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Abstract: One of the hot topics in the study of rock and soil hydraulics is the size effect of a soil–rock
mixture’s (SRM) seepage characteristics. The seepage process of the SRM was simulated from the
pore scale through the lattice Boltzmann method (LBM) in this paper to explore the internal influence
mechanism of sample size effect on the SRM seepage characteristics. SRM samples were generated
using the improved Monte Carlo method (IMCM), and through 342 simulation test conditions the
influence of size feature parameters such as resolution (R), segmentation type, model feature size
(S), feature length ratio (F), and soil/rock particle size feature ratio (P) was examined. The study
demonstrated that as R increases, the permeability of the SRM gradually rises and tends to stabilize
when R reaches 60 ppi. At the same S, the dispersion degree of model permeability obtained by the
four segmentation types is in the order of center < random < equal < top. With an increase in S, the
permeability (k) of the SRM gradually decreases, conforming to the dimensionless mathematical
model, k = a0·S−b0 , and tends to stabilize at S = 80 mm. With an increase in F and an increase in S,
the permeability of the SRM exhibits a linear “zonal” distribution that declines in order. When F is
greater than 12, the dispersion of the permeability value distribution is especially small. With an
increase in P, the permeability of the SRM decreases gradually before rising abruptly. P is crucial
for the grading and structural makeup of the SRM. Overall, this paper concludes that the conditions
of R = 60 ppi, center segmentation type, S = 80 mm, F ≥ 12, and P set by demand can be used to
select and generate the size of the SRM optimal representative elementary volume (REV) numerical
calculation model. The SRM can serve as a general reference for test and engineering construction as
a common geotechnical engineering material.

Keywords: soil–rock mixture; lattice Boltzmann method; size effect; permeability

MSC: 76M55

1. Introduction

A special type of geological material called a soil–rock mixture (SRM) exists between
massive rock masses and fine-grained soil masses [1–3]. There is the existence of SRM and
hydraulics involved from natural mountain landslides to artificial subgrade fill erosion [4,5].
According to the study’s findings [6], the hydraulic properties of the SRM have clear
structural and size effects, which undoubtedly make it more challenging to determine the
permeability parameters of the SRM. Therefore, it is crucial to understand how the size of
the SRM influences the characteristics of seepage.

Currently, the size effect of seepage characteristics of rock and soil masses is mainly
manifested as follows: the permeability of rock and soil mass changes correspondingly with
the change in sample size or research scope. Researchers have conducted many studies to
address the issue of the size effect of rock and soil permeability. The size effect (including
particle and model size effect) and boundary effect are the most significant influencing
factors in seepage research, according to Lin et al. [7], who also made some evaluations on
the size effect in subsequent research. Research on rock mass permeability characteristics
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and representative elementary volume (REV) analysis were conducted by Rong et al. [8].
According to the simulation results, the jointed rock mass group number and spacing are
more sensitive to the effects of REV, while the crack opening has the biggest impact on its
permeability characteristics. According to the analysis by Chen et al. [9] about the causes of
the pore size effect in low permeability clay seepage, a microscale seepage theory model of
the pore size effect was proposed. Wang [10] examined the statistical characteristics and size
effect of the permeability coefficient of samples with different rock content and tested the
ratio of sample side length to the maximum particle size of block stone (millimeter scale) to
determine the effect of rock content on the permeability coefficient and its REV. A rock mass
seepage test was performed by Liu et al. [11] by using the boundary element method after
nine two-dimensional (2D) rock mass networks of various sizes were built using the Monte
Carlo method. The findings demonstrated that the permeability is in a fluctuating state
when the sample size is less than 12 m and that until the model size is greater than 12 m, the
curve gradually tends to be stable. The REV of the rock and soil mass and the corresponding
characterization size were determined in the aforementioned research from various angles
and fields, but the characterization size was determined using various methods, resulting in
different results. Additionally, most of the aforementioned studies concentrate on the size
effect of the permeability for a single mass of soil or rock, and the study of the size effect of
the permeability of the SRM with unique building materials is infrequently included. It is
still unclear how many size factors affect the seepage characteristics of the SRM because of
the various research scales and objectives.

The study of the numerical method for determining the permeability of rock and soil
mass is currently fairly advanced, but some areas still require improvement. While it is
well known that the SRM belongs to discrete particles of a discontinuous medium [12], the
numerical simulation method typically adopts the continuous medium assumption.

In light of this, the lattice Boltzmann method (LBM) was created. In the field of porous
media seepage, it was first proposed by McNamara et al. [13] and quickly developed due
to its advantage of easy implementation and parallel computing [14–16]. Many researchers
have used LBM with better success to simulate and study the mesoscopic seepage charac-
teristics of porous media [17–20]. The premise of the SRM’s permeability study is also the
construction of the SRM model. At the moment, scanning electron microscopy (SEM) and
random generation are the two techniques most frequently used. Additionally, by adjusting
the pertinent key parameters, the random generation method can create the necessary SRM
model. Its models have unique shapes that resemble the actual SRM [12]. To simulate the
seepage process within the SRM, it can easily be combined with LBM.

Since different types of SRM samples are generated using the improved Monte Carlo
method in this study, LBM is used to simulate the mesoscopic seepage process within
the SRM from the pore scale. It is expected to reveal the internal influence mechanism of
sample size effect on SRM seepage characteristics and provide a certain reference basis
for further research. Finally, through 342 simulation test conditions, the influence of size
characteristic parameters such as resolution (R), segmentation type, model feature size
(S), feature length ratio (F), and soil/rock particle size feature ratio (P) on the seepage
characteristics of SRMs is discussed in detail.

2. Materials and Methods

To verify the viability of the BGK-LBM model from flow velocity through the conven-
tional theoretical value of the Poiseuille and the numerical value, the study first introduces
the construction of the SRM model and the LBM numerical model. The influence of size
effect on SRM seepage characteristics is then thoroughly discussed. The paper concludes by
delving deeply into the selection of the SRM’s optimal representative elementary volume
model size.
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2.1. Discrete Models of Soil–Rock Mixture

The overall porosity of the model, the physical characteristics of the rocks (rock content,
rock particle size, etc.), and the soil/rock ratio are all strongly correlated with the physical
and mechanical characteristics of the SRM [19]. Additionally, in reference to the research
that was conducted by other researchers on SRM seepage characteristics [17,21,22], it has
been observed that employing 2D models to simulate SRM seepage characteristics also
possesses a particular representativeness. As a result, the classical Monte Carlo method [23]
is used to investigate how the aforementioned variables affect the SRM’s permeability.
Considering this, the important parameter of the distance dd between particles is introduced,
and the MATLAB program is put together to produce various kinds of 2D SRM models for
further study. Following is the specific implementation procedure:

Step 1: Determine the SRM model with the size boundary l × b, the initial porosity
(n0 = 1.0), particle size (the particle size here refers to the diameter, Dm = [d1, d2, . . . , dm]),
and other important parameters.

Step 2: Using the primary parameters from Step 1, the MATLAB program’s rand
function is used to generate the particle distribution position (xi, yj) in the delivery area at
random. The position is then given the particle size di (i = 1, 2, . . . , m), meaning that a solid
random particle m can be drawn from these parameters.

Step 3: The crucial parameter of the distance dd between particles is introduced to
make it easier to adjust the position relationship between the particles. By repeating Step 2
based on this, a string of independent particles can be created. The generation of the SRM
model is not complete until the porosity n satisfies Equation (1).

n = n0 −
∑

i=m
π
(

Dm
2

)2

l · b (1)

Using the aforementioned technique, the porosity of the SRM is set within the range
0.36–0.51 and the particle size di is set to 4, 6, 10, 25, and 35 mm based on References [19,24]
and combined with the focus of this study. Various types of SRM–1, SRM–2, and SRM–3 are
generated at random (see Figure 1a–c), where the model’s size is l = 100 mm by b = 100 mm
and the black area represents soil/rock particles and the white area represents pores.
Calculate the direction frequency of particle distribution for various models concurrently
to reflect the change in the particle distribution rule generated randomly by the SRM,
as shown in Figure 1d–f. Figure 1d–f show how the distribution of soil/rock particles
vary among the three models and is disordered, which is consistent with the anisotropic
properties of the SRM [12]. In conclusion, the SRM model created by the random method
described in this paper has a good effect on the distribution of soil/rock particles. Based
on this, it is quick and convenient to study the influence of many factors on its seepage
characteristics, so other models are generated using this method in the future.
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where ρ is the density; ωα is the weight coefficient; u is the macroscopic velocity; cs is the 
sound velocities in lattice units, cs2 takes the value of c2/3, and c is the lattice velocity. 
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Figure 1. Soil–rock mixture model and particle distribution rose. (a) SRM–1, n = 0.3642; (b) SRM–2,
n = 0.4008; (c) SRM–3, n = 0.5060; (d) SRM–1 particle rose diagram; (e) SRM–2 particle rose diagram;
(f) SRM–3 particle rose diagram.
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2.2. Theoretical Part
2.2.1. Lattice Boltzmann Theory and Boundary Conditions

In general, the discrete Boltzmann equation for F(ω,t) can be solved using the lattice
Boltzmann method (LBM) to derive the Navier–Stokes (N–S) equation [16], which can then
be used to simulate the laws of fluid flow from the mesoscale. The most commonly used
BGK-LBM model [17–19], which can be represented by discrete LBE, is used in this paper:

Fα(ω + eαδt, t + δt) = Fα(ω, t)− Fα(ω, t)− Feq
α (ω, t)

τ
(2)

where F(ω,t) is the particle distribution function along α at lattice point ω at moment t;
eα is the discrete velocity; δt is the discrete time; τ is the dimensionless relaxation time;
Feq

α (ω, t) is the local equilibrium state distribution function in the discrete velocity space.
The classical D2Q9 model is used in the LBM discrete velocity model [17,18]. The

model is depicted in Figure 2, and the following parameters describe its equilibrium
distribution function:

Feq
α = ρωα[1 +

eα · u
c2

s
+

(eα · u)2

2c4
s
− u2

2c2
s
] (3)

ωα =


4
9 , α= 0
1
9 , α= 1, 2, 3, 4
1

36 , α= 5, 6, 7, 8
(4)

where ρ is the density; ωα is the weight coefficient; u is the macroscopic velocity; cs is the
sound velocities in lattice units, cs

2 takes the value of c2/3, and c is the lattice velocity.

Mathematics 2023, 11, x FOR PEER REVIEW 5 of 20 
 

 

2
sp cρ=  (6)

8

0

1 Fα α
αρ =

= u e
 

(7)

2 1( )
2s tc τυ δ= −  (8)

The Mach number (Ma) of the fluid flow must be low enough [19,25] to guarantee 
that the numerical solution of the LBM converges to the N-S equation for an incompress-
ible fluid, and it should typically satisfy Ma < 0.1, which is defined as: 

max
a
uM
c

=  (9)

where umax is the highest possible fluid flow rate. 
In addition, LBM fluid flows along the Z-direction of the SRM in the study. The inlet 

and outlet pressure boundary and the fluid–solid boundary are addressed, respectively, 
using the Zou/He boundary [16] and standard rebound format [18]. In Figure 3, the pre-
cise settings are displayed. The model must be binarized (0–1) before boundary processing 
to identify and pinpoint the fluid and solid region (the region with pixel value 0 is the 
fluid domain, while the region with pixel value 1 is the solid domain). 

 
Figure 2. D2Q9 model. 

 
Figure 3. Model boundary conditions. 

Figure 2. D2Q9 model.

The N–S equation in hydrodynamics that correspond to the fundamental LBE model
was derived using the Chapman–Enskog expansion [16]. The relationship between the
macroscopic density ρ, pressure p, velocity u, and kinematic viscosity coefficient of fluid υ
and the dimensionless relaxation time τ of the model is given by:

ρ =
8

∑
α=0

Fα (5)

p = ρc2
s (6)

u =
1
ρ

8

∑
α=0

Fαeα (7)

υ = c2
s (τ −

1
2
)δt (8)
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The Mach number (Ma) of the fluid flow must be low enough [19,25] to guarantee that
the numerical solution of the LBM converges to the N-S equation for an incompressible
fluid, and it should typically satisfy Ma < 0.1, which is defined as:

Ma =
umax

c
(9)

where umax is the highest possible fluid flow rate.
In addition, LBM fluid flows along the Z-direction of the SRM in the study. The inlet

and outlet pressure boundary and the fluid–solid boundary are addressed, respectively,
using the Zou/He boundary [16] and standard rebound format [18]. In Figure 3, the precise
settings are displayed. The model must be binarized (0–1) before boundary processing to
identify and pinpoint the fluid and solid region (the region with pixel value 0 is the fluid
domain, while the region with pixel value 1 is the solid domain).

Mathematics 2023, 11, x FOR PEER REVIEW 5 of 20 
 

 

2
sp cρ=  (6)

8

0

1 Fα α
αρ =

= u e
 

(7)

2 1( )
2s tc τυ δ= −  (8)

The Mach number (Ma) of the fluid flow must be low enough [19,25] to guarantee 
that the numerical solution of the LBM converges to the N-S equation for an incompress-
ible fluid, and it should typically satisfy Ma < 0.1, which is defined as: 

max
a
uM
c

=  (9)

where umax is the highest possible fluid flow rate. 
In addition, LBM fluid flows along the Z-direction of the SRM in the study. The inlet 

and outlet pressure boundary and the fluid–solid boundary are addressed, respectively, 
using the Zou/He boundary [16] and standard rebound format [18]. In Figure 3, the pre-
cise settings are displayed. The model must be binarized (0–1) before boundary processing 
to identify and pinpoint the fluid and solid region (the region with pixel value 0 is the 
fluid domain, while the region with pixel value 1 is the solid domain). 

 
Figure 2. D2Q9 model. 

 
Figure 3. Model boundary conditions. Figure 3. Model boundary conditions.

2.2.2. Conversion of Lattice Unit and Physical Unit

The LBM unit conversion part is described with reference to the method in Succi [26].
Basic parameters in the model (lattice unit) are length l, density ρ, time t, pressure p, and
kinematic viscosity coefficient υ. Corresponding parameters of the model (physical unit) are
length l′, density ρ′, time t′, pressure p′ and kinematic viscosity coefficient is υ′. In order to
realize the conversion between the above two parameters, it is necessary to introduce some
reference quantities [16]: reference length lr, reference density ρr, and reference velocity ur,
which are defined as:

lr =
l′

l
(10)

ρr =
ρ′

ρ
(11)

ur =
c′s
cs

(12)

where cs
′ and cs are the sound velocities in physical units and lattice units, respectively.

For a specific problem, the l, ρ, cs, and υ are known. The actual physical quantity can
also be obtained through the relevant equation. Therefore, ρr and ur can be determined,
but l′ and lr cannot. In view of this, the following relationship is added:

lrur =
υ′

υ
(13)
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In addition, the conversion between t, p, and t′, p′ can be solved based on the
following equations:

lr
ur

=
t′

t
= tr (14)

p =
p′tr

2

lr2ρr
(15)

So far, the conversion between the grid and the actual physical unit is completed [16].
Generally, the following equations are suitable: δx = δy = 1, δt = 1, and cs

2 = 1/3, and
converted to physical units.

δ′x = δ′y = lr (16)

δ′t =
lr
ur

(17)

c′s =
ur√

3
(18)

2.2.3. Soil/Rock Particle Size Threshold

The soil/rock threshold can be comprehensively determined by using the following
equation, which is in accordance with the research findings of Xu and Medley et al. [12,27]
on the threshold of soil/rock particle size in the SRM, and combined with the particle
generation and distribution characteristics of the SRM model in this paper.

DSRT = 0.05Lp (19)

where DSRT is the soil particle size threshold value, and Lp is the engineering feature size
of the SRM, with the engineering feature size for the plane study area being equal to the
arithmetic square root of the study area’s dimensions. So, Lp =

√
100× 100 = 100 mm.

In this study, SRM–1, SRM–2, and SRM–3 were used, and their respective rock contents
were 67.69%, 61.07%, and 52.96%. Wherein the rock content Cr is determined by dividing
the total area of soil and rock in the SRM model by the area of rock.

2.2.4. Size Feature Parameters

In order to study the influence of the size effect on the seepage characteristics in the
SRM model, this paper sets four size feature parameters: model resolution R, model feature
size S, feature length ratio F, and soil/rock particle size feature ratio P.

(1) Model resolution (R) is the term used to describe the amount of data stored in a model
image, which is typically expressed as the pixel density per inch (ppi) [28]. The output
quality of an image is determined by resolution. The size of the model is determined
by the image resolution and image size combined. The more significant the value, the
more precise the model and image are.

(2) Model feature size (S) is defined as the arithmetic square root of the product of
the numerical model’s length l and width b. S represents the average length of the
numerical model size.

S =
√

l · b (20)

(3) The feature length ratio (F), which is defined as the ratio of the rock feature particle
size (Dr =

√
Dr1Dr2···Drm, Drm refers to the particle size of the m-th type of rock in

the SRM) to S, characterizes the relationship between the rock particle size and the
model size in the SRM model.

F =
Dr

S
(21)
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(4) The soil/rock particle size feature ratio (P), which is defined as the ratio of the soil
feature particle size (Ds =

√
Ds1Ds2···Dsm, Dsm refers to the particle size of the m-th

type of soil in the SRM) to Dr, characterizes the relationship between the soil/rock
particle size feature in the SRM model.

P =
Ds

Dr
(22)

2.2.5. Permeability Calculation Theory

The penetrating quality of the SRM is generally described by the permeability, which
can be calculated using Darcy’s law (Equation (23)) and the LBM seepage field simulation.
It should be noted that a laminar flow state is required for Darcy’s law to hold. By
examining whether the permeability of the SRM remains constant under a range of pressure
differences, it can be determined whether the SRM is in a laminar flow state and can satisfy
the requirements of Ma < 0.1 and laminar flow when the pressure difference ∆p is less than
0.01 m.u.·l.u.−1·t.s.−2 (3.67 × 10−2 Pa).

k =
µu
∆p

=
ρυul
∆p

(23)

where k is the permeability; µ is the dynamic viscosity coefficient of the fluid;
−
u is the

average flow velocity; ∆p is the seepage pressure difference; l is the length of seepage path.
The LBM calculation stops when the fluid reaches a stable state. The criterion for

determining the stable state is that the standard deviation of the kinetic energy in the entire
calculation domain within a certain number of time steps is less than 0.01% of the average
kinetic energy [19]. Following the convergence of the calculation, Darcy’s law can be used
to determine the model’s permeability.

2.3. Model Size Segmentation

A number of small size model samples are taken directly from the large size samples
to ensure consistency in sampling. In addition, taking into account the possibility of
contingency in the selection of the SRM model, this paper uses four segmentation types,
namely random, center, top, and equal segmentation, to segment the SRM model [9], as
shown in Figure 4. Table 1 contains a list of the specific segmentation scheme for the various
SRM models used in the research that follows. The segmented SRM sample’s seepage field
is then calculated to investigate the influence of sample size on the permeability of the
SRM. The dispersion of permeability under various test conditions is reflected in this paper
using the coefficient of variation (cv). The cv is equal to the ratio of the standard deviation
to the average value, which better illustrates the dispersion of the data compared to the
standard deviation.
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Table 1. Size segmentation scheme of different SRM models.

Projects Model Segmentation Type Basic Information S (mm) Number of Test
Conditions

Resolution SRM–1/SRM–
2/SRM–3 – r–10, r–20, r–30, r–40, r–50

r–60, r–70, r–80, r–90, r–100 100 30

Segmentation type SRM–1/SRM–
2/SRM–3

Random/Center/Top/Equal

sj–25/jz–25/dd–25/df–25 25

225
sj–50/jz–50/dd–50/df–50 50
sj–75/jz–75/dd–75/df–75 75

sj–100/jz–100/dd–100/df–100 100

Model feature size SRM–1/SRM–
2/SRM–3 Center jz–10, jz–20, jz–30, jz–40, jz–50,

jz–60, jz–70, jz–80, jz–90, jz–100
10, 20, 30, 40, 50,
60, 70, 80, 90, 100 30

Feature length ratio
SRM–1/SRM–

2/SRM–3
SRM–add

Center F = 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20 50, 80, 100 48

Soil/rock particle
size feature ratio

SRM–1/SRM–
2/SRM–3
SRM–add

Center P = 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9 80 9

3. Results
3.1. Numerical Model Validation

The self-programmed LBM program is validated using the classical Poiseuille flow [17,18],
and the validation computational model area is chosen as a grid of 50 × 25 mm (500 × 250 l.u.)
with the same boundary treatment as described in Section 2.2.1. Table 2 displays the specific
computational parameters, where l and b are the length and width of the computational model,
and ∆p is the pressure difference between the inlet and outlet of the fluid.

Table 2. Parameters of validation examples.

l (mm) b (mm) t (s) µ (Pa·s) ρ (kg·m−3) T (◦C) ∆p (Pa)

50 25 1.65×10−3 1.01×10−3 1000 20.0 3.67 × 10−2

The surface cloud of the velocity field calculated by the Poiseuille flow model us-
ing the LBM program is shown in Figure 5, and it is clear that the velocity decreases
gradually from the middle to the two ends. The comparison results of the velocity of
each grid point in the middle cross–section with the Poiseuille flow analytical value are
shown in Figure 6. The highest error is merely 4.33%, demonstrating the precision of the
self-programmed technique.
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3.2. Influence of Size Effect on Permeability

The seepage direction is set to follow the Z-direction of the SRM, and the flow is set to drive
the model at a constant temperature (T = 20 ◦C) and pressure difference (∆p = 3.67× 10−2 Pa)
to make the seepage simulation results more realistic. The specific boundary conditions
used in the calculation model are shown in Figure 3. The additional pertinent settings and
calculation criteria for the validation example given above apply here as well (Table 2).
Additionally, refer to Section 2.3 and choose the typical dimensions of models between
10 and 100 mm (grid unit: 100–1000 l.u.) to simulate various SRM models. There are 342
different simulation test conditions in total (Table 1).

3.2.1. Resolution R

Model resolution significantly affects the efficacy and accuracy of the results of the
permeability calculation in the LBM seepage field simulation [28,29]. SRM–1, SRM–2, and
SRM–3 models created in Section 2.1 are imported into LBM for calculation to examine
the influence of model resolution on permeability. The permeability of SRM samples
with various resolutions is simulated under the same boundary conditions and pressure
difference, with a total of 30 simulation test conditions (Table 1). The simulation results are
displayed in Figure 7.
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The permeability of the three models exhibits a trend in gradual improvement with
the resolution and tends to be stable when the resolution reaches 60 ppi, as can be seen in
Figure 7. Permeability dispersion degree cv values at this time are 0.00236, 0.00061, and
0.00028, respectively. Additionally, it is discovered that the porosity and rock content of the
model has little bearing on the relationship between resolution and permeability (SRM–1,
n = 0.3642, Cr = 67.69%; SRM–2, n = 0.4008, Cr = 61.07%; SRM–3, n = 0.5060, Cr = 52.96%)
by comparing the velocity field cloud map (velocity field, VF) of the three models with a
resolution of 60 ppi. The velocity field distribution in the models with various porosity and
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rock content exhibits a steady–state effect when the model resolution is 60 ppi. To guarantee
the precision and effectiveness of the LBM permeability calculation, the resolution of the
model sample is set to 60 ppi in the subsequent simulation reported in this paper.

3.2.2. Segmentation Type

The SRM models are created with feature sizes S = 25, 50, 75, and 100 mm using the four
segmentation types described in Section 2.3 (random, center, top, and equal segmentation),
with a total of 225 simulation test conditions (Table 1). The particular simulation test
conditions of the model for each S are as follows. The number of random segmentation
modes is 16, 8, 4, and 1. The number of center segmentation modes is 1, 1, 1, and 1. The
number of top segmentation modes is 4, 4, 4, and 1. The number of equal segmentation
modes is 16, 8, 4, and 1. Among them, “number” refers to obtaining simulated test models
of S based on a certain segmentation type in SRM–1 for simulation, and selecting one of
them as a typical representative model for display, as shown in Figure 8. Figures 9 and 10
show the distribution of the typical seepage velocity field under various segmentation
types using SRM–1 as an example (the segmentation type is the same when the model
feature size S = 100 mm, so it is not shown), and Figure 10 uses the average permeability
value under the same S to show the dispersion degree under various segmentation types.
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Figure 9 shows that the segmentation type has a greater impact on the permeability
of the SRM with the same S. The random segmentation type and the center segmentation
type have a more uniform seepage velocity field distribution than the top segmentation
type and the equal segmentation type. The reason for this is that the models obtained by
the top and equal segmentation type are mostly soil/rock particles in the SRM–1 model’s
corner area. The probability of disconnected channels appearing in the corresponding
segmentation model is higher, which also leads to a large dispersion of the permeability
of the model intercepted by the top segmentation and equal segmentation types. This can
also be indicated by the flow velocity cloud map in Figure 9.

Furthermore, the dispersion degree of model permeability obtained by the four seg-
mentation types under the same S is in order: center < random < equal < top (using SRM–1,
S = 50 mm as an example, cv-R = 0.1684, cv-C = 0, cv-T = 0.4365, and cv-E = 0.3729), which is
consistent with other relevant research conclusions [10]. Although the random segmenta-
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tion type has good stability under certain conditions and is used by many researchers, it
inevitably has great uncertainty and requires a large number of model data as support to
produce the most stable and accurate permeability results. Additionally, when compared
to the central segmentation type, it requires a significant amount of time and computing
memory. According to Figures 9 and 10, the model’s permeability exhibits a high degree
of anisotropism as the model feature size increases under the same segmentation type,
with the permeability results obtained by the top and equal segmentation types being
particularly significant.

3.2.3. Model Feature Size S

To investigate the influence of the model’s feature size S on the seepage characteristics
of the SRM model, this section synthesizes the preceding research and obtains the model
with the resolution R = 60 ppi, S = 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 mm, respectively,
by using the center segmentation type for the SRM–1, SRM–2, and SRM–3 models. Then,
numerical simulation tests were conducted on the seepage field combined with LBM, with
a total of 30 simulation test conditions (Table 1). Figures 11 and 12 depict the simulated
seepage velocity field and streamline distribution (limited to space, shown with SRM–1 as
an example). Simultaneously, numerical fitting is used to examine the relationship between
the permeability and the model feature size S, and the results are shown in Figure 13.
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(a–j) S = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 mm.

Figure 11 shows that the seepage velocity generally decreases as the feature size of the
model increases. With increasing feature size of the model, the distribution characteristics
of the seepage fluid in the channel gradually change from scattered distribution of a
single channel to interactive distribution of multiple channels, and the average seepage
velocity of the models with different feature sizes is u10 = 0.485 cm/s, u20 = 0.129 cm/s,
u30 = 0.092 cm/s, u40 = 0.064 cm/s, u50 = 0.040 cm/s, u60 = 0.030 cm/s, u70 = 0.022 cm/s,
u80 = 0.018 cm/s, u90 = 0.016 cm/s, and u100 = 0.015 cm/s. According to the streamline
distribution diagram (Figure 12), the distribution of streamlines in the model pores first
appears sparse, thick, and wide, and then the streamline gradually becomes dense and
narrow as the model’s feature size increases. The reason for this is that the model’s feature
size is small, the number of soil and rock particles in the model area is small, and the
distribution is single, which cannot represent the overall model’s seepage characteristics.
Simultaneously, when the velocity field and streamline distribution images of different
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feature sizes in SRM–1, SRM–2, and SRM–3 are combined, it can be seen that as the
sample feature size S increases, the difference between the seepage velocity field and
streamline distribution gradually decreases, indicating a relatively similar seepage trend.
This demonstrates that selecting an appropriate model feature size has a significant impact
on seepage characteristics. On the one hand, if the model feature size is too small, it is
unable to represent the model’s basic characteristics. On the other hand, if the model
feature size is too large, it results in resource abuse. As a result, it is critical to investigate
the appropriate model feature size to characterize the model’s seepage characteristics.
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Additionally, the permeability of SRM models with various structures gradually
decreases with an increase in the feature size of the model, as shown by the fitting curve
in Figure 13. In addition, it satisfies the dimensionless mathematical model k = a0·S−b0

(where a0 and b0 are numerical fitting parameters), and when S = 80 mm, it has a tendency
to be nearly stable. With the increase of S (S = 80, 90, 100 mm), the degree of dispersion cv
for the permeability of the three models (SRM–1, SRM–2 and SRM–3) is only cv-1 = 0.02281,
cv-2 = 0.06631, and cv-3 = 0.07375. In conclusion, S = 80 mm can be regarded as the model
for the representative numerical calculation unit of the SRM described in this paper.

3.2.4. Feature Length Ratio F

Based on the above study, various SRM models (F = 5–20) are created using the method
in Section 2.1 with the model porosity set to n = 0.50 to ensure that it has no effect on the
results. This is used to study the influence of feature length ratio (F) on the permeability
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of SRMs in more detail (many studies show that porosity has a significant impact on
permeability). For further information on the specific scheme, see Table 1. A total of
48 simulation test conditions are used to model the permeability of SRM samples under
various F under the same boundary conditions and pressure differential. Figure 14 displays
the simulation outcomes.
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Figure 14 shows that the permeability of the SRM is roughly distributed along a linear
“zonal” (blue area) with decreasing feature length ratio F and that as feature size S of
the model increases, the dispersion of the permeability numerical distribution decreases.
This finding is in line with the research findings in Section 3.2.3 regarding the relationship
between feature size and permeability. In addition, it can be seen that the seepage channels
of the F = 5 model are relatively wide but few in number, whereas the seepage channels
of the F = 20 model are relatively narrow but numerous by comparing the seepage field
velocity images of F = 5 and F = 20 under various model feature sizes. This is due to the
fact that, given a constant feature size for the model, a larger feature length ratio results in
a smaller maximum particle size for the rock and a smaller corresponding pore channel,
which ultimately reduces the model’s permeability. In addition, it is important to take
into account that the permeability distribution dispersion of the model with a low feature
length ratio is more pronounced than that of the model with a high feature length ratio,
and the dispersion is significantly reduced when F ≥ 12, which also suggests that the
feature length ratio should not be too small when studying the permeability of the SRM
model. Comprehensive comparison with other research or specific conclusions is more
consistent [9,30]. The Standard for Soil Test Methods (GB/T 50123–2019) [30] states that when
the sample size is 100 mm, the ratio of sample size to maximum particle size must be at
least 10. The American Society for Testing and Materials Standard Yearbook [9] states that the
diameter of the sample container must be 8–12 times the maximum particle size of the
sample. Briefly describing the findings of relevant research, most of the time the sample
size to particle size ratio is not less than 5 [31–33].

3.2.5. Soil/Rock Particle Size Feature Ratio P

The internal pore structure of the SRM is determined by its particle size distribution,
which also affects its permeability. The soil/rock particle size feature ratio (P) can represent
the composition of soil/rock particle size in the model sample of the SRM. Based on the pre-
viously mentioned study, this section utilizes samples of the SRM with various particle size
feature ratios (P = 0.10–0.90) of S = 80 mm, R = 60 ppi, and n = 0.50 to explore the influence
of P on the seepage characteristics of the SRM in more depth, with a total of nine simulation
test conditions (Table 1). The simulation outcomes are displayed in Figures 15 and 16.
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Figure 15 illustrates how significantly the feature ratio of soil/rock particle size affects
the seepage characteristics of the SRM. Overall, the permeability of the SRM shows a
characteristic of first slowly decreasing and then sharply increased with the increase in
P. When compared to the model samples at the critical soil/rock particle size feature
ratio (P = 0.10, P = 0.20, P = 0.70, and P = 0.90), it can be seen that as P increases, the
difference in soil/rock particle size in the model sample decreases, changing the sample’s
pore structure from a multilevel distribution to almost a single–graded sample. At P > 0.70,
the soil/rock particle size is nearly the same, almost becoming “rock”, forming a skeleton
structure together, so its permeability increases suddenly.

It can also be seen that the average seepage velocity of the model sample is typically
higher when P = 0.90, while the average seepage velocity of the model sample is the lowest
when P = 0.70, which corresponds to the permeability value shown in Figure 15. This is
in comparison to the average velocity distribution curve of the seepage field in Figure 16.
The average seepage velocity curve’s shape also changes from multiple wave peaks and
complex bending to a single wave peak and smooth characteristics with an increase in
P value, which is closely related to the particle size distribution of soil and rock and also
corresponds to the evolution characteristics. These findings come from examining the
shapes of each average seepage velocity curve under various particle size feature ratios of
soil and rock.

Compared with other researchers, it can be seen that References [22,34,35] focus on the
influence of rock particle size on the SRM’s simulated permeability, but had not considered
the influence of the mutual relationship between soil and rock particle size on the SRM’s
simulated permeability. This study demonstrated that SRM’s reproduced permeability is
significantly influenced by the soil/rock particle size feature ratio (Figure 15). Additionally,
Reference [34] showed that the presence of a critical value of rock content causes an
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unexpected shift in the pattern of the influence of rock particle size on permeability. The
influence of particle size on permeability was clearly linked to rock content in the conclusion
of Reference [35]. Compared with Reference [34], this study found that the soil/rock particle
size feature ratio extent similarly has a particular threshold, which can cause an unforeseen
increase in simulated permeability, and the two had explicit similarities in this regard.

3.3. Discussion

The detailed influences of resolution, segmentation type, model feature size, feature
length ratio, and soil/rock particle size feature ratio on the seepage characteristics of SRMs
were explored in Section 3.2 using 342 simulation test conditions. Differentiated and other
specialists’ preliminary focuses on the permeability of SRMs, it might be seen in Refer-
ences [12,36–38] that the permeability coefficient of SRMs obtained from the experiment
has a large span (permeability and permeability coefficient can be converted from each
other), ranging from 10−6 to 2.0 cm/s. This also indicates that the SRM’s permeability is not
uniform and varies depending on factors such as the type of soil, particle size, inside pore
structure, experimental model size, etc. The pattern of permeability coefficient changes
with the increase in rock content described in Reference [36] supports the reliability of the
mimicked estimation of penetrability noted in this paper. In any case, it is important to
note that the permeability values derived from this paper’s mathematical calculations are
significantly higher than those derived from experiments in References [22,36–38]. The
reason is that the SRM used in the experiment has soil and rock particles that are mostly
attached, whereas the SRM made by the mathematical model has sandy particles that do
not have a bond, so the permeability is larger. Compared with the reenactment compu-
tation effects of SRM’s penetrability described in Reference [34], it is consistent with the
calculation data reported in this paper.

In addition, this section also provides an extensive discussion on the selection of the
optimal unit volume model size of SRMs based on the findings of the research. Bear [39]
made the initial suggestion for the representative elementary volume (REV). The REV
scale, which represents the critical scale for the change from unstable to stable mechanical
properties of rock and soil mass, is an objective reflection of the size effect of the mechanical
properties of the rock and soil mass [40]. Larger-particle rock components and small soil
particles comprise the SRM. Figure 16 of the research area of the research group illustrates
how the internal structure of the model changes with continuous changes in the model’s
size [12]. Figure 17 shows that the REV–I region consists of single or partial block stones; the
REV–II region has a certain amount of block stones and uses fine-grained soil as the filling
material; the REV-III region contains a variety of block stones with different particle sizes
in addition to the block stones that cannot be ignored in comparison to the REV–II region,
which together forms a multilevel SRM. Additionally, the authors of References [41,42] used
homogenization to create multiscale LBM models that successfully mimicked single–phase
and two–phase flow simultaneously in pores of completely different length scales. This
could be also applied to an SRM where the particle sizes and pores vary greatly. This
demonstrates that the test and calculation results can only accurately reflect the pertinent
properties of the SRM when the size range of the SRM studied is greater than or equal to its
REV. The balance between numerical calculation accuracy and calculation efficiency should
also be thoroughly taken into consideration on this basis for the numerical simulation of
the size effect on SRM seepage characteristics.

Based on the aforementioned research, Section 3.2.1 first simulates 30 test conditions
for SRM–1, SRM–2, and SRM–3 with various resolutions R = 0–100 ppi. It demonstrates
that when the resolution reaches 60 ppi, cv is 0.00236, 0.00061, and 0.00028, respectively,
and R = 60 ppi can be thought of as the optimal resolution. Secondly, in Section 3.2.2,
225 kinds of seepage test simulations were carried out for the SRM model under the four
segmentation types, and it was found that the model permeability obtained by the center
segmentation type under the same model feature size was the least discrete, which was also
consistent with other relevant research conclusions [10]. Thirdly, center segmentation type
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was used in Section 3.2.3 to create a model with resolutions of R = 60 ppi and S = 100 mm.
Dimensionless k = a0·S−b0 mathematical model fitting was used to analyze the results of
30 seepage test conditions. When S = 80 mm, it was discovered that the SRM’s permeability
tended to be almost stable. At this time, cv was only cv-1 = 0.02281, cv-2 = 0.06631, and
cv-3 = 0.07375. Then, using n = 0.50 and F = 5, Section 3.2.4 simulates 48 seepage test
conditions for various SRM models. It demonstrates that as F increases, the distribution of
the SRM’s permeability presents a decreasing “zonal” distribution, and that the dispersion
of the permeability value distribution is significantly reduced when F ≥ 12. The SRM
samples with S = 80 mm, R = 60 ppi, n = 0.50, and P = 0.10–0.90 were studied under
10 different penetration test conditions in Section 3.2.5, showing that P plays a significant
and decisive role in the grading and structural composition of the SRM, but that there is no
clear distinction between good and bad for the selection of size effect.
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Figure 17. Relationship between soil–rock mixture structure and REV size. (a) Overall model of the
soil–rock mixture; (b) REV model of the soil–rock mixture with different sizes.

As a result, the following guidelines can be used to determine the optimal size for the
SRM’s REV numerical calculation model reported in this paper: the center segmentation
type is used, the model is R = 60 ppi, S = 80 mm, F≥ 12, and P determined by specific needs.

4. Conclusions

Based on the lattice Boltzmann method (LBM), the seepage process for the soil–rock
mixture (SRM) is simulated from the pore scale. The following conclusions are drawn after
a detailed discussion of the effects of size feature parameters on the seepage characteristics
of SRMs under 342 simulation test conditions, including resolution (R), segmentation type,
model feature size (S), feature length ratio (F), and soil/rock particle size feature ratio (P);
the following conclusions are obtained:

(1) As R increases, the permeability of the SRM gradually rises and tends to stabilize
when R reaches 60 ppi. The model’s porosity and rock content also have only a minor
impact on the correlation between resolution and permeability.

(2) The four segmentation types–center segmentation, random segmentation, equal seg-
mentation, and top segmentation–are in order of decreasing dispersion in the per-
meability of the model obtained under the same S. The permeability of the model
increases with S when using the same segmentation type, exhibiting a high degree
of mutual anisotropy. The results for permeability obtained using the top and equal
segmentation types are particularly noteworthy.

(3) The permeability of the SRM model decreases gradually as S increases, satisfying the
dimensionless mathematical model k = a0·S−b0 and tending to be stable at S = 80 mm.
The permeability of the SRM increases in a linear “zonal” distribution as F increases,
and as S increases, the dispersion in the permeability value distribution decreases,
particularly when F ≥ 12. The permeability of the SRM decreases gradually and then
sharply as P increases, and it is important in the grading and structural composition
of the SRM.
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(4) In the current study, the conditions of R = 60 ppi, center segmentation type, S = 80 mm,
F ≥ 12, and P determined by specific need can be used to select and generate the
optimal REV numerical calculation model size of the SRM.
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