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Abstract: We studied the random variable Vt = volS2 (gtB ∩ B), where B is a disc on the sphere
S2 centered at the north pole and (gt)t≥0 is the Brownian motion on the special orthogonal group
SO(3) starting at the identity. We applied the results of the theory of compact Lie groups to evaluate
the expectation of Vt for 0 ≤ t ≤ τ, where τ is the first time when Vt vanishes. We obtained an
integral formula using the heat equation on some Riemannian submanifold ΓB seen as the support of
the function f (g) = volS2 (gB ∩ B) immersed in SO(3). The integral formula depends on the mean
curvature of ΓB and the diameter of B.
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1. Introduction

We studied the behavior of the shape of a body under random transformations.The
random motion of a particle on the unit sphere S2 in R3 can be used to model the tracking of
animals equipped with a transmitter, which has a range given by a disc B of a certain radius
depending on the power of the signal issued by a radar. The most-common way to model an
erratic motion at least for a sufficiently small body is the Brownian motion on the sphere S2.
The reason for that is the property that such processes have no memory, which means that
the motion in the future only depends on the present, not on the past. There are at least two
ways to simulate a Brownian motion on the sphere [1]. The most-natural one is to use the
Brownian motion of the sphere S2; its exact density is well-known and has been computed
explicitly by Yosida [2]. Another way to simulate a Brownian motion on the sphere is by
using the group action point of view. Indeed, we fix a point, say the north pole N, then
choose a Brownian motion valued in the group of direct isometries of the sphere S2, namely
the group SO(3). The required Markov process Xt = rt(N) will give rise to a random
motion on the sphere, which differs from the Brownian motion on the sphere, which starts
from N. The second point of view requires the exact density of the Brownian motion of
SO(3). Fortunately, this theory is well-developed now and can be recast in the Fourier
theory of compact Lie groups using unitary representations and Peter–Weyl decomposition.
This point of view has been used by M. Liao in order to deduce the stochastic property of
the random motion of a rigid body subject to white noise perturbation [3]. It is possible to
use Levy processes instead of the Brownian motion, but those have points of discontinuity,
while we are considering continuous motions. This was recently performed by S. Albeverio
and M. Gordina for matrix Lie groups such asthe special linear group and the Heisenberg
group [4]. In our case, we deal with the compact Lie groups for which the complete picture
is completely understood using unitary representations and their characters.
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Set Up and Main Result

Let (Ω,A,P) be a probability space and ω ∈ Ω 7→ (rt(ω))t≥0 be a continuous Brow-
nian motion starting at identity and valued in the group SO(3) of rotations in R3. Here,
SO(3) is seen as a compact Lie group acting on S2, the unit sphere in R3, and the action is
transitive. We equip S2 with a volume area measure denoted as volS2, which has density
f (θ, ϕ) = sin φdϕdθ with respect to the Lebesgue measure on [0, 2π)× [−π/2, π/2]. This
measure is invariant under the action of SO(3). We studied the following real-valued
continuous stochastic process:

Vt(ω) := volS2(rt(ω)B ∩ B)

where B is a Borel subset of S2 with volS2(B) > 0. In particular, V0(ω) = volS2(B) since
r0(ω) = I3.

For each g ∈ SO(3), let us consider the function on SO(3) corresponding to (Vt)t≥0
given by

f (g) = volS2(gB ∩ B).

Thus, the random process (Vt)t≥0 is just the image of the Brownian process (gt)t≥0
under the map f : SO(3) → R≥0. We are more particularly interested in the Brownian
motion (gt) valued in SO(3), but stopped at the boundary of the support of f . Namely, if
τ = inf{t > 0 : volS2(gtB ∩ B) = 0} is the corresponding stopping time, then (gt)t≥0 will
be the Brownian motion valued in SO(3), which starts at identity and stops at time τ. The
unit sphere S2 can be equipped with the spherical distance given by

dS2(x, y) = arccos(〈x, y〉)

where 〈x, y〉 is just the Euclidean inner product in R3. Until the end, we assume that B is
the spherical disc with the north pole N = (0, 0, 1) as its center and with diameter diam(B).
Using the property of (gt∧τ)t≥0, we are able to prove a closed formula for the expectation
of (Vt)t≥0.

Theorem 1. Let B be the spherical disc with the north pole N = (0, 0, 1) as its center in S2, and let
(gt)t≥0 be a Brownian motion on SO(3), which starts at the identity and stops at τ = inf{t > 0 :
volS2(gtB ∩ B) = 0}. Then, the expectation of Vt∧τ = volS2(gt∧τ B ∩ B) is given by

E[Vt∧τ ] =
4

π2
√

πt

∫ π

0
J (t, θ)eLt(θ) sin2(θ/2)dθ

where, for each 0 ≤ t ≤ τ, J (t, θ) = J0 + ∑
n≥1

(2n + 1)e−n(n+1)t/2χn(θ)Jn with

Jn =
∫ diam(B)

0
f (β)χn(β) sin2(β/2) dβ

and χn(u) =
sin((2n + 1)u/2)

sin(u/2)
for all n ≥ 0 and where Lt is a function that depends on the mean

curvature of the support of f .

2. Motivation and Literature Review

The Brownian motion is the most-natural way to encode a random motion. It has all
the properties that make it the most-unpredictable behavior possible, and it is the most-
suitable candidate to model molecular rotations in fluids (FPL model). The probability
density function of a Brownian motion satisfies the heat equation. We are interested in
the rotational Brownian motion, that is the Brownian motion on the sphere. This kind of
random process has been well-studied in the past, and it is still an active area of research.
For instance, let us mention the work of Furry [5], Favro [6], Ivanov [7], and Hubbard [8].
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For nice surveys on rotational Brownian motions, we invite the reader to read the survey of
Valiev and Ivanov [9] and McClung [10] for the rotational Fokker–Planck equation. The
problem we are interested in is geometrical. Given a subset B on the two-dimensional
sphere, say a cloud, one can use Brownian rotation to move the cloud B. The question is
to give the expectation of the volume of the intersection of the cloud with its translation.
To treat this question, we need to introduce the Brownian motion on the Lie group SO(3)
corresponding to the group of positively oriented rotations on the sphere; this is the aim
of Section 3. The point of view taken is to treat a Lie group as a Riemannian manifold; for
such a class of spaces, the Brownian motion was studied for instance by Graham [11], van
Kampen [12], and Risken [13]. For the general theory of the Brownian motion on manifolds,
we refer to the classical book of Elworthy ([14]). The study of such stochastic models has
many applications in physics. Let us mention the work of Castro-Villarreal et al. [15,16],
Novikov et al. [17], Gómez et al. [18] and Yang-Li [19].

3. The Heat Kernel in SO(3)

In this section, we review the spectral theory of the Laplace operator of SO(3) within
the theory of compact Lie groups (see, e.g., [20–23]).

3.1. The Lie Group SO(3)

The group of isometries of the sphere S2 is the group of all the space transformations
g such that 〈gx, gy〉S2 = 〈x, y〉S2 for any x, y ∈ S2. Using duality, such isometries have to
satisfy the relation gtg = 1. The group of all such transformations is denoted O(3) and
is called the orthogonal group in three dimensions. The orthogonality relation gtg = 1
implies that det g = ±1. The elements of O(3) such that det g = 1 preserve the orientation
(i.e., act with the positive Jacobian) and form what we call the special orthogonal group
given by

SO(3) = {g ∈ SL3(R) | gtg = I3}.

The group SO(3) is a maximal Lie compact subgroup of SL3(R); in particular, it has
a Lie group structure. The Lie algebra of SO(3), namely the tangent space at g = I3, is
given by

so(3) = {X ∈ M3(R) | Xt = −X}

which consists of skew-symmetric matrices. A basis of so(3) is given by the following
three matrices:

X1 =

 0 0 0
0 0 −1
0 1 0

 X2 =

 0 0 1
0 0 0
−1 0 0

 X3 =

 0 −1 0
1 0 0
0 0 0

.

It can be seen that so(3) is closed under the Lie bracket by noting the following
commutation relations:

[X1, X2] = X3 [X2, X3] = X1 [X3, X1] = X2.

A Lie group closely related to SO(3) is the group SU(2) of unitary matrices of size two:

SU(2) =
{(

z1 z2
−z2 z1

)
: z1, z2 ∈ C, |z1|2 + |z2|2 = 1

}
.

The Lie algebra of SU(2) is denoted su(2), and it is generated by the Pauli matrices:

σ1 =

(
i 0
0 −i

)
σ2 =

(
0 1
−1 0

)
σ3 =

(
0 i
i 0

)
which satisfy the commutation relations [σ1, σ2] = 2σ3, [σ2, σ3] = 2σ3, and [σ3, σ1] = 2σ2.
The SU(2) group is homeomorphic to the unit sphere in C2. As a consequence, SU(2) is
simply connectedand compact. The group SO(3) is not simply connected; its universal
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covering is given by SU(2). More precisely, SO(2) has a two-sheet universal covering
realized by the adjoint representation of SU(2):

Ad : SU(2)→ SO(3)

given by Ad(X)g = X−1gX. The kernel of this map is given by the center of SU(2), which is
{±I2}. It is less trivial to find the image of this map, and it can be proven that it is surjective.
The latter fact can be checked by working on the Lie algebra level. Indeed, the differential
of the adjoint map at the identity is given by ad : su(2) → so(3), X 7→ adX = [X, .].
In particular,

SO(3) ' SU(2)/{±I2}.

3.2. Euler Parametrization and Haar Measure on SO(3)

For our purposes, we need a precise description of the group SO(3) in terms of the
Euler angles. This will give a well-suited parametrization of the elements of the group in
order to perform the analysis. The group SO(3) is a compact Lie group, which is given by

SO(3) = {g ∈ SLn(3) | gtg = I3}.

The tangent space of G at some g ∈ G is just the set of matrices of the form gX, where X
is some element in so(3). The exponential map exp : so(3)→ SO(3) is surjective. We use
the polar coordinate for an element X of the Lie algebra so(3); indeed, such an X can be
written as X = θT(u, v, w) with (u, v, w) ∈ S2 and where

T(u, v, w) =

 0 −w v
w 0 −u
−v u 0

.

Any element of g ∈ SO(3) can be written in the form:

g = eψX3 eθX1 eφX3 =

 cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

 1 0 0
cos θ − sin θ 0
sin θ cos θ 0

 cos φ − sin φ 0
sin φ cos φ 0

0 0 1

. (1)

The normalized Haar measure is, therefore, given by (see [20])

µSO(3)(dθ, dψ, dφ) =
2

π2 sin2(
θ

2
) sin ψdψdφ. (2)

3.3. Brownian Motion on a Riemannian Manifold

For an introduction to Brownian motion on manifolds, we refer to the book of El-
worthy [14]. There are several ways to construct the Brownian motion on a Lie group G.
An elegant one consists of defining the density function of the Brownian motion as the
solution of the heat equation on G. In fact, only the underlying structure of the Riemannian
manifold on G is needed. Let us assume more generally that we are given an n-dimensional
Riemannian (M, h), where the metric h is a symmetric bilinear form on the tangent bundle

h. Given local coordinates (x1, . . . , xn) of a point x ∈ M with a local frame (
∂

∂x1
, . . . ,

∂

∂xn
),

which forms a basis of Tx(M), the metric is then locally determined by its coefficients
hij = h(∂/∂xi, ∂ ∂xj) giving the length element:

ds2 = ∑
i,j

hijdxi ⊗ dxj.

Let C(TM) denote the space of smooth sections of the tangent bundle, then one can define a
covariant derivative using a connection ∇ : C(TM)× C(TM)→ C(TM) depending on the
metric h. This connection assigns to a pair of vectors fields X, Y ∈ C(TM) the vector field
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∇XY, which may be seen as the derivative of Y. The torsion associated with the connection
is the quantity defined by

T‘(X, Y) = ∇XY−∇YX− [X, Y]. (3)

In local coordinates, the connection is essentially characterized by its values on the basis
(∂x1 , . . . , ∂xn) of TM:

∇∂xi
∂xj = ∑

16k6n
Γk

ij∂xk

where the coefficients Γk
ij of the connection, known as the Christoffel symbols, can be

computed explicitly by using the first derivatives of the metric components hij. The
gradient of a smooth function f associated with the metric h is defined by the relation
h(X, grad f ) = d f (X) for any X ∈ C(TM). The central role in the theory of heat diffusion is
played by the Laplace–Beltrami operator on (M, h), which is defined in local coordinates by

∆M,h =
1√
h

∑
i,j

∂

∂xi

[
√

hhij ∂

∂xj

]

where h and hij are, respectively, the determinant and the inverse of the coordinates of the
metric tensor (hij) in the local chart. With the Laplace–Beltrami operator one can associate
the heat equation on M with an initial condition f :

1
2

∆Mu(t, x) + ∂tu(t, x) = 0

u(0, x) = f (x) on M.

(4)

In the compact case, which is our main concern, this equation always has a smooth solution
denoted by pt(x). The Brownian motion (Xt)t≥0 on M is just a Feller process, which has a
transition operator of the form:

Pt f (x) = E[ f (Xt)|X0 = x]

for any f continuous with compact support on M. The kernel associated with this operator
is given by pt(x, y); this quantity is the probability that the Brownian is at y at time t
conditioned on the fact that it started at x. It satisfies the relation:

Pt f (x) = E[ f (Xt)|X0 = x] =
∫

M
pt(x, y) f (y)dy.

3.4. The Density Probability of the Brownian Motion in SO(3)

The notion of Brownian motion on a compact Lie group will be directly derived from
the setting of the previous section, in that a Lie group has a structure of the Riemannian
manifold. The aim is to find an explicit formulation of the solution of the heat equation
in SO(3). Before, we need to find the expression of the Laplace operator. The fact that the
Brownian motion in a compact Lie group can be constructed from a solution of the heat
kernel was developed by K. Ito [24]. In this case, one can do much better than proving the
existence; indeed, using Fourier analysis on SO(3), it is possible to give an explicit formula
for the density (pt)t>0. Let us first recall that the Lie algebra of SO(3) is generated by three
matrices X1, X2, and X3, which give rise to the three corresponding differential operators
X̃i (i = 1, 2, 3), which act on the set of functions on SO(3) via the rule:

(X̃i. f )(x) =
d
ds

f (esXi x)|s=0 i = 1, 2, 3.
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The kth iteration of an operator X is just written X̃k. The Levi-Civita connection on SO(3)
is given by

∇XY =
1
4
[X, Y]

for any two vector fields X, Y [25]. This defines a Riemannian metric on SO(3), which is
just the identity. This gives the simple expression for the Laplace operator:

∆SO(3) = X̃1
2
+ X̃2

2
+ X̃3

2
.

The density of the Brownian motion on G starting at identity is given by the solution in
L2(G) ∩ C2

c (G) of the heat equation with initial data in L2:
1
2

∆SO(3)u(t, x) = −∂tu(t, x)

u(idG, x) = f (x) on G.

(5)

3.5. Root Decomposition of the Lie Algebra of a Compact Lie Group

The explicit description of a solution to the problem (5) is well understood in the
setting of compact Lie groups, which consists of a vast generalization of the L2-theory of n-
dimensional tori Rn/2πZn. Let us be given a compact Lie group G. Let g be the Lie algebra
of G over the complex numbers and h be a Cartan subalgebra of g. In particular, since h

is abelian, the operators ad(H) = [H, .] commute with each other for all h ∈ h. A general
fact from linear algebra implies that all the operators ad(H) (H ∈ h) are diagonalizable
over the same basis. Thus, for any X ∈ g and H ∈ h, there exists a not necessarily real
eigenvalue α(H) such that

ad(H)X = [H, X] = α(H)X.

This gives rises to a well-defined map α : h→ C, which is linear and, thus, can be seen as
an element of the dual of h. The set of roots of g with respect to h is the set of all α ∈ h∗

coming this way. We denote byR the set of all roots of g with respect to h. One can define a
definite negative bilinear on g× g, by the following rule B(X, Y) = tr(adX ◦ adX). For each
root α ∈ R and any H ∈ h, there exists a unique Hα ∈ h such that α(H) = B(H, Hα). Let us
set h0 = ⊕α∈RQHα as the Q-span of Hα (α ∈ h). One can define a positive definite inner
product on h∗0 , by the rule:

(α, β) = B(Hα, Hβ) for every α, β ∈ R.

If we fix a set H1, . . . , Hs that spans h0, we say that an element α of h0 is positive if there
exists an integer 1 6 j 6 s such that α(H1) = . . . , α(Hj−1) = 0 and α(Hj) > 0. We denote
α > 0, and we denote byR+ the set of positive roots. If α ∈ R, then −α ∈ R. We have the
following decomposition into eigenspaces:

g = a⊕ n+ ⊕ n−.

where n+ (respectively n−) is the direct sum ⊕α∈R+gα (respectively, ⊕α ∈ R+gα). For
any given irreducible representation ρ : g → gl(V), there exists a nonzero vector v ∈ V

and Λ ∈ h∗0 such that ρ(H)v = Λ(H)v and
2(Λ, λ)

(λ, λ)
is a nonnegative integer for each

λ ∈ R+. The vector v is called the highest weight vector, and Λ is the highest weight
of the representation ρ. Actually, the highest weights of an irreducible representation
characterize completely the equivalence class of an irreducible representation of g. For
connected compact Lie groups, Abelian subgroups are just tori in the usual sense, and
Cartan subgroups are replaced by the notion of maximal tori. In particular, this opens the
way to the the generalization of Fourier analysis to compact Lie groups. In tori, the key role
is played by irreducible characters, which are traces of the irreducible representations rather
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than the highest weights. The reason behind this is that maximal tori are conjugate in G, i.e.,
they form a unique orbit under the conjugation action. Thus, the trace of a representation
restricted to any maximal torus is constant on the conjugacy class.

Since any element of G is contained in a maximal torus, central functions on G are
completely characterized by their restriction to a maximal torus. In particular, this applies
to the characters of irreducible representations. A character is characterized by the sets of
highest weight of a maximal torus, that is for each highest weight λ, one has a corresponding
irreducible character χλ of G.

3.6. Computation of the Characters

Since all maximal tori are conjugate under G, the action of G on the set of all maximal
tori is transitive. If we fix a representative torus T for this action, the Weyl group is by
definition W(T) = N(T)/T, where N(T) = {g ∈ G : g−1Tg = T} is the normalizer of T.
Concretely, the elements of the Weyl group are generated by a finite set of reflections with
respect to the hyperplanes Fα = {β ∈ R : (α, β) = 0}. The set Cα = {β ∈ R : (α, β) > 0} is
called the Weyl chamber associated with the root α. An important fact is that the Weyl group
permutes Weyl chambers. For each w ∈W, let us denote by Nw the number of reflections
in the decomposition of w. The irreducible character corresponding to the highest weight λ
evaluated for H ∈ Lie(T) is as follows:

χλ(eH) =
∑w∈W(−1)Nw eiw(λ+ρ)H

∑w∈W(−1)Nw eiwρH

where ρ is the half sum of the positive roots. The dimension of the corresponding irreducible
representation is given by

dλ =
∏α∈R+(λ + ρ, α)

∏α∈R+(ρ, α)
.

For each highest root λ and g ∈ G, one has

∆Gχλ(g) = c(λ)χλ(g) (6)

with the corresponding eigenvalues being

c(λ) = (λ + ρ, λ + ρ)− (λ, λ). (7)

3.7. Solution of the Heat Equation for Compact Lie Groups

We solve Equation (5) for an initial data f , which is a trace class function in L2(G),
that is f (hgh−1) for any g, h ∈ G. Under this assumption, the Peter–Weyl theorem gives us
the Fourier expansion of f , which takes the following nice form

f (g) = ∑
λ∈Λ+

√
dλχλ(g)

where the equality is to be considered in the L2 sense. Now, we set the following map
pt : G× G → R for each t > 0.

pG
t (k, g) = ∑

λ∈Λ+

1√
dλ

χλ(k)χλ(g)e−tc(λ) (k, g ∈ G). (8)

We claim that this function is a solution of (5). Indeed,

∆G pG
t (k, g) = ∑

λ∈Λ+

1√
dλ

χλ(k)∆G(χλ(g))e−tc(λ).
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Using (6), one can deduce that

∆G pG
t (k, g) = ∑

λ∈Λ+

1√
dλ

χλ(k)χλ(g)c(λ)e−tc(λ) = − ∂

∂t
[pG

t (k, g)].

The solution is called the heat kernel of the compact Lie group G. We also call the heat
kernel the one variable function pt(g) = pt(I3, g), the only ambiguity being that kernels
in operators theory are defined on the product of the space with itself; indeed, the kernel
defines an operator of L2(G) called the heat operator:

Pt f (k) =
∫

G
pt(k, g) f (g)dg.

A notation of common use for pt(I3, g) is pt(g), which is also called the heat kernel, and we
employ both terms with no risk of confusion.

3.8. Solution of the Heat Equation for SO(3)

Now, we are able to give the explicit form of the heat kernel for G = SO(3). In most
of the presentations in the literature, it is always derived from the case G = SU(2), for
which the situation is much clearer due to the fact that it is simply connected. Here, we
follow the presentation of M. Liao (Liao gives the formula for Levy processes, and it is
easy to deduce the Brownian case, which corresponds to continuous Levy trajectories,
which have a null Levy measure and the infinitesimal generator L, being the half of the
Laplacian of G.) (Example 4.20 [23]). We recall that this construction is only valid if f is a
conjugate invariant, which is the case for us. The equivalence classes of irreducible unitary
representations of SO(3) are indexed by the set of nonnegative integers {n = 0, 1, 2, 3, . . .},
and the corresponding characters are trace class functions depending only the conjugacy
class of a rotation depending only on an angle θ and given by

χn(g) = χn(θ) =
sin((2n + 1)θ/2)

sin(θ/2)
.

The expanded form of the heat kernel of SO(3) is given by

pSO(3)
t (g) = pSO(3)

t (θ) = 1 + ∑
n≥1

(2n + 1)e−atn(n+1) sin((2n + 1)θ/2)
sin(θ/2)

. (9)

with the corresponding kernel given by

pSO(3)
t (h, g) = pSO(3)

t (β, θ) = 1 + ∑
n≥1

(2n + 1)e−n(n+1)t/2χn(θ)χn(β). (10)

For a such that the infinitesimal generator is L = a∆G, for the Brownian motion, we took
a = 1/2. Thus, the density distribution of the Brownian motion on G is

pSO(3)
t (θ) = 1 + ∑

n≥1
(2n + 1)e−n(n+1)t/2 sin((2n + 1)θ/2)

sin(θ/2)
. (11)

The action of the heat operator relative to L = 1
2 ∆ on the space of the L2-integrable function

of G are conjugate invariant. Thus, using (2), it takes the following form:

PG
t f (I3) =

∫
SO(3)

pSO(3)
t (g) f (g)µSO(3)(dg) =

2
π

∫ π

0
pSO(3)

t (θ) f (θ) sin2(θ/2) dθ. (12)
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In other terms, this means that if (gt)t≥0 is a Brownian motion on SO(3) starting at the
identity, which is conjugate invariant, we have

E[ f (gt)] =
2
π

∫ π

0
pSO(3)

t (θ) f (θ) sin2(θ/2) dθ. (13)

4. The Brownian Motion on the Support of f
4.1. The Support of f

We introduce the support of f , which for us will be the following set:

ΓB = supp f = {g ∈ SO(3)| f (g) = volS2(gB ∩ B) ≥ 0}.

The function f vanishes as soon as dS2(gN, N) > diam(B), which amounts to saying that f
is supported by those g such that arccos〈gN, N〉 < diam(B). Noting that cos is decreasing
in the interval [0, π], the latter condition is equivalent to 〈gN, N〉 > cos diam(B). The
support of f is

ΓB = {g ∈ SO(3)|〈gN, N〉 > cos diam(B)}.

The support of f , namely ΓB, is then a closed subset of SO(3), but not a Lie subgroup. The
boundary of ΓB is denoted ΣB and is simply given by

ΣB = {g ∈ SO(3)|〈gN, N〉 = cos diam(B)}.

The subset ΣB can be seen as a smooth hypersurface of SO(3) of equation θ(g) = 〈gN, N〉 =
cos diam(B). Reminding that N is the north pole, we readily obtain that θ(g) = g33. Thus,

ΣB = {g ∈ SO(3)|g33 = cos diam(B)}.

Using the Euler parametrization of the rotations (θ(g), ϕ(g), ψ(g)), we know that

g33 = cos θ(g).

This shows that the boundary of the support of f is then given by

ΣB = {g ∈ SO(3)|θ(g) = diam(B)}.

4.2. The Support Γ Seen as Submanifold Embedded in SO(3)

There are several ways to construct a Brownian process on a Lie group viewed as a
Riemannian manifold. The more suitable way in our case is to introduce the density of such
a process, which is given by the solution of the heat equation on the support of f viewed as
a Riemannian manifold. Indeed, the support ΓB can be endowed with a structure of the
Riemannian submanifold embedded in G with the induced metric of SO(3). In particular,
from this induced metric, one is able to extract the Laplace–Beltrami operator ∆ΓB . The
reason we are interested in this operator is that it encodes the property of the Brownian
motion killed outside ΓB, in that the density of a Brownian process on such a submanifold
is the solution of the heat operator associated with ΓB. In other words, one can say that the

infinitesimal generator of (gt)t≥0 stopped outside the support of f is just
1
2

∆ΓB.

Tangent Space of the Submanifold ΓB.

The set ΓB is the set of all g ∈ G such that

θ(g) = 〈gN, N〉 6 cos diam(B).
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Since we are going to work locally, it is more suitable to look at ΓB as a union of level sets
of φ, namely

ΓB =
⋃

06γ6cos diam(B)

{g ∈ G|θ(g) = γ}.

For each γ ∈ [0, cos diam(B)], we first need to show that the level set:

ΓB[γ] := θ−1(γ) = {g ∈ G|θ(g) = γ}

is a smooth submanifold in G. A sufficient condition is that θ is a submersion, i.e., the
differential is surjective at any point (see [26]). We check this fact in the following lemma.

Lemma 1. The map θ : G → R is submersion, in particular the level sets of θ are smooth immersed
submanifolds of G.

Proof. Let us compute the differential of θ at a point g ∈ Γ f in the direction given by a
vector field X ∈ Tg(G). This is given by

(dθ)gX = (X̃.θ)(g) =
d
dt

θ(etX g)|t = 0.

Thus,

(dθ)gX = lim t→ 0
θ(etX g)− θ(g)

t
= lim

t→0
〈 (e

tX − I3)

t
gN, N〉.

One has,

lim
t→0

etX − I3

t
= lim

t→0

1
t

(
tX +

(tX)2

2
+

(tX)3

3!
+ . . .

)
= X.

Therefore, we obtain
(dθ)gX = 〈XgN, N〉 = θ(Xg).g33.

The kernel is given by

Ker(dθ)g = {X ∈ Tg(G)) | θ(Xg) = 0}

= {X ∈ Tg(G)) | 〈XgN, N〉 = 0}

= {X ∈ Tg(G)) | (Xg)33 = 0}.

Thus,
Ker(dφ)g = {X ∈ Tg(G) | X31g13 + X32g23 + X33g33 = 0}.

This Ker(dθ)g is a hyperplane of Tg(G) being of codimension one as the kernel of a linear
form on Tg(G). In particular,

rank(dθ)g = dim Tg(G)− dim Ker(dθ)g = 1.

Hence, for every g ∈ G, (dθ)g is surjective since it is real-valued.

Proposition 1. There exists a vector field Z such that, for every g ∈ G,

Tg(G) = Tg(Γ)⊕RZ3.

In particular, ΓB is a smooth hypersurface in G with the normal direction given by Z3.

Proof. Since
θ(g) = 〈gN, N〉 = 〈gN, N〉
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the tangent space of ΓB is given by

Tg(ΓB) = {X ∈ Tg(G) | (Xg)33 = 0}.

A vector field X ∈ Tg(G is then in Tg(ΓB) if X = Yg for some Y ∈ g and, thus, if
(Xg)33 = (g2Y)33 = 0. The later condition gives

(g2)31Y13 + (g2)32Y23 + (g2)33Y33 = 0.

Since Y ∈ so(3), it is skew-symmetric, hence of the form:

Y =

 0 −Y21 −Y31
Y21 0 −Y32
Y31 Y32 0


In particular, Y33 = 0, and therefore, one has the equation

(g2)31Y31 + (g2)32Y32 = 0.

This gives the relation Y31 = −ρ(g)Y32, where

ρ(g) =
(g2)32

(g2)31
=

g31g12 + g32g22 + g33g32

g31g11 + g32g21 + g33g31
.

By recasting in Y, one obtains

Y =

 0 −Y21 ρ(g)Y32
Y21 0 −Y32

−ρ(g)Y32 Y32 0

 = Y21

 0 −1 0
1 0 0
0 0 0

+ Y32

 0 0 ρ(g)
0 0 −1

−ρ(g) 1 0

.

Thus, we obtain that the elements X of the tangent space Tg(ΓB) are of the form:

X = RZ1 +RZ2

where Z1 and Z2 are two vector fields given by Z1(g) = gX3 and Z2(g) = gX1 + ρ(g)gX2;
here, (Xi)16i63 is the basis of g = so(3) given in §2.1. Hence, the tangent space at the point
g of the submanifold ΓB is given by

Tg(ΓB) = span{Z1(g), Z2(g)}.

The normal bundle N (ΓB) is the orthogonal complement of the tangent bundle in T(G)
with respect to the Killing inner product given by β(X, Y) = Tr(XY)

T(G) = T(ΓB)⊕N (ΓB).

We already know that, for every g ∈ ΓB, dimN g(ΓB) = 1. Its generator Z3 satisfies the
two conditions:

Tr(Z3Z1) = 0 and Tr(Z3Z2) = 0.

4.3. Laplace–Beltrami Operator on ΓB.

As remarked earlier, the support of f , ΓB, is not a Lie group, but only a submanifold
of G. For this reason, we cannot write the Laplace operator of ΓB as squares of differential
operators afforded to the basis of so(3). The structure of the Riemannian manifold on ΓB
allows overcoming this issue. Indeed, there is a canonical way to obtain an expression of
the Laplace–Beltrami operator of a submanifold as a function of the Laplace operator of the
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underlying manifold and the coefficients of the second fundamental form of ΓB embedded
in G.

There is a useful formula that allows expressing the Laplace operator of a submanifold
as function of the following.

Lemma 2. Let us assume that we have an n-dimensional Riemannian manifold M and a k-
dimensional Riemannian submanifold N immersed in M. Let us denote by ∇M, ∆M (respectively,
∇N , ∆N) the connections and the Laplace operator on M (respectively, N). Suppose (Xk+1, . . . , Xn)
is an orthonormal basis of the normal bundle of N, and H denotes the mean curvature vector of N
in M.
Then, for any f ∈ C∞(M), one has

∆N f|N = (∆M f )|N + H f −
n

∑
i=k+1

∇2
M f (Xi, Xi). (14)

Proof. See, e.g., Lemma 2 in [27].

We applied the lemma to the case when M = SO(3) and N = ΓB and with Z3 as the gener-
ator of the normal bundle of N = ΓB (here n = 3 and k = 2), then for any f ∈ C∞(SO(3)),
we have

∆ΓB f|ΓB
= (∆SO(3) f )|ΓB

+ HB f −∇(2)
SO(3) f (Z3, Z3) (15)

where HB denotes the mean curvature of ΓB in SO(3). The last term can be simplified;
indeed, the second covariant derivative is by definition equal to

∇(2)
SO(3) f (Z3, Z3) = ∇Z3∇Z3 f −∇∇Z3 Z3 f .

The Levi-Civita connection on SO(3) is just∇XY =
1
2
[X, Y] for any vector fields X, Y. Thus,

∇(2)
SO(3) f (Z3, Z3) = Z2

3 f −∇ 1
2 [Z3,Z3]

f = Z2
3 f .

Let us denote by CG the Casimir operator of G, the unique generator of the center of the
enveloping algebra U(g), which is nothing but the Laplace operator on G. To sum up, we
obtained the following.

Proposition 2. The Laplace operator of the submanifold ΓB takes the following form:

∆Γ = CG + HΓ − Z2
3 .

4.4. The Heat Kernel on ΓB.

The density probability distribution of the Brownian motion in ΓB is determined by
the heat kernel of the Markov semi-group operator PΓt = e−t∆Γ acting on L2(ΓB). The
Casimir operator CG lies in the center of the enveloping algebra U(g); in particular, it
commutes with Z2

3 , i.e., [CG, Z2
3 ] = 0. Thus, the commutation relation and Proposition 2

give the identity:
PΓ

t = e−tCG etZ2
3 e−th (16)

where h is the mean curvature scalar of ΓB seen as the embedded Riemannian submanifold
in G. The diffusion operator PΓt has a heat kernel function pΓ

t : G× G → R characterized
by the following relation:

PΓ
t f (g) =

∫
Γ

pΓ
t (k, g) f (k)dk

for every g ∈ Γ and f ∈ L2(Γ). The value pΓ
t (k, g) gives exactly the probability of the

Brownian motion in Γ to be at k at time t provided it started at g. We need to make this
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probability transition explicit as a function ofthe one in G and in the normal direction
given by the operator Z2

3 . Recall that the normal direction is given by the vector field Z3,
and thus, the normal direction at the point g ∈ G is just given by Z3(g) and π(g) is the
normal component of g ∈ G onto the geodesic Z = {etZ3 : t ∈ R}. The element α(g) is a
unique element of Lie (Z) such that eα(g) = π(g). Since Z is a one-dimensional one, the
element α(g) = log(π(g)) can be seen as an element of R. To compute α(g), it suffices to
consider the vector fields Z1, Z2, and Z3, which form the basis of g. Indeed, let g ∈ G be
given; since the exponential is surjective onto G, there exists a X ∈ g such that g = eX.
Now, writing the decomposition of X with respect to the basis {Zi, i = 1, 2, 3}, we get that
X = z1Z1 + z2Z2 + z3Z3 for some real numbers zi (i = 1, 2, 3). Thus, we have

α(g) = α(eX) = z3.

The relation (16) gives

PΓt f (γ) =
∫

Γ
pΓ

t (k, γ) f (k)dk =
∫

G
pG

t (γ, g)e−th(g)
(∫

R
pZ

t (s, α(g)) f (esZ3)ds
)

dg.

Finally, taking f = δI3 , we obtain the solution of the heat equation in ∆ with the initial
condition u(0+, x) = δI3(x). Thus, the heat kernel of ∆Γ is given by

pΓ
t (γ) = pΓ

t (I3, γ) =
∫

G
pG

t (γ, g)e−th(g)pZ
t (0, α(g))dg. (17)

Now, Z is a the trajectory of a both-sided geodesic with initial velocity Z3 in SO(3). In
particular, it is a totally geodesic submanifold and, therefore, minimal in SO(3). Hence, the
heat kernel on Z is just the one-dimensional heat kernel:

pZ(z) =
1√
πt

ez2/2t.

The heat kernel of ∆Γ takes the following form:

pΓ
t (γ) =

1√
πt

∫
G

pG
t (γ, g)e−th(g)eα(g)2/2tdg. (18)

Proof of Theorem 1. Now, we come to our initial problem, namely the study of the random
process Vt = volS2(gtB ∩ B) for t ≥ 0, where (gt)t>0 is the Brownian motion, which is
stopped when it hits the boundary of the support of f . More precisely, we define the
stopping time:

τ = inf{t > 0 : gt ∈ ∂ΓB}.

Thus, the Brownian motion starting at identity and killed outside Γ = supp f has its density
given by

pΓ
t (k) =

1√
πt

∫
G

pG
t (k, g)e−th(g)eα(g)2/2tdg. (19)

The expectation of (Vt∧τ)t≥0 = ( f (gt∧τ)) is

E[Vt∧τ ] = E[Vt | t < τ] =
∫

Γ
pΓ

t (k) f (k)dk.

Using (19), we obtain

E[Vt∧τ ] =
1√
πt

∫
Γ

∫
G

pG
t (k, g) f (k)eLt(g)dg dk
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where Lt(g) = −th(g) + α(g)2/2t for every g ∈ G. The function Lt defines a map that
is SO(3) invariant. Furthermore, the function f is conjugate invariant; indeed, for any
g, h ∈ G, we have

f (hgh−1) = volS2(hgh−1B ∩ B) = volS2(gh−1B ∩ h−1B) = volS2(gB ∩ B) = f (g).

The last equality is justified by volS2 being SO(3) invariant. Thus, f is entirely determined
by its values at a rotation of a given axis, thus depending only on the angle β,

f (β) = f (Rβ).

The support of f is, thus, given by the interval 0 ≤ β ≤ diam(B).

E[Vt∧τ ] =
4

π2
√

πt

∫ diam(B)

β=0

∫ π

α=0
pG

t (β, θ) f (β)eLt(θ) sin2(θ/2) sin2(β/2)dθ dβ.

Let us set

J (t, θ) =
∫ diam(B)

β=0
pt(β, θ) f (β) sin2(β)dβ.

Then, using the heat kernel expansion (9):

J (t, θ) =
∫ diam(B)

β=0

(
1 + ∑

n≥1
(2n + 1)e−n(n+1)t/2χn(θ)χn(β)

)
f (β) sin2(β/2)dβ.

Let us denote Jn =
∫ diam(B)

0
f (β)χn(β) sin2(β/2) dβ for n ≥ 0; therefore,

J (t, θ) = J0 + ∑
n≥1

(2n + 1)e−n(n+1)t/2χn(θ)Jn.

Finally, using Fubini’s theorem, one has

E[Vt∧τ ] =
4

π2
√

πt

∫ π

0
J (t, θ)eLt(θ) sin2(θ/2)dθ.

This proves Theorem 1.

5. Conclusions

Using all the variety of mathematical tools coming from the theory of the Brownian
motions on manifolds, we were able to derive an integral expression for the expectation of
the volume intersection of a subset of the sphere S2 with its translation. Such results could
be applied to concrete problems in physics and dynamical 3D image processing. A natural
generalization of our result would be to try to find an analog of Theorem 1 by replacing
Brownian motions on Lie groups by Levy processes, which are stochastic processes, which
can have jump discontinuities using the recent results of Albeverio and Gordina [4].
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