
Citation: Hong, Z.; Shi, R.; Yue, F.;

Yang, J.; Wu, Y. Mathematical

Solution of Temperature Field in

Non-Hollow Frozen Soil Cylinder

Formed by Annular Layout of

Freezing Pipes. Mathematics 2023, 11,

1962. https://doi.org/10.3390/

math11081962

Academic Editors: Zhongkai Huang,

Dongming Zhang, Xing-Tao Lin,

Dianchun Du, Jin-Zhang Zhang

and Óscar Valero Sierra

Received: 3 March 2023

Revised: 18 April 2023

Accepted: 18 April 2023

Published: 21 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Mathematical Solution of Temperature Field in Non-Hollow
Frozen Soil Cylinder Formed by Annular Layout of Freezing Pipes
Zequn Hong 1,*, Rongjian Shi 1, Fengtian Yue 1, Jiaguang Yang 2 and Yuanhao Wu 3

1 School of Mechanics and Civil Engineering, China University of Mining and Technology,
Xuzhou 221116, China

2 Natural Resources Bureau of Longsheng Multi-Ethnic Autonomous County, Guilin 541799, China
3 China Construction Eighth Engineering Division Co., Ltd., Shanghai 200112, China
* Correspondence: zqhong@cumt.edu.cn

Abstract: With the wide application of the artificial ground freezing method in municipal under-
ground engineering, the annular layout of freezing pipes is often adopted to form a frozen soil
cylinder. However, there is still no analytical solution that can calculate the temperature distribution
of frozen soil formed in this case. In this paper, a mathematical model of a steady-state temperature
field of single-circle freezing is established, in which the inside of the freeze ring is completely frozen;
that is, the temperature of all excavation sections is below the freezing point. Then, the analytical
solution of temperature distribution is deduced through the complex variable method and potential
superposition method. Comparison results of the analytical solution with those of the numerical
simulation show that the analytical solution is precise enough. The temperature distribution of the
main section and the intersection is approximately the same on the inner side, but the freezing effect
of the main section is relatively better near the freezing pipes and outside the freeze ring. Besides,
according to the derived analytical solution and common freezing parameters, a simplified formula to
calculate the temperature field with enough accuracy was proposed, and the error can be controlled
below 1‰. Finally, based on the simplified formula, a calculation method for frozen soil thickness
and the average temperature is also given in this paper.

Keywords: temperature field; analytical solution; ground freezing; frozen soil cylinder

MSC: 00A06

1. Introduction

Because of the stability in defending water and priority in safety and environmental
protection, the artificial ground freezing method is now widely used in urban underground
engineering, especially for excavation construction inside the water-rich soft ground. By
arranging freezing pipes around the proposed underground space, a continuously closed
frozen curtain is gradually formed in the stratum by artificial cooling technology, and then
the subsequent excavation construction is carried out. Since the formed frozen soil curtain
has good mechanical properties and the ability to isolate groundwater, it can give full play
to its superiority in the groundwater-proof role and has been widely used in municipal
underground projects [1,2], such as shield inlet and outlet the working shaft, tunnel contact
channels, foundation pit support, etc.

For this method of formation reinforcement, unlike conventional grouting schemes,
temperature field calculation is the basis of artificial ground freezing research, design, and
construction. This is because all parameters, such as mechanical properties and strength
index of frozen soil depend on the distribution of the frozen temperature field. Therefore,
for different types of freezing works, accurate calculation of their freezing temperatures is
an important guarantee for safe construction [3,4]. Numerous engineering practices and
numerical calculations have shown that the temperature field of frozen soil is close to the
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steady-state temperature field at the later stage of artificial ground freezing. So, it is feasible
to calculate the temperature field of artificial freezing projects using steady heat conduction,
which is generally accepted by the academia and engineering sectors [5,6]. Compared with
the experimental and numerical studies, the analytical solution can express the quantitative
relationship between the temperature field and each influencing factor explicitly, and the
physical meaning is clearer, so it is always an important content of the theoretical study of
the artificial ground freezing method.

Based on the steady heat conduction theory, former Soviet scholars proposed several
classical analytical solutions on the temperature field of artificial ground freezing. In 1954,
TRUPAK, as the first one, proposed the method to calculate the temperature field of a
frozen wall. Beginning with the research on single-piped freezing temperature, he derived
the analytical solution of temperature field with single-row-piped freezing on the basis of a
geometric relationship between freezing pipes and frozen soil columns [6]. BAKHOLDIN
derived temperature field formulation of single-row-piped freezing and double-row-piped
freezing, based on the theory of analogy between thermal and hydraulic problems [7]. In
China, the research group from Tongji University improved these formulas and derived
the analytical solution of different freezing schemes by means of superposition of potential
function [8–12]. These previous works provide a very valuable reference for the calculation
of the freezing temperature field.

However, due to the complexity and variability of design schemes and engineering
geology in practical underground projects [13–15], the existing analytical solutions for
temperature fields do not meet the needs of field applications. As far as the perimeter-
closed freeze hole arrangement is concerned, the annular layout of freezing pipes is also
often used in mining and municipal tunnel engineering, but the analytical solution of the
temperature field can only calculate the hollow frozen soil column at present [16], and
still cannot be solved for non-hollow frozen soil cylinder with negative temperatures in
the full section during the late freezing period. Based on the potential function method,
as well as the conformal mapping theory and the theory of analogy between thermal and
hydraulic problems [17–21], this paper derives the mathematical solution of a steady-state
temperature field in a frozen soil cylinder formed by single-circle freezing pipes, in order
to grasp the temperature distribution of non-hollow frozen soil columns and prevent
engineering accidents caused by insufficient frozen wall strength. First, we obtained the
expression formula of potential with an eccentric well via potential function theory and
mirror image method. On the basis of this formula, we then derive the formula of potential
with a circular arrangement of wells using the complex function method. Next, considering
the similarity between thermal and hydraulic problems, we derive the solution of the
steady-state temperature field of annular arranged freezing pipes. Finally, we adopted
the finite element method to prove the reliability of the obtained solution and proposed
a calculation method for the thickness and average temperature of frozen soil in order to
provide a reference for practical freezing works.

2. Potential Function in Hydrodynamics

Potential is a concept of energy in energy such as gravitational potential and elec-
trostatic potential. The potential often represents a determined value, the gradient of
which forms a force field. Potential field is often described with Laplace’s equation, whose
solution is called potential function [22].

2.1. Potential Function of a Concentric Well

When only one well exists in an infinite formation with a circular seepage boundary, a
plane right angle coordinate system is established with the well center as the coordinate
origin, and the model is shown in Figure 1.
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Figure 1. Potential function model of the well at the origin.

According to the research conclusions in the field of oil and gas extraction [23],
the expression of hydraulic potential for any certain point M in stratum can be written
as follows:

ΦM =
q

2π
ln r + C (1)

where q represents the flow volume per unit time; r represents the distance of the point to
the well center; C is an integral constant determined by seepage boundary conditions.

2.2. Potential Function of an Eccentric Well

When this well is not at the origin of the coordinates, but there is an eccentric distance
d1, without loss of generality, it is assumed that the well is on the horizontal axis ξ. The
geometric model is established as shown in Figure 2.
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According to the mirror image method, mirroring the eccentric inlet well conjugally
with equal strength and opposite sign by the circular seepage boundary, we can obtain
a mirror outlet well with the same flow volume q. So, the problem is converted to the
solving of the condition that in infinite stratum, there exists an inlet well q and an outlet
well −q. With the rules of mirror reflection, the polar radius of the mirror well center is
d2 = ds2/d1. Where d1 is the polar radius of the center of inlet well q, ds is the radius of
the seepage boundary. Therefore, for this condition of circular stratum with an eccentric
well, expression of potential at any random point M is as follows based on the principle of
potential superposition [24]:

ΦM =
q

2π
ln r1 −

q
2π

ln r2 + C =
q

2π
ln

r1

r2
+ C (2)

where q is the flow volume of the eccentric well; C is an integral constant.
According to the geometric relations in Figure 2 there are the following:

r1 =
√

r2 + d1
2 − 2rd1 cos θ (3)

r2 =
√

r2 + d22 − 2rd2 cos θ =

√
r2 + (ds2/d1)

2 − 2r(ds2/d1) cos θ (4)

where r is the polar radius of point M; θ is the polar angle of M.
Substituting (3), (4) into (2), potential at M can be expressed as follows:

ΦM = q
2π ln r1

r2
+ C

= q
4π ln r2+d1

2−2rd1 cos θ

r2+(ds2/d1)
2−2r(ds2/d1) cos θ

+C

= q
4π ln

r
d1
+

d1
r −2 cos θ

rd1
ds2 +

ds2
rd1
−2 cos θ

+ Φs

(5)

where Φs represents the potential on the seepage boundary, it can be expressed as follows [25]:

Φs =
q

2π
ln

d1

ds
+ C (6)

When the point M is located at the border of the inlet well, the potential ΦM should be
equal to Φw, which represents the potential at the border of the well. Substitute ΦM = ΦW
into (5), the flow volume of the eccentric well (q) can be calculated as follows:

q =
4π(ΦW −Φs)

ln
d1+dw

d1
+

d1
d1+dw

−2
(d1+dw)d1

ds2 + ds2
(d1+dw)d1

−2

=
2π(Φs −ΦW)

ln
[
− d1

ds
+ ds

dw
− d1

2

dwds

] (7)

where dw is the radius of the eccentric well.

3. Temperature Field Solution with Annular Layout of Freezing Pipes
3.1. Description of Single-Circle Freezing Model

The most common annular layout of freezing pipes is the single-circle freezing model.
Based on engineering experience, when the excavation section is small or frozen for a long
time, the soil on the inside of the single-circle freezing pipes often all drops below the
freezing point, such as in metro cross-passage projects and shaft-sinking projects. Although
most of the freezing projects are not designed to freeze solid completely, but in some cases
with long freezing time or small shaft diameter, the situation of a shaft completely frozen is
still often encountered. Therefore, there are scholars suggesting that the excavation should
be carried out after the shaft is completely frozen solid [26].
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Meanwhile, it has been widely proved that undulation at the boundary of the frozen
soil disappears shortly after the frozen soil column around each freezing pipe contacts each
other, which is also called the closure of frozen wall in practical engineering, forming a
smooth circular freezing boundary, as the different freezing condition in the early and later
period of freezing process shown in Figure 3. So, this paper will focus on the condition
that soil inside the freezing pipe ring is frozen solid completely and deduce an analytical
solution to the static temperature field of this condition.
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(b) later period.

According to the above freezing condition with single-circle freezing pipes, we can
build the following two-dimensional geometry model, n freezing pipes with the same wall
temperature (Tf) and the same radius (rw) are set evenly on a circumference whose radius
is R1, and the freezing pipe P1 located on the x-axis, schematically shown in Figure 4a.
Here we can assume that a circular frozen soil boundary (with a radius of Rf) forms around
the ring of freezing pipes. The temperature at the boundary is T0, which is also called the
freezing point of the ground soil.
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3.2. Conformal Mapping Function and Mapping Model

Considering the model symmetry in Figure 4a, we just need to consider the temper-
ature field of a single freezing pipe located in a fan-shaped region of a central angle of
2π/n (∠AOB in Figure 4a). Then by choosing the appropriate conformal mapping function
to convert the problem into the already solved condition of a circular stratum with an
eccentric freezing pipe, as shown in Figure 4b, the expression formula of the potential of
the single-circle freezing model can be deduced.

Here, we introduce the following conformal mapping formula to transform the real
plane z(xoy) to the virtual plane ζ (ξoη):

ζ = zn (8)

Define z = Reiα, ζ = ρeiθ, then substitute them into Formula (8), we obtain the following:

ρ = Rn and θ = nα (9)

It can be seen that by Formula (8), the angular region of a central angle of 2π/n in
the z-plane is transformed to the angular region of a central angle of θ = n·2π/n = 2π in
the ζ-plane. Additionally, the freezing pipe P1, whose coordinates are r = R1, α = 0 in
the z-plane, is transformed to point P1

′, whose coordinates are d1 = R1
n, θ1= n·0 = 0 in

the ζ-plane.
In addition, points at the freezing boundary in Figure 4a, which is a circumference

of a radius of Rf in the z-plane, are mapped to points at a circumference of a radius of
ds = Rf

n in the ζ-plane. Additionally, the equivalent radius of the mapped freezing pipe
can be calculated as follows:

dw = rw ·
∣∣∣∣dζ

dz

∣∣∣∣
x=R1

= nR1
n−1rw (10)

According to the principles of conformal mapping, by substituting d = Rn (R is the
polar radius of any point M in z-plane), d1 = R1

n, θ = nα, dw= nR1
n−1rw, ds = Rf

n into
Formulas (5) and (7), we can obtain the following expression formulas of ΦM and q, which
represent the potential of any point within the circular stratum concentric with a single-circle
freezing pipes, and the heat flow volume of a single freezing pipe, respectively:

ΦM =
q

4π
ln

(
R
R1

)n
+
(

R1
R

)n
− 2 cos nα(

RR1
Rf

2

)n
+
(

Rf
2

RR1

)n
− 2 cos nα

+ Φs (11)

q =
2π(Φs −ΦW)

ln
[
−
(

R1
Rf

)n
+ Rsn

nR1
n−1rw

− R1
2n

nR1
n−1Rf

nrw

] (12)

where α is the polar angle of a certain point M in the z-plane.
Substituting Formula (12) into Formula (11), we can obtain the expression of heat

potential at any point in Figure 4a as follows:

ΦM = (Φs −ΦW)

ln

(
R

R1

)n
+
(

R1
R

)n
−2 cos nα(

RR1
Rf

2

)n
+

(
Rf

2
RR1

)n
−2 cos nα

2 ln
[
−
(

R1
Rf

)n
+ Rsn

nR1
n−1rw

− R1
2n

nR1
n−1Rf

nrw

] + Φs (13)

3.3. Temperature Field with a Single-Circle Freezing Pipes

Based on the principle of similarity between thermodynamics and hydraulics, the
flow volume of a well (q) is analogous to the heat flow volume of a freezing pipe, while
the potential ΦM is analogous to the product of temperature and thermal conductivity of
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the soil, i.e., ΦM= KT. Assuming the temperature at the boundary of the frozen soil wall
is T0 = 0 ◦C, then the analytical formula of the static temperature field of ground with a
single-circle freezing pipe can be figured out as the following Formula (14):

T(R, α) = Tf ·
ln

(
RR1
Rf

2

)n
+

(
Rf

2

RR1

)n
−2 cos nα(

R
R1

)n
+
(

R1
R

)n
−2 cos nα

2 ln
[
−
(

R1
Rf

)n
+ Rf

n

nR1
n−1rw

− R1
2n

nR1
n−1Rf

nrw

] (14)

where T(R, α) is the temperature of any points M(R, α) in the frozen soil wall, ◦C; Tf is
the wall temperature freezing pipe, ◦C; Rf is the radius of the freezing boundary; R1 is
the radius of the freezing pipe circle; rw is the radius of freezing pipes; n is the number of
freezing pipes.

4. Accuracy Verification of Analytical Expression
4.1. Numerical Model and Characteristic Sections

In order to verify the accuracy of the analytical expression (14) for the temperature
field, this subsection employs steady-state numerical simulations for comparison. The
heat transfer model is constructed using Comsol Multiphysics finite element software, and
the boundary conditions, such as the freezing pipe wall temperature and soil freezing
temperature, are in full agreement with the analytical derivation process. According to
the geometric characteristics of the single-circle pipe freezing model, the periodic cell
containing one freezing pipe is still selected here for calculation, and the numerical model
is shown in Figure 5. Two characteristic cross-sections are also marked in this figure, one is
referred to as the main section, which passes through the freezing pipe center, and the other
is referred to as the inter section, which passes through the midpoint of the line connecting
the adjacent freezing pipes.
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4.2. Freezing Parameters

Given the same thermodynamic model and boundary conditions as the analytical
method, numerical calculation of the temperature field is carried out, and the outcomes are
compared with the results of the analytical calculation formula. Thus, it can be decided
that, whether the application of the principle of similarity between thermodynamics and
hydraulics here is reasonable, and whether the analytical formula can reflect the condition
of the static temperature field accurately. According to the common freezing schemes in
municipal engineering and mine engineering, the radius range of the frozen cross-section
is generally in the range of 2 m ~ 6 m, and the spacing between adjacent freezing pipes is
generally in the range of 0.6 m ~ 1.5 m, and the design frozen soil thickness is often within
2 m. In this work, multiple groups of parameters are adopted in numerical simulation;
among them, four groups and their calculating results are chosen here to describe the
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outcome. These four groups of parameters are listed in Table 1. In Group 1 and Group 2,
the thickness of the frozen soil outside the ring is 1 m, while in Group 3 and Group 4, the
thickness is 1.5 m.

Table 1. Freezing parameters for comparative calculation.

Group
Number of

Freezing Pipes
n

Radius of
Freezing Ring

R1 (m)

Radius of
Freezing Boundary

Rf (m)

Freezing Pipes
Spacing

l (m)

1 10 2 3 1.26
2 20 2 3 0.63
3 25 6 7.5 1.51
4 50 6 7.5 0.75

Appropriate simplification of the actual project is necessary before performing nu-
merical calculations. In the numerical model of this paper, the important assumptions
include three parts. First, the three-dimensional heat transfer process can be simplified to a
two-dimensional planar problem because the axial temperature difference of the frozen
tube is small. Secondly, it is assumed that the soil is isotropic material, and the difference
in the distribution of material properties is not considered. Finally, the freezing tube wall
temperature is assumed to be equal to the brine temperature, which has a small error for
the freezing steady-state phase. Based on these assumptions, the static thermal conduction
model is adopted for numerical calculation. According to practical conditions in engineer-
ing, the radius of all freezing pipes (rw) was taken as 0.054 m. The wall temperature of the
freezing pipes (Tf) is set to be −30 ◦C, and the temperature at the outer boundary of the
frozen soil wall (T0) is set to be 0 ◦C. The calculating region for numerical simulation is
chosen to be a sector of a central angle of 360◦/n, according to Figure 5. A free triangular
mesh is adopted for the division of the computational area, the mesh grid is shown in
Figure 6a, and the cloud map of temperature distribution is shown in Figure 6b.
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4.3. Temperature Distribution Curves

Substituting the freezing parameters in Table 1 into the analytical solution of the
temperature field (14), the results of temperature distribution on the characteristic cross-
section are obtained and then compared them with the numerical calculation results. The
comparison curves of the characteristic section of numerical simulation with those of the
analytical formula are shown in Figures 7 and 8.
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Figure 7. Comparison curves of analytical and numerical solutions in main section: (a) group 1;
(b) group 2; (c) group 3; (d) group 4.

It can be concluded from Figures 7 and 8 that the analytical calculation results of
the temperature field are highly consistent with the numerical calculation results, and
the temperature distribution curves are almost completely coincident, which shows that
it is feasible to adopt a conformal transformation method to calculate the steady-state
temperature field. The analytical solution (14) can well reflect the temperature distribution
in the frozen soil cylinder formed by the annular layout of freezing pipes. In addition, it
can also be found that the frozen soil temperature curve within R1 is almost horizontal
when the steady-state heat transfer state is reached, regardless of the size of the freezing
pipe layout circle.

Considering the influence of different freezing parameters on temperature distribution
in Table 1, it can be found from the comparison between Figures 7a,b that when the location
of the freezing pipe is the same as the radius of the frozen soil column, the number of
freezing pipes is doubled, and the temperature in the core area of the frozen soil column
can be reduced by about 5 ◦C. When the frozen cross-section is enlarged, the temperature
distribution of Group 3 and Group 4 also has this feature.
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(b) group 2; (c) group 3; (d) group 4.

For the temperature comparison between two different characteristic sections, there
is little difference in the temperature distribution between the main section and the inter
section at the inner region of the circle ring of the freezing pipes. In the frozen soil area
near the freezing pipe and R > R1, the temperature gradient on these two characteristic
sections is quite different. As the only cold source, the freezing pipe has an obvious effect
on the temperature reduction near the pipe wall on the main section, and the minimum
temperature can reach−30 ◦C, while the minimum temperature on the interface is generally
between −25 ◦C and −25 ◦C according to the difference in the number of freezing pipes.
The overall trend is that the temperature distributed in the main surface is lower than that
in the inter section.

5. Simplification of Analytical Solution and Its Application

The temperature distribution within the frozen wall is the most concerning issue in
engineering practice because it is closely related to the bearing strength and water-sealing
performance of the frozen soil. The analytical solution of the temperature field is of great
significance for freezing design and construction. Before introducing the application of the
analytical solution, the analytical results will be suitably simplified based on the practical
freezing project parameters in this chapter.
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5.1. Simplified Analytical Expression

In the previous chapter, the temperature field distribution function of the annular ar-
rangement of the freezing pipe is obtained, i.e., Equation (14). However, due to its complex
expression, it may not be convenient for practical engineering applications. In order to use the
analytical theory of temperature field to evaluate the freezing effect, this section simplifies the
function form based on the actual freezing engineering experience parameters.

Observing the analytical Formula (14) for the temperature field, the denominator part
can again be expressed in the following form:

−
(

R1

Rs

)n
+

Rs
n

nR1
n−1rw

− R1
2n

nR1
n−1Rf

nrw
= −

(
R1

Rs

)n
+

Rs
n

nR1
n−1rw

[
1−

(
R1

Rf

)n]
In practical freezing engineering, since there must be a conclusion that the radius of

the freezing pipe layout circle is far less than the radius of the outer frozen soil curtain;
that is, R1 < Rf, the following conclusions always hold: R1

n/Rf
n < < 1, R1

2n/Rf
2n < < 1,

(RR1)n/Rf
2n < < 1. Then, for the convenience of calculation in the specific project, the

temperature field expression Formula (14) can also be simplified as follows:

T(R, α) =
Tf

2 ln
(

Rf
n

nR1
n−1rw

) · ln
(

Rf
2

RR1

)n
− 2 cos nα(

R
R1

)n
+
(

R1
R

)n
− 2 cos nα

(15)

In order to verify the accuracy of the simplified analytical solution under different
freezing conditions, the simplified solution (15) is compared with the non-simplified
solution (14) based on the four groups of parameters in Table 1. Select the C1 point on the
main section and the C2 point on the inter section for comparison. These two points are
located in the middle of the freezing pipe layout circle and the outer boundary of frozen
soil; that is, polar diameter R = (R1 + Rf)/2. The schematic diagram of the two points’
positions is shown in Figure 5, and the error calculation results are shown in Table 2.

Table 2. Calculation errors of simplified and non-simplified analytical solution (/°C).

Group
C1 C2

Equation (14) Equation (15) Error 1 Equation (14) Equation (15) Error 2

1 −23.0021 −23.0012 0.0009 −22.3717 −22.3708 0.0009
2 −27.8923 −27.8923 0 −27.8705 −27.8705 0
3 −11.4047 −11.4047 0 −10.96 −10.96 0
4 −13.2258 −13.2258 0 −13.2119 −13.2119 0

According to Table 2, it can be found that the simplified solution of the temperature
field obtained based on the practical engineering freezing parameters is very accurate,
and the error between the simplified solution and the non-simplified solution is very
small, less than 1/‰. Formula (15) can fully meet the use requirements of the field of
engineering. Therefore, in the application of the analytical solution of the temperature
field in the following paper, all the calculations in this paper are based on the simplified
analytical expression (15).

5.2. Frozen Soil Thickness Based on Measured Temperature

The thickness index of the frozen wall is closely related to its load-bearing strength,
after obtaining the analytical expression of temperature field distribution, it is very con-
venient in practical engineering to calculate the thickness of frozen soil wall based on
temperature data of measuring points.

Suppose there is a point M in the calculation range of the freezing model in
Figure 4a, and its position information is expressed as (RM, αM) using polar coordinates.
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In practical engineering, the temperature sensor is used to obtain its temperature as TM,
then it must meet the analytical expression of temperature field distribution; that is,
TM = T (RM, αM). Substituting it into the simplified solution of temperature field (15),
we can obtain the following:

TM =
Tf

2 ln
(

Rf
n

nR1
n−1rw

) · ln
(

Rf
2

RM R1

)n
− 2 cos(nαM)(

RM
R1

)n
+
(

R1
RM

)n
− 2 cos(nαM)

(16)

In fact, there is only one unknown parameter in Equation (16), i.e., Rf. The value of
the frozen curtain thickness can be calculated by solving the following Equation (16):

Rf = f (R1, RM, rw, αM, Tf, TM, n)

Furthermore, if the measurement point M is arranged near the outer edge of the frozen
curtain, then there must be (RM /R1) n > 2 under the condition of multi-pipe freezing.
Considering that (Rf

2 /RM R1) n > 2 always holds, the effect of the pole angle α can be
neglected in Equation (16), and the temperature of the point M can again be expressed in
relation to the coordinates as follows:

TM =
Tf

2 ln
(

Rf
n

nR1
n−1rw

) · ln Rf
2n

RM2n + R1
2n (17)

According to Equation (17), the frozen soil thickness can be explicitly expressed as follows:

Rf = exp

2TM ln
(
nR1

n−1rw
)
− Tf ln

(
RM

2n
+ R1

2n
)

2n(TM − Tf)

 (18)

5.3. Average Temperature of Frozen Wall

In engineering practice, we also need to calculate the average temperature of the unex-
cavated frozen soil, so it is necessary to derive a formula to obtain the average temperature
with the previous analytical results. We named the distance between the freezing pipe circle
and excavated face as a and the thickness of the frozen wall on the outside of the freezing
pipe circle as b; thus, the thickness of the unexcavated frozen wall is (a + b). The distribution
of frozen soil thickness inside and outside the frozen circle is shown in Figure 9.
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According to Figures 7 and 8, the temperature field is different between the main
section and inter section. Combined with the analytical solution (see Formula (14)), it is
not difficult to know that the temperature field in the other radial section is between the
condition in the main section and inter section. So, the average temperature of the frozen
wall cannot be represented by the value of the main section or the inter section. Instead, it
should be the same with the average temperature of one radial section between the main
section and the inter section.

As shown in Figures 7 and 8, broken line BAD nearly divides the area equally between
the temperature curve of the main section and the inter section. So, from the geometric
schematic of the frozen soil distribution after excavation, it is a feasible method that divides
the area of the right trapezoid ABCD by the thickness of the frozen wall to calculate the
average temperature.

In Figure 10, the temperature of point A is equal to the temperature in the center of
pipe circle, and it can be expressed as follows:

TA =
Tf

2 ln
(

Rf
n

nR1
n−1rw

) · ln Rf
2n

R1
2n (19)
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Then, dividing the area of right trapezoid ABCD by the thickness of frozen wall
(a + b), we can obtain the following formula of average temperature in frozen wall:

Taverage =
1
2
· a + (a + b)

a + b
· Tf

2 ln
(

Rf
n

nR1
n−1rw

) · ln Rf
2n

R1
2n (20)

6. Conclusions

Based on the common annular freezing scheme in the artificial ground freezing method,
considering the complete frozen state inside the freezing circle, the analytical expression
of the steady-state temperature field is solved by the hydraulic potential and complex
function method. The main conclusions are as follows:
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(1) The potential function in hydraulics and the temperature potential function in ther-
modynamics are essentially the same, and the method of solving concentric wells
using eccentric wells combined with the conformal transformation method can also
be adopted to derive for the temperature field distribution with an annular layout of
freezing pipes;

(2) Through numerical simulation of the static temperature field of ground with single-
circle freezing pipes, the analytical formula is verified to be accurate enough. The
results show the analytical formula can reflect the condition of the temperature field
very well;

(3) After simplifying the analytical expression based on the dimensional parameters of
the actual freezing project, the calculating results by the simplified formula are very
close to that by non-simplified analytical formula with negligible errors;

(4) In the region close to the freezing pipe circle, the main section temperature is much
lower than the inter section temperature, but they are nearly the same near the cross-
section center. It is convenient to calculate the thickness and average temperature of
the frozen column using the formula expression of the temperature field.

It is worth mentioning that since the periodicity of the annular arrangement of freezing
pipes is used in the derivation of the analytical solution in this paper, the deflection of
freeze holes in actual projects cannot be considered yet, and further research in this aspect
is needed in the future.
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