
Citation: Bilige, S.; Cui, L.; Wang, X.

Superposition Formulas and

Evolution Behaviors of

Multi-Solutions to the

(3+1)-Dimensional Generalized

Shallow Water Wave-like Equation.

Mathematics 2023, 11, 1966.

https://doi.org/10.3390/

math11081966

Academic Editor: Marco Pedroni

Received: 10 February 2023

Revised: 2 April 2023

Accepted: 14 April 2023

Published: 21 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Superposition Formulas and Evolution Behaviors of
Multi-Solutions to the (3+1)-Dimensional Generalized Shallow
Water Wave-like Equation
Sudao Bilige * , Leilei Cui and Xiaomin Wang

Department of Mathemaitcs, Inner Mongolia University of Technology, Hohhote 010051, China
* Correspondence: inmathematica@126.com

Abstract: The superposition formulas of multi-solutions to the (3+1)-dimensional generalized shal-
low water wave-like Equation (GSWWLE) are proposed. There are arbitrary test functions in the
superposition formulas of the mixed solutions and the interaction solutions, and we generalized to
the sum of any N terms. By freely selecting the test functions and the positive integer N, we have
obtained abundant solutions for the GSWWLE. First, we introduced new mixed solutions between
two arbitrary functions and the multi-kink solitons, and the abundant mixed solutions were obtained
through symbolic computation. Next, we constructed the multi-localized wave solutions which are
the superposition of N-even power functions. Finally, the novel interaction solutions between the
multi-localized wave solutions and the multi-arbitrary function solutions for the GSWWLE were
obtained. The evolution behaviors of the obtained solutions are shown through 3D, contour and
density plots. The received results have immensely enriched the exact solutions of the GSWWLE in
the available literature.

Keywords: mixed solution; multi-localized wave solution; interaction solution; generalized bilinear
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1. Introduction

One of the important subjects to research is nonlinear localized waves in nonlinear mathe-
matical physics; its theory has extensive applications in nonlinear fields, for example, nonlinear
optics, fluid mechanics, bio-physics, and so on. Soliton [1–3], rogue wave [4–6], breathers [7,8]
and lump solution [9–11] are nonlinear localized waves according to dynamic characteris-
tics and physical properties. With the progress of technologies and the improvement of
computing power, researchers are interested in numerical [12,13] and symbolic computa-
tion [1–11] in recent years. By using symbolic computation, many useful and interesting
localized solutions are studied [14,15]. In addition to this, optical solitons [16–19], traveling
wave solutions [20,21] and interaction solutions [22–25] have been studied as nonlinear
waves. Recently, N-soliton solutions of integrable equations have been studied systemati-
cally by introducing a detailed algorithm for checking the Hirota conditions for N-soliton
solutions [26]. On the other hand, N-soliton solutions have been carefully studied in the
case of nonlocal integrable equations as well [27].

Linear superposition principle does not hold well in nonlinear systems because of the
nonlinear terms. Nonetheless, it was found to apply for some specific cases [28,29]. Recently,
based on bilinear equation and superposition formula, the researchers studied various
exact solutions to nonlinear evolution equations (NLEEs), such as breathers [7,8], lump
solution [9–11], interaction solutions [22–25], lump-type solution [30], high-order lump-
type solution [31–35], localized wave solutions [36,37] and breather lump-kink solitons [38].
Particularly, the researchers studied the superposition formula to the sum of any N terms,
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such as resonant multi-soliton solutions [29], lump-multi-solitions [39,40], lump-multi-
stripe solutions [39–41], interaction solutions between a multiple solitary wave and a
triangular periodic wave [41], interaction solutions between the multi-localized wave
solutions and the multi-kink soliton solutions [42,43], etc. In order to construct a general
form of the solution to NLEEs, we will give the superposition formulas of multi-solutions
which can include the above solutions [7–11,22–25,29–43]. There are arbitrary test functions
in these superposition formulas, and we can generalize to the sum of any N terms. By freely
selecting the test functions and the positive integer N, we can obtain the abundant solutions
of NLEEs, and we can analyze the interaction behaviors among N function solutions.

It is known that shallow water waves have an important influence on marine ecology,
atmospheric science, ocean engineering, and so on [44]. The shallow water equations
investigate the motion forms of water. The (l+l)-dimensional shallow water wave equation
has been discussed in detail [45]. Some have begun to study the higher-dimensional
shallow water wave because it contains rich dynamic behaviors [46]. As a generalization
of the (l+l)-dimensional shallow water wave equation, Jimbo and Miwa introduced a
(3+1)-dimensional generalized shallow water wave equation (GSWWE) [47]

uxxxy − 3uxxuy − 3uxuxy + uyt − uxz = 0. (1)

Equation (1) is the second equation in the Kadomtsev–Petviashvili hierarchy. It has
been widely applied in tidal waves, ocean engineering weather simulations, tsunami predi-
cation and so on. Equation (1) has been studied by using the different methods such as the
soliton-type solutions [48–50], the traveling wave solutions [51–54], the non-traveling wave
solutions [52,53], the periodic solitary wave solutions [55,56], the rational solutions [57,58],
the multiple-soliton solutions [58,59], the lump solutions and the interaction solutions [60]
for Equation (1), etc.

Under a scale transformation x → −x, Equation (1) can be written as

uxxxy + 3uxxuy + 3uxuxy − uyt − uxz = 0. (2)

So, we can study the solutions of equivalent Equation (2). Researchers have studied
Grammian and Pfaffian solutions [61], the lump-type solutions and their interaction so-
lutions [62–64], the breather wave solutions [63], the periodic wave solutions [65], the
high-order breather solutions, the high-order lump solutions and the hybrid solutions [66],
the solitary wave solutions, the periodic wave solutions and the interactional solutions [67]
of Equation (2). Through the dependent variable transformation

u = 2(ln f )x, (3)

the generalized bilinear equation (GBE) of Equation (2) is derived as follows

GBEGSW( f ) := (D3
3,xD3,y − D3,yD3,t − D3,xD3,z) f · f

= 2(3 fxx fxy + fy ft − fyt f + fx fz − fxz f ) = 0, (4)

where D is the generalized bilinear differential operator [68]. Based on the GBE (4), we
can derive the following (3+1)-dimensional generalized shallow water wave-like Equation
(GSWWLE) under the transformation f = e

∫
(u/2)dx,

(D3
3,xD3,y − D3,yD3,t − D3,xD3,z) f · f

f 2

=
3
2

uxuy +
3
4

uux∂−1
x uy +

3
4

u2uy +
3
8

u3∂−1
x uy − ∂−1

x uyt − uz = 0, (5)

which possesses the same bilinear type as GSWWE (2). When z = x, the rational solutions
and the lump solutions of the GSWWLE (5) are studied [69]. The breather solutions, the
three-wave solutions, the high-order lump-type solutions and the interaction solutions of
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the GSWWLE (5) are obtained in [70]. In the following, we will study new mixed solutions,
the multi-localized wave solutions and the interaction solutions of the GSWWLE (5).
If f solves the GBE (4), then u = 2(ln f )x will present a solution to the GSWWLE (5)
according to the generalized bilinear method [68] and Bell polynomial theories of integrable
equations [71].

In the present paper, we will give the superposition formulas of multi-solutions to
the GSWWLE. In Section 2, we will introduce new mixed solutions between two arbitrary
functions and multi-kink solitons. In Section 3, we will obtain the multi-localized wave
solutions by using the superposition of N-even power functions. Furthermore, we will
study the novel interaction solutions between the multi-localized wave solutions and the
multi-arbitrary function solutions. The dynamical features of these waves will be shown
via the various figures. Section 4 will conclude this paper.

2. Mixed Solutions between Two Arbitrary Functions and the Multi-Kink Solitons of
the GSWWLE

In this section, we propose new mixed solutions between two arbitrary functions and
the multi-kink solitons as a general solution of the GSWWLE. We suppose that the solution
f of the GBE (4) is in the form of

f = α0 + F(ξ1) + G(ξ2) +
M

∑
j=1

mje
ηj , (6)

where ξi = αi1x+ αi2y+ αi3z+ αi4t+ αi5, ηj = β j1x+ β j2y+ β j3z+ β j4t+ β j5 and α0, αik, mj,
β jk (i = 1, 2; j = 1, . . . , M; k = 1, . . . , 5) are arbitrary real constants and M is an arbitrary
positive integer. F(ξ1) and G(ξ2) are arbitrary functions. The constants αi1, αi2, αi3 and
β j1, β j2, β j3 indicate the wave velocity in the x, y, z direction, respectively. αi4, β j4 means the
frequency of the wave and αi5, β j5 represent the invariance of variables.

By substituting the test function (6) into the GBE (4), and collecting all terms with
the same order of F(ξ1), G(ξ2), F′(ξ1), G′(ξ2), . . . , eηj together, a complicated equation can
be obtained. Equating each coefficient of these different power terms to zero yields the
following system of nonlinear algebraic equations.

α3
i1αi2 = 0, β3

j1β j2 = 0, αi1αi3 + αi2αi4 = 0, α11α21(α11α22 + α12α21) = 0,

α11α23 + α12α24 + α13α21 + α14α22 = 0, β j1β j3 + β j2β j4 = 0,

αi1β j3 + αi2β j4 + αi3β j1 + αi4β j2 = 0, αi1β j1(αi1β j2 + αi2β j1) = 0, (7)

3βk1β j1(βk1β j2 + βk2β j1)− (βk1β j3 + βk2β j4 + βk3β j1 + βk4β j2) = 0, 1 ≤ k < j ≤ M

where i = 1, 2; j = 1, 2, . . . , M. Solving the algebraic Equation (7), we obtain the following
relations of the parameters αik, β jk in Cases 1.1–1.6.

Case 1.1: αi1 = αi4 = 0, β j2 = β j3 = 0, α12α23 − α13α22 = 0, αi2β j4 + αi3β j1 = 0,

Case 1.2: α11 = α14 = 0, α22 = α23 = 0, β j1 = β j4 = 0, α12α24 + α13α21 = 0,

α21β j3 + α24β j2 = 0,

Case 1.3: α11 = α14 = 0, α22 = α23 = 0, β j2 = β j3 = 0, α12α24 + α13α21 = 0,

α12β j4 + α13β j1 = 0,

Case 1.4: αi2 = αi3 = 0, β j1 = β j4 = 0, α11α24 − α14α21 = 0, αi1β j3 + αi4β j2 = 0,

Case 1.5: α12 = α13 = 0, α21 = α24 = 0, β j1 = β j4 = 0, α11α23 + α14α22 = 0,

α11β j3 + α14β j2 = 0,

Case 1.6: α12 = α13 = 0, α21 = α24 = 0, β j2 = β j3 = 0, α11α23 + α14α22 = 0,

α22β j4 + α23β j1 = 0,

where i = 1, 2; j = 1, 2, . . . , M.
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By freely selecting the test functions F(ξ1), G(ξ2), we can obtain the abundant solutions
of the GSWWLE (5) with the transformation (3). For example, the breather lump-kink
solitons (M = 1, 2, 3, 4) [38], one lump-multi-stripe solutions [39,41], the interaction solution
between the multiple solitary wave and the triangular periodic wave [41], etc.

As an example, we choose F(ξ1) = cos(ξ1), G(ξ2) = cosh(ξ2) as follows

f1(x, y, z, t) = α0 + cos(ξ1) + cosh(ξ2) +
M

∑
j=1

mje
ηj . (8)

Substituting the Cases 1.1–1.6 of parameters into (8), we can obtain the breather lump-
kink solitons of the GSWWLE (5) through the transformation (3). To show the evolution
behaviors of the breather lump-kink solitons with the change of kink-soliton number M,
we choose the appropriate values to the parameters of Case 1.1 as follows

α0 = 1, α12 = 3, α15 = 2, α22 = 1.1, α23 = 1, α25 = 5.96, β11 = 13.1, β15 = 1.5,

β21 = −5, β25 = −6, β31 = −3, β35 = 6, m1 = −30, m2 = 1, m3 = 60, t = 1, z = x. (9)

Figure 1 shows the 3D plots of the breather lump-kink solitons when M = 1, 2, 3. The
interaction behaviors of the breather lump-kink solitons are studied on the basis of the
increase in the number M, and we take the breather lump-M-soliton as the main research
object when M = 1, 2, 3. In fact, the evolution behaviors of the breather lump-M-soliton
solutions are similar when M→ +∞.

As can be seen in Figure 1, the mixed solution consists of the M-kink wave and the
breather wave. Fistly, we can see the interactions among the kink solitons. It shows a single
kink wave when M = 1. A single kink wave is divided into two kink waves when M = 2,
and a single kink wave is divided into three kink waves when M = 3. This is a non-elastic
collisions fission phenomenon. With the change of time, the breather wave interacts with
the kink wave, and the two waves begin to change in velocities, shapes and amplitudes.

Figure 1. 3D plots (M = 1, 2, 3) corresponding to Case 1.1 at time t = 1.

3. Multi-Localized Wave Solutions and Interaction Solutions of the GSWWLE
3.1. Multi-Localized Wave Solutions

In this section, we construct new multi-localized wave solutions of the GSWWLE (5)
by utilizing the superposition of N-even power functions. To generate multi-localized wave
solutions, we take an ansatz to the GBE (4)

f = α0 +
N

∑
i=1

ξ
2ni
i , (10)

where ξi = αi1x + αi2y + αi3z + αi4t + αi5, and α0, αik (i = 1, . . . , N; k = 1, . . . , 5) are real
unknowns that will be determined subsequently. N, ni are arbitrary positive integers. By
freely choosing the values of N, ni in (10), we can obtain various kinds of exact analytical
solutions to NLEEs, such as the lump solutions [9–11], the lump-type solutions [30], the
high-order lump-type solutions [31–35], the localized wave solutions [36,37], etc.
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When we choose ni = 1 in (10), the test function (10) is written as

f = α0 +
N

∑
i=1

ξ2
i . (11)

The solution (11) of the GBE (4) is the superposition of N-quadratic functions. We
substitute (11) into the GBE (4) and gather the coefficients of the resulting polynomial in
x, y, z, t, to obtain a nonlinear algebraic system for α0, αik. By solving the above equations
with the aid of Maple, we obtain the following results.

Case 2.1: αi3 = −α14αi2
α11

, αi4 =
α14αi1

α11
, and αi1αi2 = −αi−1,1αi−1,2(i is even),

where i = 1, 2, . . . , N(N ≥ 2). If N is odd, αN1αN2 = 0.
For example, we give the N = 5 corresponding solutions f2(x, y, z, t) and f3(x, y, z, t)

of the GBE (4) to Case 2.1 as follows.

f2(x, y, z, t) = (α11x + α12y− α12α14

α11
z + α14t + α15)

2 + (α21x− α11α12

α21
y +

α12α14

α21
z

+
α21α14

α11
t + α25)

2 + (α31x + α32y− α32α14

α11
z +

α31α14

α11
t + α35)

2 (12)

+(α41x− α31α32

α41
y +

α14α31α32

α11α41
z +

α14α41

α11
t + α45)

2 + (α52y− α14α52

α11
z + α55)

2 + α0.

f3(x, y, z, t) = (α11x + α12y− α12α14

α11
z + α14t + α15)

2 + (α21x− α11α12

α21
y +

α12α14

α21
z

+
α21α14

α11
t + α25)

2 + (α31x + α32y− α32α14

α11
z +

α31α14

α11
t + α35)

2 (13)

+(α41x− α31α32

α41
y +

α14α31α32

α11α41
z +

α14α41

α11
t + α45)

2 + (α51x +
α14α51

α11
t + α55)

2 + α0.

When N = 6, we obtain the solution f4(x, y, z, t) of the GBE (4) as follows.

f4(x, y, z, t) = (α11x + α12y− α12α14

α11
z + α14t + α15)

2 + (α21x− α11α12

α21
y +

α12α14

α21
z

+
α21α14

α11
t + α25)

2 + (α31x + α32y− α32α14

α11
z +

α31α14

α11
t + α35)

2

+(α41x− α31α32

α41
y +

α14α31α32

α11α41
z +

α14α41

α11
t + α45)

2 + (α51x + α52y− α52α14

α11
z

+
α51α14

α11
t + α55)

2 + (α61x− α51α52

α61
y +

α14α51α52

α11α61
z +

α14α61

α11
t + α65)

2 + α0. (14)

The following results are interesting. By choosing the values of ni, we can obtain
various high-order multi-localized wave solutions.

(1) When N is odd, we set ni = 1(i = 1, . . . , N − 1) and nN is the arbitrary positive
integer, namely

f = α0 +
N−1

∑
i=1

ξ2
i + ξ2nN

N . (15)

The coefficients of the solution (15) still satisfy Case 2.1.
(2) When ni is an arbitrary positive integer and N is even, we obtain the following results

Case 2.2: αi2 = αi3 = 0, αi4 =
α14αi1

α11
, αN1 = αN4 = 0, αN3 = −α14αN2

α11
,

Case 2.3: αi1 = αi4 = 0, αi3 =
α13αi2

α12
, αN2 = αN3 = 0, αN4 = −α13αN1

α12
,
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where i = 1, 2, . . . , N − 1.
Substituting the three cases 2.1–2.3 of parameters into the test functions f in (11)

and (15), we can obtain the multi-localized wave solutions for the GSWWLE (5) under the
transformation (3)

u =
2 fx

f
, (16)

where f is the positive function solution of the GBE (4). We can easily verify that the multi-
localized wave solutions (16) are also the multi-localized wave solutions corresponding to
Case 2.1 of the GSWWE (2).

From (16), we can see that at any fixed time t, the localized wave solution u→ 0 if and
only if ξ2

1 + · · ·+ ξ2
N → ∞, namely

lim
x2+y2+z2→+∞

u(x, y, z, t) = 0.

The localized wave solution corresponding to (16) is rationally localized in all direc-
tions in the space.

To exhibit the localized characteristics of the localized wave solution u(x, y, z, t) corre-
sponding to f4(x, y, z, t) of the GSWWLE (5) clearly, a 3D plot, a contour plot and a density
plot with particular choices of the involved parameters are shown in Figure 2. The involved
parameters adopted are

α0 = 1, α11 = 1.5, α12 = 1, α14 = 0.5, α15 = 0, α21 = 2, α25 = 0, α31 = 1, α32 = 2,

α35 = 0, α41 = 1, α45 = 0, α51 = 1, α52 = 0.3, α55 = 0, α61 = 1, α65 = 0, z = x. (17)

Figure 2. 3D plot, contour plot and density plot at time t = 0.

If the conditions α11α21α41α61 6= 0 and α0 > 0 are satisfied, the function f4(x, y, z, t)
in (14) is positive. In Figure 2, we choose the parameters αi5 = 0, which show the localized
wave centered at the origin (0, 0) when t = 0. The crest and trough of the localized wave
are symmetric about the origin (0, 0), as shown in Figure 2, and so it can be thought to be
the bright-dark wave because the height of the crest and the depth of the trough are equal.

When N = 2, we can give the general formula of the original coordinates of lump

( [(α23z + α24t + α25)α12 − (α13z + α14t + α15)α22]
√

α2
11 + α2

21 ±
√

α0|α11α22 − α12α21|

(α11α22 − α12α21)
√

α2
11 + α2

21

,

(α13z + α14t + α15)α21 − (α23z + α24t + α25)α11

α11α22 − α12α21

)
(18)
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where α0, αik are given in Case 2.1. Then the simplified form in x, y plane can be obtained
by substituting α15 = α25 = 0, z = 0 into Formula (18)(

(α12α24−α14α22)
√

α2
11+α2

21t±√α0|α11α22−α12α21|
(α11α22−α12α21)

√
α2

11+α2
21

, α14α21−α11α24
α11α22−α12α21

t
)

. (19)

From Formula (19), we know that the initial velocities in x direction and y direction of
the lump are vx = α12α24−α14α22

α11α22−α12α21
, vy = α14α21−α11α24

α11α22−α12α21
.

3.2. Interaction Solutions between the Multi-Localized Wave Solutions and the Multi-Arbitrary
Function Solutions of the GSWWLE

In this section, we will pay attention to the interaction solutions between the multi-
localized wave solutions and the multi-arbitrary function solutions for the GSWWLE (5).
In order to derive the interaction solutions, we assume that the GBE (4) has the novel
superposition formula of exact solution

f = α0 +
N

∑
i=1

ξ
2ni
i +

M

∑
j=1

Fj(ηj), (20)

where ξi = αi1x+ αi2y+ αi3z+ αi4t+ αi5, ηj = β j1x+ β j2y+ β j3z+ β j4t+ β j5, and α0, αik, β jk
(i = 1, . . . , N; j = 1, . . . , M; k = 1, . . . , 5) are real parameters. N, ni, M are arbitrary positive
integers, and Fj(ηj) are arbitrary functions. By freely choosing the values of N, ni, M and
the test functions Fj(ηj) in (20), we can obtain various kinds of interaction solutions, such
as the interaction solutions [22,23], the lump-multi-strip solutions and the lump-multi-
solitions [39,41] and the interaction solutions of lump-M-cosh solitons [42] to NLEEs.

When we choose ni = 1, the exact solution of the GBE (4) is written

f = α0 +
N

∑
i=1

ξ2
i +

M

∑
j=1

Fj(ηj). (21)

By substituting (21) into the GBE (4), and collecting the coefficients, we obtain a
nonlinear algebraic system for α0, αik, β jk. By solving the above equations with the aid of
Maple, we obtain the solutions for the GBE (4). In fact, the Cases 2.1–2.3 correspond to the
following two cases, respectively:

(I)β j1 = β j4 = 0, β j3 = −
α14β j2

α11
; (II)β j2 = β j3 = 0, β j4 =

α14β j1

α11
; (22)

where j = 1, . . . , M and α11 6= 0.
By substituting the parameters α0, αik, β jk in Case 2.1 and (I), (II) into the expres-

sions (21) and using (16), we obtain the interaction solutions between multi-localized wave
solutions and multi-arbitrary function solutions for the GSWWLE (5). We can easily verify
that the interaction solutions (16) corresponding to (21) and Case 2.1, (I), (II) are also the
interaction solutions of the GSWWE (2).

By freely choosing the values of the functions Fj(ηj) in the expression (21) and
using (16), we can obtain various kinds of interaction solutions for the GSWWLE (5) and
GSWWE (2). For example, when Fj(ηj) = eηj , we obtain the interaction solutions between
the multi-localized wave solutions and the multi-kink soliton solutions [42,43], etc.

As the example, we choose N = 6, M = 1, 2 and Fj(ηj) = eηj corresponding to the
solution of the GBE (4) to Case 2.1 and (II) as follows

f5(x, y, z, t) = f4(x, y, z, t) + eβ11x+ α14β11
α11

t+β15 + α0. (23)

f6(x, y, z, t) = f4(x, y, z, t) + eβ11x+ α14β11
α11

t+β15 + eβ21x+ α14β21
α11

t+β25 + α0. (24)
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By substituting (23) and (24) into the transformation (16), we obtain the interaction
solutions u(x, y, z, t) between the localized wave solution and multi-kink soliton solution of
the GSWWLE (5). In the following, we will study the evolution behaviors of the interaction
solutions with the change of soliton number M. We choose the appropriate values for the
parameters as follows

α0 = 1, α11 = 1.5, α12 = 1, α14 = 0.5, α15 = 0, α21 = 2, α25 = 0, α31 = 1, α32 = 2,

α35 = 0, α41 = 1, α45 = 0, α51 = 1, α52 = 0.3, α55 = 0, α61 = 1, α65 = 0, β11 = 0.5,

β15 = 1, β21 = −0.5, β25 = −1, z = x. (25)

Figures 3 and 4 show the dynamic processes of the interaction solution corresponding
to (23) and (24). As can be seen in Figures 3 and 4, the interaction solution consists of
the M-kink wave and the localized wave. Fistly, we can see the interactions among the
kink solitons. It displays a single kink wave only for M = 1 in Figure 3 and single kink
wave split into two kink waves when M = 2 in Figure 4. From figures, the interaction
behaviors of the localized wave and multi-kink soliton are seen on the basis of the increase
in the number M, and we take the localized wave-M-kink soliton as the main research
object when M = 1, 2. In fact, the evolution behaviors of the localized wave-M-kink soliton
are similar when M → +∞. The figures show the 3D plots, contour plots and density
plots in the (x, y)-plane when t = 0. The localized structures and the energy distribution
of the interaction solution are shown on the 3D plots and the density plots, respectively.
On Figures 3 and 4, the localized waves interact with the kink soliton solutions and move
forward in the y direction.

With the change of time, the localized wave interacts with the kink, and the two waves
begin to change in velocities, shapes and amplitudes. Comparing Figure 3 with Figure 2,
it is observed that after interaction of localized wave and kink waves, the height and
intensity of localized wave reduces compared with the single localized wave.

Figure 3. 3D plot, contour plot and density plot corresponding to f5(x, y, z, t) at times t = 0.

Figure 4. 3D plot, contour plot and density plot corresponding to f6(x, y, z, t) at times t = 0.
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4. Conclusions

In this paper, we proposed the superposition formulas of multi-solutions to the
GSWWLE. Based on the superposition formulas of multi-solutions, we have investigated
novel mixed solutions, the multi-localized wave solutions and the interaction solutions
of the GSWWLE by using symbolic computation. There are arbitrary test functions in the
superposition formulas of the mixed solutions (6) and the interaction solutions (20), and we
generalized to the sum of any N terms. By freely selecting the test functions and the positive
integer N, we obtained abundant solutions of the GSWWLE. At first, we gave the mixed
solutions between two arbitrary functions and the multi-kink solitons of the GSWWLE.
Next, we successfully structured the abundant multi-localized wave solutions which are
the superposition of N-even power functions of the GSWWLE. Finally, the interaction
solutions between the multi-localized wave solutions and the multi-arbitrary function
solutions of the GSWWLE are obtained. Through 3D plots, contour plots and density plots,
we illustrated the dynamical features of the mixed solutions, the localized wave solutions
and the interaction solutions. It is worth mentioning that the received multi-localized wave
solutions and the interaction solutions are also the exact solutions of the GSWWE (2). In
addition, the received results have enriched the exact solutions of the GSWWLE [69,70]
and the GSWWE [47–67] in the available literature.

The exact solutions of NLEEs play a crucial role in the study of nonlinear physical or
natural phenomena. It is always a research goal to construct new exact solutions of NLEEs.
Moreover, our method may provide an effective and direct tool to apply the high-order
nonlinear wave and the collision phenomena to many other NLEEs in mathematical physics.
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