
However, there are still some limitations to this method. First, it does not view sufficient
discriminative information provided by cluster centers, mainly because random clusters
may be trapped in the optimal local solution [13]. Meanwhile, heterogeneous numbers
of the cluster centers will further affect the results. Second, it is not suitable for discrete
data set. It is also sensitive to abnormal values, i.e., it may generate cluster centers in
inappropriate locations due to directly taking into account instances with significant bias.

Motivated by the above-mentioned problems, a novel label-specific feature algorithm
based on the double annulus field is proposed in this paper, as shown in Figure 1, which
presents the foundation of the annulus model. In other words, due to the distribution
characteristics of a multi-label data set, where the majority of samples cluster around the
sample center and exhibit a divergent trend towards the surrounding areas, we propose
an adaptive annulus model for the distribution trend of a multi-label data set. It should
be noted that the double annulus field is an improvement on the single annulus model.
The single annulus model is used to construct the label-specific feature space by hierar-
chically extracting each layer of instances. Although significant biases in the number of
positive and negative instances are mitigated through the model, classification ability for
more indistinguishable cases is limited, such as the cross-distribution of instances and
unbalanced label density. That is, instances within the single annulus are not enough to
provide discernable information for both categories simultaneously. In response to this
situation, the double annulus field is proposed. The principle of this model is to divide
the heterogeneously intersecting instances with high density into different annulus fields,
and annulus clustering is then carried out. One of the essential tasks of the double annulus
field is to design a mapping process. The mapping process that uses principal component
analysis (PCA) [14] can not only bisect each category of instances into two parts but also
reduce the classification difficulty in terms of the unbalanced label density. In summary,
the contributions of this paper are highlighted as follows:

1. The concept of the double annulus field for multi-label data is established, which
ensures the same number of instances in each layer of annuluses and thus sufficient
cluster information to be contained within each annulus.

2. A cluster strategy within the annulus model is developed, which captures the potential
features for each layer of instances and thus effectively prevents information loss. To
mitigate the influence of unbalanced label density, each layer of instances can be
divided by mapping relationships.

The rest of this paper is organized as follows. In Section 2, several multi-label learning
methods are reviewed. In Section 3, the double annulus field for exploring hierarchical
label-specific features and intra-annulus clusters are both analyzed. The comparative
experimental results and analyses are shown in Section 4. Finally, the conclusions are
summarized in Section 5.
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(c) Yeast (d) Bibtex

Figure 1. Illustrative examples of four multi-label data sets in a two-dimensional case. The annuluses
are generated in the distribution trend of a multi-label data set.

2. Related Work

As a pragmatic and popular paradigm in machine learning, multi-label classifica-
tion has been used intensively in recent research to study aspects such as label correla-
tions [15,16], data streams [17,18], class imbalance [19,20], and feature selection [21,22].

Recent approaches to label correlations can be divided into three techniques by con-
sidering the order of label correlations, namely first-order [23,24], second-order [25–27],
and high-order techniques [28–30]. Data streams differentiate themselves from traditional
one-time scanning of all data by emphasizing the fact that the concepts contained in
the data will change over time and by processing data on time using limited resources,
i.e., memory and time. Class imbalance indicates an inherent attribute of multi-label data,
where the number of positive training instances is generally much less than its negative
counterparts. Feature selection is an effective dimension reduction technique to cope with
high-dimensional multi-label data.

Differing from the above methods, label-specific features as an intuitive approach
to dealing with multi-label classification problems could explore tailored features and
construct feature mappings. In addition, the main idea in such an approach is that the
underlying characteristics for each class label are different in their discrimination processes.
Therefore, a more effective classification model can be induced through the discriminative
features under each label. To achieve this goal, Zhang et al. [9] proposed the LIFT (multi-
label learning with label-specific features) algorithm that obtains label-specific features
by random clustering and then forms the classification models through the mapping
relationships of label-specific features. Xu et al. [12] reduced redundant information
on increasing dimensions of multi-label data and performed sample selection through
the fuzzy rough set [31]. Zhan et al. [32] appended the ensemble clustering strategy to
optimize the unstable random clustering in LIFT. From a deep learning perspective, CLIF
(collaborative learning of label semantics and deep label-specific features for multi-label
classification) [33] further integrated deep neural networks and label semantics [34] to
guide the formation of label-specific features.

Combining label-specific features with the correlation of pairwise labels, Pei et al. [35]
proposed JLSE2N (joint label-density-margin space and extreme elastic net for label-specific
features), which utilizes the density of multi-label data to calculate the cosine similarity,
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and then quickly forms the label-specific features based on the elastic net. Lin et al. [36]
proposed MULFE (multi-label learning via label-specific feature space ensemble) to obtain
maximum margin multi-label classification through ensemble learning and label correlation.
Zhang et al. [37] proposed BiLabel (bilabel-specific feature generation and predictive
model induction), which emphasized the generation process of label-specific features and
generated the label-specific features through heuristic prototype selection. Different from
the above-mentioned methods, we focus on stratification in processing multi-label data.
Specifically, as shown in Figure 2, the conception of annulus division is constructed based
on positive and negative instances to extract hierarchical label-specific features in the design
of the double annulus field.

Figure 2. Illustrative example of artificial data in a two-dimensional case. Double annuluses are
generated in the centers of positive instances and negative instances.

3. The Annulus Feature Space
3.1. Notations

First of all, the following notations are utilized in this paper. LetD = {(xi, yi) | 1 ≤ i ≤ m}
represent the multi-label training set with m instances, where xi ∈ Rd is a d-dimensional feature
vector, yi ∈ {0, 1}1×q is the possible set of q labels associated with xi, and l =

{
l1, l2, ..., lq

}
denotes the label space with q labels. Formally, yik = 1 represents lk ∈ yik, and yik = 0 represents
lk /∈ yik.

3.2. Single Annulus Approach

The single annulus approach aims to construct a label-specific feature space by hi-
erarchically capturing the underlying features of each label. According to each label,
the positive and negative samples are separated into two different parts, i.e., POSk and
NEGk, respectively, based on whether it contains the kth label.

To mitigate the class imbalance problem, i.e., |POSk| � |NEGk|, the single annulus
centers are selected for a smaller number of samples PONk:

PONk =

{
POSk, |POSk| ≤ |NEGk|;
NEGk, |POSk| > |NEGk|,

(1)

where |·| denotes the cardinality of the set.
Based on the selected training set PONk, the center of the annuluses can be deter-

mined as Ck = mean(PONk). To ensure that each annulus contains the same amount
of information, the single annulus approach supposes the instances are divided into r
annuluses under each class label, and the instancesQj

k contained in the jth annulus are also
determined accordingly.
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For constructing a single annulus clustering feature space, the instances with the
shortest sum of distances to others are taken as the cluster center of each layer. Therefore,
the positive and negative cluster centers for the jth layer of the annuluses can be respectively
expressed as follows:

pck
j =

{
xi | ∀x ∈ Qj

k+,
α

∑
q=1

d
(
xi, xq

)
≤

α

∑
q=1

d
(
x, xq

)}
,

nck
j =

{
xi | ∀x ∈ Qj

k−,
α

∑
q=1

d
(
xi, xq

)
≤

α

∑
q=1

d
(
x, xq

)}
.

(2)

Conceptually, we can already obtain the potential features in each layer of annuluses
through single annulus clustering. Those features provide prototypes for constructing a
single annulus clustering feature space. Here, mapping ϕk : D → SCFSk from the original
training set to a single annulus clustering feature space can be defined as:

ϕk(xi) = [d
(

xi, pck
1

)
, . . . , d

(
xi, pck

r

)
, d
(

xi, nck
1

)
, . . . , d

(
xi, nck

r

)
], (3)

in which d(·, ·) denotes the Euclidean distance between two instances.
Finally, a family of l classification models can be trained by the single annulus feature

mapping ϕk for the kth class label. Here, for each class label lk ∈ Y , a new binary training
set Gk is created from the original training set T , and the mapping of ϕk can be set as
follows:

Gk = {(ϕk(xi), yik) | xi ∈ D, yik ∈ Yi}. (4)

Correspondingly, a classification model Vk : SCFSk → R for the kth class label can
be induced by utilizing any binary learner [9]. Therefore, an unseen example x′, which is
associated with label set L′, can be predicted as: Y′ =

{
L′k | Vk(ϕk(x′)) > 0, 1 ≤ k ≤ l

}
.

3.3. Double Annulus Field

The sample distribution tendency for each label represents an essential and intuitive
connection with feature extraction. In this section, we attempt to construct the double
annulus field based on the distribution tendency, where the classification difficulty of
heterogeneous samples can be mitigated through the hierarchical division of double annu-
luses.

Before stratifying positive and negative samples, it is necessary to determine the
two centers of the double annulus model. Through a large number of observations on
a multi-label data set, it is obvious that most of the samples are clustered in the sample
center of positive and negative samples. To preferentially partition the densely-distributed
samples, the mean of POSk is used to indicate the center of the positive samples, i.e., Ck

p

uses the mean of POSk to indicate the center of the positive samples, while Ck
n uses the

mean of NEGk to indicate the center of the negative samples. In addition, POSk contains
the instances x+i with yik = 1, and NEGk contains the instances x−i with yik = 0. The numbers
of POSk and NEGk for the kth label are defined by m+

k and m−k , respectively. In further
measuring the discrete degree of the samples, the distance of the heterogeneous samples
from the center point is calculated for the kth label:

G+
k = [d(x+1 , Ck

p), d(x+2 , Ck
p), . . . , d(x+

m+
k

, Ck
p)],

G−k = [d(x−1 , Ck
p), d(x−2 , Ck

p), . . . , d(x−
m−k

, Ck
p)],

(5)

where d(·, ·) denotes the Euclidean distance between two instances and G+
k represents the

set of Euclidean distances between positive samples and Ck
p. In addition, SG+

k is used to
denote an ascending sort of G+

k , while SG−k is used to denote an ascending sort of G−k .
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It is well known that the cluster center points generated by random clustering will
be affected by densely-distributed samples without obvious discrimination. Therefore,
it is essential to ensure that the same amount of information is contained in each layer
of the annulus. The extraction of latent features will not be ignored due to the extreme
aggregation of samples. α represents the number of instances in each annulus, as long
as the number of annuluses r is specified. Then, the maximum amount of information
contained in each layer of positive samples can be defined as:

α+k =

⌈
1
r
· |POSk|

⌉
. (6)

Similarly, the maximum amount of information contained in each layer of negative
samples can be defined as α−k =

⌈
1
r · |NEGk|

⌉
.

In the next step, the positive samples are stratified according to the ascending distance
from the center point SG+

k , which allows us to obtain instances with α+k stride separately
according to the sorted order and assemble them into each layer of the annulus. More
specifically, the maximum positive samples contained in the jth annulus for the kth label
can be defined as:

Rj
k+ =

[ xu, xu+1, · · · , xv−1, xv︸ ︷︷ ︸ ]
v− u + 1 = α+k × j

∈ SG+
k . (7)

Similarly, we can also obtain the maximum negative samples contained in the jth
annulus for the kth label Rj

k−. In other words, Rj
k+ and Rj

k− together form the double
annulus field.

3.4. Intra-Annulus Clustering

Observing the distribution of the multi-label data set, we can see that, in addition to
the positive and negative samples concentrated in Ck

p and Ck
n, there are also more samples

at the junction of the positive and negative samples. To further reduce the difficulty of
classification, the boundary samples between positive and negative samples are divided
into left and right parts relative to the sample centers by PCA, i.e., P+

k (relative left division
of instances in POSk), P−k (relative right division of instances in POSk), N+

k (relative left
division of instances in NEGk), and N−k (relative right division of instances in NEGk).
Correspondingly, P+

k , P−k , N+
k , and N−k are defined as follows:

P+
k =

{
xi | π1(xi) < π1

(
Ck

p

)}
,

P−k =
{

xi | π1(xi) ≥ π1

(
Ck

p

)}
,

N+
k =

{
xi | π1(xi) < π1

(
Ck

n

)}
,

N−k =
{

xi | π1(xi) ≥ π1

(
Ck

n

)}
,

(8)

where πn(·) uses PCA to reduce the features to n-dimensions.
Since the same amount of information is guaranteed to be contained in each annulus,

there are potential features that cannot be ignored. Therefore, 2r cluster centers are gener-
ated according to the left and right division of relative positions in each layer of the annulus,
and the Euclidean distance between each cluster center and other samples is guaranteed to
be the smallest. For the convenience of the following expressions, we take “·” as the state
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parameter representing the two symbols of “±”. The intra-annulus cluster centers within
the jth layer of the double annulus field for each label can be defined as:

pck·
j =

{
xi | ∀x ∈ P·k

⋂
Rj

k·,
p·

∑
q=1

d
(
xi, xq

)
≤

p·

∑
q=1

d
(
x, xq

)}
,

nck·
j =

{
xi | ∀x ∈ N·k

⋂
Rj

k·,
n·
∑
q=1

d
(
xi, xq

)
≤

n·
∑
q=1

d
(
x, xq

)}
,

(9)

where p· = |P·k| − |R
·
k|, n· = |N·k| − |R

·
k|.

In this way, sufficient distinguishable information is provided for forming the label-
specific features through the mapping relationship between the instances and the annulus
cluster centers. Those features provide prototypes for constructing label-specific feature
spaces concerning the double annulus field. Meanwhile, a mapping ϕ

′
k : D → DEPTk from

the original training set to label-specific feature space with respect to the double annulus
field can be defined as:

ϕk(xi) =
[
d
(

xi, pck+
1

)
, . . . , d

(
xi, pck−

2r

)
, d
(

xi, nck+
1

)
, . . . , d

(
xi, nck−

2r

)]
. (10)

3.5. Classification

Therefore, a family of l classification models can be trained by the double annulus
field’s label-specific feature space ϕk for the kth class label. Here, for each class label lk ∈ y,
a new binary training set hk is created from the original training set, and the mapping of ϕk
can be set as follows [9]:

hk = {(ϕk(xi), yik) | xi ∈ D, yik ∈ yi}. (11)

Correspondingly, a classification model Vk : DEPTk → R for the kth class label can
be induced by utilizing any binary learner [9]. Therefore, an unseen example x′, which is
associated with label set L′, can be predicted as [9]:

Y′ =
{

L′k | Vk
(

ϕk(x′)
)
> 0, 1 ≤ k ≤ l

}
; (12)

in other words, from Equations (11) and (12), each classifier hk with reference to the kth class
label can be regarded as the composition of Vk and ϕk. Namely, hk(x′) = [Vk ◦ ϕk](x′) =
Vk(ϕk(x′)).

4. Experiments
4.1. Data Set

The details of the data set used in the experiments are shown in Table 1. In addition,
we use Card, DL, and Den [1,29] to represent the average of label cardinality, the number
of different label sets, and label density, respectively.

4.2. Evaluation Metrics

Compared with traditional single-label criteria, the performance of each evaluation
metric is somewhat more complicated, as each instance is related to different labels con-
currently. Therefore, Hamming loss (HL), average precision (AP), macro-averaging AUC
(AUC), one-error (OE), coverage (CV), and ranking loss (RL) are selected in this paper.
Given a test set T = {(xi, Yi) | 1 ≤ i ≤ mt}, where Yi ∈ Y is the objectively true label subset,
P(i)

x ∈ Y is a predicted label vector for the ith instance, and µ
(i)
j is a confidence score that

denotes the degree of xi that belongs to the label; the details of six evaluation metrics are
given as follows.
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Table 1. Characteristics of the 10 multi-label data sets.

Data Set m d q Type Domain
Label Features

Card DL Den

Birds 645 260 19 both audio 1.014 133 0.053
CHD-49 555 49 6 numeric medicine 2.580 34 0.430
Emotions 593 72 6 numeric music 1.869 27 0.311
Flags 194 19 7 both images 3.392 54 0.485
Images 2000 294 5 numeric images 1.236 20 0.247
Medical 978 1449 45 nominal text 1.245 84 0.028
Reuters-K500 6000 500 103 numeric text 1.462 811 0.014
Scene 2407 294 6 numeric images 1.074 15 0.179
WaterQuality 1060 16 14 numeric chemistry 5.073 825 0.362
Yeast 2417 103 14 numeric biology 4.237 198 0.303

Hamming loss [38] evaluates the number of misclassified instance-label pairs:

HL =
1

mt

mt

∑
i=1
|P(i)

x ⊕Yi|, (13)

where ⊕ is the XOR operator.
Macro-averaging AUC [1] evaluates the average AUC value of each label:

AUC =
1
|L|

|L|

∑
i=1

|
{
(µ1, µ2) | µ

(i)
1 ≥ µ

(i)
2 , (µ1, µ2) ∈ Zj × Z̄j

}
|

|Zj||Z̄j|
. (14)

One-error [39] evaluates whether the top-ranked predicted value of the samples is in
the objectively true label subset:

OE =
1

mt

mt

∑
i=1

J[arg max
y∈Y

µ(i)] ∈ YiK, (15)

where J·K is a function for logical judgment.
Ranking loss [40] evaluates the fraction of reversely-ordered label pairs. Namely,

ranking and label relevance are negatively correlated:

RL =
1

mt

mt

∑
i=1

1
|Yi||Yi|

|
{
(µ1, µ2) | µ

(i)
1 ≤ µ

(i)
2 , (µ1, µ2) ∈ Yi ×Yi

}
|, (16)

where Yi is the complementary set of Yi.
Coverage [41] evaluates the average of steps needed to move down the ranked label

list that covers all the related labels of the samples:

CV =
1

mt

mt

∑
i=1

rankµ(i) − 1. (17)

Average precision [42] evaluates the average fraction of relevant labels ranked higher
than a particular label y ∈ Yi:

AP =
1

mt

mt

∑
i=1

1
|Yi| ∑

yi∈Yi

|
{

y′ | rank
µ
(i)
1
≤ rank

µ
(i)
2

, y′ ∈ Yi

}
|

rankµ(i)
. (18)
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4.3. Comparative Studies

In this section, the proposed DEPT algorithm is compared with the following six
algorithms to verify their predictive performances. The only parameter of r is set to 12,
according to the subsequent discussion.

• MLNB [43]: This algorithm adopts the traditional naive Bayes classifiers to deal with
multi-label instances, and the parameter is the default value of 0.3.

• MULFE [36]: It combines ensemble learning with label correlation to construct a
multi-label-specific feature space. The parameter of λ is set to 0.1 in this paper.

• LIFT [9]: It transforms a multi-label into a single-label problem, and then the particular
features of each label are used to form a label-specific feature space. In this paper,
the ratio parameter ε is set to 0.1.

• FRS-LIFT [12]: Based on label-specific features, this algorithm selects samples and
reduces the dimension of the feature space by utilizing the idea of rough sets. The pa-
rameter setting is the same as LIFT.

• ML-KNN [40]: This algorithm is derived from the traditional k-nearest neighbor
(k-NN) algorithm, in which the number of nearest neighbors is set to 10, and the
smoothing parameter is set to 1.

• SCFS: Hierarchical label-specific features are extracted from the perspective of a single
annulus. The parameter setting is the same as DEPT.
For a fair comparison, LIBSVM [44] has utilized the linear kernel for training and
predicting the induced binary classification model. Moreover, 10-fold cross-validation
is used for each compared algorithm. Namely, the data set is divided into 10 groups
of the same size; each algorithm is trained repeatedly 10 times on 9 random groups,
and one group is used for testing.

Tables 2–4 report the detailed experimental results in terms of Hamming loss, average
precision, macro-averaging AUC, one-error, ranking loss, and coverage, respectively. Re-
sults are compared by mean ± std, and the best performance for each data set is shown
in bold. Additionally, “↑” and “↓” represent “the larger, the better” and “the smaller,
the better”, respectively.

Table 2. Experimental results of each compared algorithm (mean ± std).

Comparison
Algorithm

Average Precision ↑
DEPT SCFS LIFT MLKNN MLNB FRSLIFT MULFE

Birds 0.750 ± 0.044 0.736 ± 0.041 0.608 ± 0.030 0.587 ± 0.022 0.579 ± 0.059 0.674 ± 0.023 0.733 ± 0.076
CHD-49 0.814 ± 0.024 0.806 ± 0.026 0.805 ± 0.034 0.773 ± 0.022 0.789 ± 0.035 0.813 ± 0.025 0.813 ± 0.033
Emotions 0.819 ± 0.029 0.815 ± 0.021 0.829 ± 0.007 0.814 ± 0.017 0.768 ± 0.026 0.803 ± 0.032 0.812 ± 0.030
Flags 0.828 ± 0.033 0.822 ± 0.026 0.820 ± 0.021 0.796 ± 0.070 0.802 ± 0.043 0.812 ± 0.030 0.819 ± 0.039
Images 0.805 ± 0.028 0.791 ± 0.018 0.810 ± 0.030 0.779 ± 0.029 0.756 ± 0.030 0.831 ± 0.023 0.823 ± 0.020
Medical 0.868 ± 0.035 0.825 ± 0.034 0.862 ± 0.005 0.812 ± 0.029 0.777 ± 0.007 0.867 ± 0.018 0.859 ± 0.044
Reuters-K500 0.647 ± 0.014 0.617 ± 0.013 0.645 ± 0.002 0.627 ± 0.019 0.592 ± 0.018 0.634 ± 0.019 0.639 ± 0.016
Scenes 0.878 ± 0.015 0.865 ± 0.014 0.886 ± 0.005 0.860 ± 0.011 0.839 ± 0.014 0.896 ± 0.016 0.888 ± 0.017
WaterQuality 0.680 ± 0.016 0.668 ± 0.036 0.673 ± 0.014 0.652 ± 0.009 0.641 ± 0.006 0.679 ± 0.026 0.663 ± 0.023
Yeast 0.782 ± 0.019 0.760 ± 0.016 0.766 ± 0.006 0.763 ± 0.021 0.741 ± 0.006 0.778 ± 0.018 0.768 ± 0.018
Average 0.787 0.770 0.770 0.746 0.729 0.779 0.782
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Table 2. Cont.

Comparison
algorithm

Hamming loss ↓
DEPT SCFS LIFT MLKNN MLNB FRSLIFT MULFE

Birds 0.045 ± 0.008 0.049 ± 0.008 0.044 ± 0.007 0.990 ± 0.001 0.971 ± 0.004 0.048 ± 0.009 0.050 ± 0.005
CHD-49 0.262 ± 0.032 0.300 ± 0.016 0.278 ± 0.023 0.322 ± 0.035 0.289 ± 0.033 0.280 ± 0.033 0.283 ± 0.020
Emotions 0.186 ± 0.020 0.194 ± 0.014 0.177 ± 0.013 0.785 ± 0.010 0.834 ± 0.026 0.187 ± 0.020 0.180 ± 0.020
Flags 0.250 ± 0.049 0.270 ± 0.029 0.280 ± 0.027 0.674 ± 0.041 0.664 ± 0.037 0.261 ± 0.018 0.274 ± 0.012
Images 0.176 ± 0.014 0.197 ± 0.012 0.151 ± 0.013 0.169 ± 0.008 0.199 ± 0.007 0.154 ± 0.016 0.157 ± 0.010
Medical 0.010 ± 0.001 0.015 ± 0.002 0.012 ± 0.002 0.984 ± 0.001 0.984 ± 0.001 0.013 ± 0.001 0.014 ± 0.002
Reuters-K500 0.011 ± 0.001 0.011 ± 0.000 0.011 ± 0.000 0.996 ± 0.000 0.963 ± 0.000 0.022 ± 0.000 0.013 ± 0.001
Scenes 0.089 ± 0.008 0.100 ± 0.005 0.076 ± 0.010 0.885 ± 0.007 0.881 ± 0.003 0.076 ± 0.015 0.072 ± 0.006
WaterQuality 0.296 ± 0.009 0.307 ± 0.011 0.297 ± 0.025 0.839 ± 0.002 0.839 ± 0.005 0.300 ± 0.027 0.307 ± 0.015
Yeast 0.191 ± 0.011 0.204 ± 0.009 0.190 ± 0.009 0.190 ± 0.008 0.205 ± 0.008 0.189 ± 0.007 0.196 ± 0.010
Average 0.151 0.165 0.152 0.683 0.683 0.153 0.155

Table 3. Experimental results of each comparison algorithm (mean ± std).

Comparison
Algorithm

Macro-Averaging AUC ↑
DEPT SCFS LIFT MLKNN MLNB FRSLIFT MULFE

Birds 0.789 ± 0.045 0.704 ± 0.069 0.807 ± 0.023 0.851 ± 0.048 0.780 ± 0.032 0.708 ± 0.065 0.742 ± 0.045
CHD-49 0.665 ± 0.069 0.597 ± 0.050 0.640 ± 0.050 0.501 ± 0.061 0.635 ± 0.032 0.591 ± 0.062 0.652 ± 0.043
Emotions 0.840 ± 0.029 0.836 ± 0.022 0.851 ± 0.014 0.847 ± 0.019 0.814 ± 0.013 0.849 ± 0.019 0.843 ± 0.012
Flags 0.722 ± 0.069 0.691 ± 0.066 0.700 ± 0.042 0.686 ± 0.077 0.661 ± 0.077 0.707 ± 0.017 0.721 ± 0.022
Images 0.832 ± 0.019 0.795 ± 0.015 0.831 ± 0.013 0.831 ± 0.017 0.802 ± 0.018 0.829 ± 0.030 0.829 ± 0.018
Medical 0.905 ± 0.048 0.872 ± 0.038 0.892 ± 0.027 0.850 ± 0.033 0.724 ± 0.047 0.903 ± 0.023 0.894 ± 0.035
Reuters-K500 0.809 ± 0.013 0.790 ± 0.016 0.804 ± 0.030 0.777 ± 0.049 0.692 ± 0.027 0.796 ± 0.035 0.792 ± 0.022
Scenes 0.935 ± 0.010 0.920 ± 0.005 0.928 ± 0.008 0.924 ± 0.016 0.909 ± 0.013 0.929 ± 0.014 0.921 ± 0.011
WaterQuality 0.678 ± 0.010 0.662 ± 0.025 0.701 ± 0.023 0.702 ± 0.010 0.664 ± 0.012 0.692 ± 0.031 0.656 ± 0.014
Yeast 0.729 ± 0.023 0.638 ± 0.023 0.681 ± 0.032 0.702 ± 0.003 0.675 ± 0.030 0.623 ± 0.025 0.683 ± 0.015
Average 0.790 0.750 0.784 0.767 0.736 0.763 0.773

Comparison
algorithm

One-error ↓
DEPT SCFS LIFT MLKNN MLNB FRSLIFT MULFE

Birds 0.668 ± 0.060 0.657 ± 0.048 0.689 ± 0.053 0.675 ± 0.049 0.710 ± 0.038 0.705 ± 0.038 0.694 ± 0.038
CHD-49 0.207 ± 0.056 0.236 ± 0.053 0.210 ± 0.071 0.219 ± 0.035 0.235 ± 0.054 0.234 ± 0.085 0.232 ± 0.061
Emotions 0.204 ± 0.075 0.250 ± 0.046 0.212 ± 0.026 0.254 ± 0.017 0.333 ± 0.060 0.275 ± 0.060 0.232 ± 0.070
Flags 0.203 ± 0.066 0.231 ± 0.084 0.248 ± 0.074 0.263 ± 0.105 0.234 ± 0.129 0.232 ± 0.120 0.232 ± 0.139
Images 0.316 ± 0.054 0.401 ± 0.029 0.285 ± 0.056 0.343 ± 0.049 0.372 ± 0.045 0.253 ± 0.035 0.264 ± 0.040
Medical 0.194 ± 0.048 0.212 ± 0.045 0.174 ± 0.011 0.242 ± 0.033 0.435 ± 0.056 0.163 ± 0.027 0.196 ± 0.042
Reuters-K500 0.420 ± 0.018 0.454 ± 0.018 0.421 ± 0.010 0.442 ± 0.024 0.474 ± 0.036 0.465 ± 0.027 0.453 ± 0.045
Scenes 0.222 ± 0.023 0.255 ± 0.025 0.195 ± 0.025 0.240 ± 0.014 0.261 ± 0.018 0.185 ± 0.029 0.195 ± 0.027
WaterQuality 0.286 ± 0.044 0.314 ± 0.044 0.327 ± 0.029 0.277 ± 0.024 0.340 ± 0.028 0.318 ± 0.079 0.290 ± 0.032
Yeast 0.221 ± 0.030 0.244 ± 0.026 0.228 ± 0.010 0.222 ± 0.038 0.240 ± 0.007 0.238 ± 0.023 0.229 ± 0.023
Average 0.294 0.325 0.299 0.318 0.363 0.307 0.302
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Table 4. Experimental results of each comparison algorithm (mean ± std).

Comparison
Algorithm

Ranking Loss ↓
DEPT SCFS LIFT MLKNN MLNB FRSLIFT MULFE

Birds 0.170 ± 0.050 0.222 ± 0.049 0.173 ± 0.033 0.153 ± 0.039 0.172 ± 0.049 0.206 ± 0.028 0.193 ± 0.065
CHD-49 0.234 ± 0.052 0.238 ± 0.028 0.211 ± 0.028 0.260 ± 0.066 0.254 ± 0.023 0.223 ± 0.036 0.238 ± 0.038
Emotions 0.148 ± 0.031 0.161 ± 0.023 0.149 ± 0.014 0.151 ± 0.021 0.184 ± 0.013 0.140 ± 0.021 0.148 ± 0.009
Flags 0.206 ± 0.041 0.209 ± 0.031 0.208 ± 0.014 0.222 ± 0.071 0.212 ± 0.022 0.217 ± 0.029 0.220 ± 0.019
Images 0.167 ± 0.022 0.207 ± 0.016 0.140 ± 0.016 0.182 ± 0.024 0.206 ± 0.025 0.142 ± 0.023 0.143 ± 0.011
Medical 0.021 ± 0.020 0.031 ± 0.013 0.024 ± 0.012 0.037 ± 0.010 0.055 ± 0.006 0.029 ± 0.004 0.032 ± 0.009
Reuters-K500 0.040 ± 0.004 0.067 ± 0.003 0.050 ± 0.003 0.061 ± 0.002 0.085 ± 0.004 0.483 ± 0.003 0.103 ± 0.005
Scenes 0.074 ± 0.009 0.086 ± 0.009 0.064 ± 0.003 0.079 ± 0.009 0.097 ± 0.013 0.059 ± 0.010 0.063 ± 0.011
WaterQuality 0.279 ± 0.013 0.295 ± 0.022 0.266 ± 0.017 0.256 ± 0.004 0.294 ± 0.011 0.271 ± 0.025 0.296 ± 0.025
Yeast 0.147 ± 0.016 0.175 ± 0.014 0.164 ± 0.012 0.151 ± 0.015 0.178 ± 0.012 0.153 ± 0.014 0.163 ± 0.007
Average 0.149 0.169 0.145 0.155 0.174 0.192 0.160

Comparison
algorithm

Coverage ↓
DEPT SCFS LIFT MLKNN MLNB FRSLIFT MULFE

Birds 0.102 ± 0.045 0.114 ± 0.043 0.123 ± 0.045 0.113 ± 0.018 0.119 ± 0.059 0.139 ± 0.012 0.133 ± 0.052
CHD-49 0.433 ± 0.026 0.451 ± 0.021 0.450 ± 0.017 0.497 ± 0.030 0.454 ± 0.003 0.444 ± 0.010 0.453 ± 0.020
Emotions 0.284 ± 0.023 0.301 ± 0.040 0.290 ± 0.023 0.294 ± 0.029 0.315 ± 0.004 0.289 ± 0.024 0.301 ± 0.020
Flags 0.513 ± 0.033 0.526 ± 0.045 0.514 ± 0.028 0.536 ± 0.045 0.539 ± 0.037 0.576 ± 0.022 0.552 ± 0.024
Images 0.189 ± 0.014 0.220 ± 0.020 0.164 ± 0.008 0.192 ± 0.018 0.224 ± 0.018 0.172 ± 0.023 0.166 ± 0.017
Medical 0.040 ± 0.023 0.059 ± 0.016 0.042 ± 0.018 0.060 ± 0.013 0.313 ± 0.034 0.048 ± 0.009 0.055 ± 0.021
Reuters-K500 0.076 ± 0.008 0.084 ± 0.005 0.073 ± 0.006 0.090 ± 0.004 0.143 ± 0.005 0.071 ± 0.006 0.095 ± 0.003
Scenes 0.075 ± 0.008 0.086 ± 0.008 0.065 ± 0.007 0.080 ± 0.010 0.299 ± 0.016 0.067 ± 0.010 0.084 ± 0.007
WaterQuality 0.657 ± 0.018 0.675 ± 0.016 0.638 ± 0.034 0.620 ± 0.013 0.666 ± 0.007 0.639 ± 0.039 0.669 ± 0.023
Yeast 0.434 ± 0.016 0.443 ± 0.015 0.455 ± 0.023 0.428 ± 0.010 0.460 ± 0.018 0.475 ± 0.010 0.474 ± 0.016
Average 0.280 0.296 0.281 0.291 0.353 0.292 0.298

To analyze the statistical significance of each compared result, the Friedman test
[45] with a significance level of 0.05 is employed; this is a well-known statistical test
and has been widely utilized for statistically comparative studies over several data sets.
Table 5 summarizes the Friedman statistics (FF) and the corresponding critical value of each
evaluation metric. As shown in Table 5, the null hypothesis that all the compared algorithms
have equal performance is rejected for each evaluation metric. In addition, the Bonferroni–
Dunn test [46] is used as a post-hoc test to further explore the relative performance of each
compared algorithm by treating DEPT as the control algorithm. Accordingly, the significant
difference between the average ranks of compared algorithms can be distinguished from
others by at least one critical difference (CD):

CD = qα

√
k(k + 1)

6N
, (19)

where k denotes the number of compared algorithms, and N denotes the number of data
sets. For the Bonferroni–Dunn test, qα = 2.638 at significance level α = 0.05, and thus CD =
2.5486 (k = 7, N = 10).

To intuitively observe the relative performance of DEPT and other comparison algo-
rithms, Figure 3 shows the CD diagrams in terms of each evaluation metric, where the
compared algorithm marked on the left axis has lower performance than the right one.
Otherwise, any compared algorithm that is not significantly different from DEPT (within
one CD) is connected with a black line.
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Table 5. Summary of the Friedman statistics FF (k = 7, N= 10) and the critical value in terms of each
evaluation metric (k: number of comparison algorithms; N: number of data sets).

Evaluation Metric FF Critical Value (α = 0.05)

Average precision 17.8657

2.2720

Macro-averaging AUC 7.0714
Coverage 6.4649
Ranking loss 5.2534
Hamming loss 13.8468
One-error 6.0898

Based on the reported experimental results, the following conclusions can be drawn:

1. As shown in Figure 3, DEPT significantly outperforms MLNB in terms of each eval-
uation metric. Furthermore, DEPT differs significantly in performance from other
algorithms in more than 38% of cases. That is, in terms of the average precision
metric, DEPT is significantly different from MLNB and MLKNN. In terms of the
macro-averaging AUC metric, DEPT is significantly different from MLNB and SCFS.
In terms of the coverage metric, DEPT is significantly different from MLNB, MULFE,
and SCFS. In terms of the Hamming loss metric, DEPT has is statistically significantly
different from MLNB, MLKNN, and SCFS. In terms of the one-error metric, DEPT has
a statistically significant difference between MLNB and SCFS. Therefore, the DEPT
algorithm is statistically superior to others in more than 38% of cases.

2. As shown in Figure 3, DEPT shows statistically superior or at least comparable perfor-
mance against SCFS in each evaluation metric. Although the performance of SCFS is
similar to MLNB due to the stratified feature space, SCFS uses a single annulus model
that can not appropriately solve the cross-distribution of instances and unbalanced la-
bel density. Therefore, the double annulus model and further division of the instances
are used for DEPT, thus improving the performance.

3. As shown in Tables 2 and 3, for the higher-dimensional data sets in this experiment,
such as medical, with 1449 dimensions, DEPT ranks first in more than 55% of cases
in terms of 6 evaluation metrics, which benefits from the layered strategy. In terms
of 7 numeric types of data sets, DEPT ranks first in more than 52% of cases. Further-
more, compared with LIFT, which constructed label-specific features by the k-means
algorithm, DEPT performs better on more than 63% of experimental results. DEPT is
superior to FRSLIFT in more than 60% of cases, which used sample selection based on
LIFT’s label-specific features. Compared with MULFE, which combined label-specific
features and ensemble learning, DEPT performs better in more than 78% of cases.
In addition, in terms of the average of 6 evaluation metrics, except for the result of
one-error, which is close to LIFT, DEPT is superior in terms of macro-averaging AUC,
average precision, coverage, ranking loss, and Hamming loss.

4. Figure 4 shows the spider web diagrams to intuitively illustrate the stability perfor-
mance of each compared algorithm in terms of each evaluation metric. As shown in
Figure 4, DEPT is more stable than the other algorithms. Namely, average precision
and macro-averaging AUC tend to be larger, while coverage, ranking loss, Hamming
loss, and one-error tend to be smaller.

To sum up, compared with other algorithms, under the condition that the AP is
relatively stable, the additional evaluation metrics, such as CV, OE, and HL, have been im-
proved to a certain extent, which finally verifies the effectiveness of the sample stratification
and annulus clustering.
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(a) Average precision (b) Macro-averaging AUC

(c) Coverage (d) Ranking loss

(e) Hamming loss (f) One-error

Figure 3. Comparison of DEPT (control algorithms) against other compared algorithms with the
Bonferroni–Dunn test.

(a) Average precision (b) Macro-averaging AUC

(c) Coverage (d) Ranking loss

(e) Hamming loss (f) One-error

Figure 4. Spider web diagrams show the stability performance of compared algorithms with different
evaluation metrics.
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4.4. Further Analysis
4.4.1. Parameter Sensitivity

To further investigate the sensitivity of DEPT concerning the only parameter r, Figure 5
demonstrates the variation of each evaluation metric with the specified parameter, and the
parameter value is sequentially set from 1 to 14. As shown in Figure 5, it is not difficult to
draw the following conclusions:

1. In most cases, DEPT has relatively poor performance when the parameter is set to 1–2,
mainly because the layering effect is hard to achieve on a small number of annuluses.

2. As the parameters increase sequentially, the performance improves from rapid increase
to gradual stability.

3. The performance reaches its relative optimum as the parameter r increases beyond 12.
Therefore, these conclusions justify the parameter setting of DEPT in the experimen-
tal parts.

(a) Average precision (b) Macro-averaging AUC (c) Coverage

(d) Hamming loss (e) One-error (f) Ranking loss

Figure 5. Performance of DEPT changes in terms of each evaluation metric as the parameter r
increases from 1 to 14 on four regular-scale data set.

4.4.2. Execution Time

To study the runtime efficiency of SCFS and DEPT, Table 6 records the execution time
of 5 algorithms with superior performance in Section 4.3. Combined with the experimental
results, conclusions can be drawn as follows:

1. Since FRSLIFT conducted sample selection when constructing the feature space, a lot
of time is sacrificed while improving performance.

2. Compared with LIFT, SCFS and DEPT can achieve shorter running time. This is
mainly because the dimension of the constructed feature space ϕd is different, specif-
ically, ϕd(SCFSk) = 2r, ϕd(DEPTk) = 4r, and ϕd(LIFTk) = ε · min(|POS|, |NEG|).
Generally, the relationship can be written as follows:

ϕd(SCFS) < ϕd(DEPT) < ϕd(LIFT).

3. The label-specific feature space constructed based on annulus clustering can improve
runtime efficiency. The difference is that the hierarchical structure of double annuluses
is better than a single annulus in terms of 6 evaluation metrics, and time consumption
is also more remarkable than that of the single annulus. In short, these results validate
the efficiency of SCFS and DEPT in learning from multi-label data.
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Table 6. Execution time of four compared algorithms (mean ± std) on 6 regular-scale data sets.

Execution Time Data Set SCFS DEPT LIFT FRSLIFT

Total time
(in seconds)

Emotions 0.227 ± 0.006 0.245 ± 0.010 0.301 ± 0.014 48.090 ± 0.157
CHD49 0.373 ± 0.027 0.429 ± 0.036 0.744 ± 0.285 53.389 ± 0.781
Images 2.672 ± 0.028 4.323 ± 0.057 6.287 ± 0.016 1879.930 ± 57.506
WaterQuality 4.125 ± 0.142 5.436 ± 0.216 6.117 ± 0.106 727.960 ± 14.067
Scene 5.082 ± 0.116 6.036 ± 0.144 6.175 ± 0.061 1599.054 ± 47.101
Yeast 12.839 ± 0.156 24.689 ± 0.470 46.706 ± 0.736 17,198.588 ± 763.569

Formally, the time complexity of SCFS can be calculated from as follows. Firstly,
the cost of calculating the distance between the instances and the center of annuluses is
O(l|PONk|). The time spent dividing the instances in PONk into annuluses is O(lr). Then,
the time spent performing clustering within annuluses is lr(R∗k )

2. Therefore, the total time
complexity of SCFS is O(l(|PONk|+ r + r(R∗k )

2)). Analogously, the time complexity of
DEPT is O(l(t + |POSk|+ |NEGk|+ 2r + 2r(R∗k )

2)), where t denotes the time of dimen-
sional reduction of PCA [14] on POSk and NEGk. It is obvious that the time complexity of
DEPT is higher than that of SCFS.

4.4.3. DEPT vs. SCFS

Both the DEPT and SCFS strategies can achieve the effect of a hierarchical cluster.
To explore the difference in performance between the two strategies, we carried out compar-
ative experiments on the two algorithms in terms of different evaluation metrics. Figure 6
reports the detailed experimental results. On the one hand, the two strategies conform to
the monotonicity, i.e., either an upward or a downward trend on each evaluation metric.
On the other hand, the performance gap between the two algorithms becomes more minor
as the number of annuluses increases from 1 to 20.

(a) Average precision (b) Macro-averaging AUC (c) Coverage

(d) Hamming loss (e) One-error (f) Ranking loss

Figure 6. Comparison of DEPT and SCFS in terms of each evaluation metric as the parameter annulus
increases from 1 to 20 on 4 benchmark multi-label data sets.

4.4.4. MCDA

Multi-criteria decision analysis (MCDA) [47] is an analytical method used to make
choices among multiple criteria. In this paper, we use MCDA to solve conflicting require-
ments for speed and reliability of classification. Table 7 shows the calculated average
accuracy rate, time consumption, and interaction index of all subsets in the annulus set
and Mobius. In the fourth column of Table 7, Mobius corresponding to r2, r3, r4, and r5
will be used as a measure of information redundancy in the joint contribution of multiple
attributes. The fifth column represents the Shapley value, which can be interpreted as a
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measure of the importance of the corresponding attributes in the feature space, where r1
and r2 are complementary. The negative value of the corresponding influence index in this
column indicates that the redundancy of the feature space increases with the increase in
the number of annuluses. The fifth column can be similarly interpreted. From Table 7, it
can be seen that the appropriate number of annuluses to balance time and efficiency is 5.

Table 7. Annuluses of DEPT in Mobius representation and mutual influence index.

Number of Annuluses Time Accuracy Mobius Shapley Banzhaf

{r1, r2} 0.21 0.57 –0.67 0.67 0.67

{r2, r3} 0.34 0.62 0.17 0.32 0.29

{r2, r3, r4} 0.66 0.66 0 0.11 0.11

{r2, r3, r4, r5} 1.35 0.75 0.32 0.44 0.5

{r2, r3, r4, r5, r6} 2.76 0.77 0.67 –0.67 –0.67

5. Conclusions

A new method for extracting label-specific feature strategies, DEPT, is proposed in this
paper. To form the double annulus domain, the centers of the double annulus field model
are shifted to the sample center of the positive and negative samples, and the positive
and negative samples are divided into annuluses, respectively. In addition, the principal
component analysis (PCA) technique is utilized to divide the samples in each layer of
annuluses. Based on this strategy, intra-annulus clustering was performed to further
distinguish the two classes of instances close to the center of distribution density, aiming to
improve the performance of multi-label classification with class-imbalanced. Comparative
experiments with six algorithms on 10 multi-label data sets show the proposed strategy is
superior to some others in 6 evaluation metrics. However, the multi-annulus model still
faces the following problems and challenges:

1. Through the sensitivity analysis experiment in Section 4.4.1, we learned that increasing
the number of annuluses can improve the overall classification accuracy but may lead
to overfitting as the number of annuluses continues to increase.

2. Increasing the number of annuluses can improve classification accuracy to a certain
extent, but it can also significantly impact efficiency because every additional annulus
requires an exponential increase in training iterations by a factor of 2.

3. Based on the experimental results, the performance of the annulus model is not
satisfactory for some data sets, which may be due to the single annulus model being
unable to universally fit all data sets.

Future work will implement an annulus model that better fits various distribution trends
of multi-label data sets and attempt to strike a balance between accuracy and efficiency.
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