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Abstract: Celestial navigation using time delay measurement is an innovative autonomous navigation
method. To calculate the equivalent measurement, the numerical method needs to be applied, which
is time-consuming. The event-triggered mechanism intermittently and aperiodically processes
measurements by judging if the update error has changed drastically. However, its performance is
greatly affected by the constant threshold. To solve this problem, a parameter-independent event-
triggered implicit unscented Kalman filter (UKF) is proposed and applied to the celestial navigation
using time delay measurement. The innovation at the current moment and the updated estimate
covariance at the last moment are compared with the previous value instead of the constant threshold.
The event is automatically triggered when the accuracy of the state estimate is low. Simulation
results indicate that the proposed parameter-independent event-triggered implicit UKF can reduce
the running time by reducing unnecessary measurement updates, whose performance will not be
affected by any parameter or window size. In a word, the proposed method substitutes the dynamic
threshold for the constant threshold, ensuring that its performance will not be affected by any
parameter or window size.

Keywords: autonomous navigation; celestial navigation; deep space exploration; event-triggered
mechanism; implicit UKF

MSC: 93C57

1. Introduction

Deep space exploration is an important indicator of a country’s comprehensive
strength and technology level. For the success of a deep space exploration mission, accurate,
prompt, and dependable navigation information is essential [1,2]. With the increase in
the distance between the spacecraft and the earth, the delay caused by the long roundtrip
communication distance becomes an obstacle to the real-time navigation of the ground
tracking system [3]. The Sun transit could result in the outage of the spacecraft’s communi-
cation links. Furthermore, substantial spacecraft greatly increase the burden and cost of
supporting this system.

All these objections can be circumvented if the spacecraft has autonomous navigation
capabilities. Celestial navigation is a suitable autonomous navigation method for deep
space exploration [4,5]. Commonly used celestial navigation measurements include star
angle [6,7], pulsar time of arrival (TOA) [8,9], and Doppler velocity [10,11]. Solar oscillation
time delay is an innovative celestial navigation measurement [12,13]. The solar oscillation
results in dramatic changes in the intensity and the spectral central wavelength of sun-
light [14,15]. Two atomic resonance spectrometers pointing to the Sun and the reflecting
celestial body simultaneously detect the spectral central wavelength of sunlight and record
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the time. The spectral central wavelength of the directly received sunlight can be compared
with that of the sunlight reflected by the nearby celestial body to obtain the corresponding
time delay. The spacecraft’s position information with respect to the nearby celestial body
can be provided by the time delay measurement. The measurement model of the time delay
is an implicit function, and thus the implicit unscented Kalman filter (IUKF) is applied to
acquire the state estimate [16].

To calculate the equivalent measurement, numerical methods such as the dichotomy
method need to be applied to figure out the equation set, which is time-consuming. In
fact, real-time performance is as important as accuracy for the autonomous navigation
of deep space probes. The probe flies at a speed of tens of kilometers per second during
the planetary capture segment, and thus it needs to quickly react based on navigation
information. This requires the navigation information to be solved in a short time. Normally,
the real-time performance and accuracy of navigation cannot be optimal at the same time.
In addition to the above two aspects, factors such as hardware volume, weight, cost, power
consumption, etc. should also be considered. It is imperative to find a balance between
these factors. In other words, it is necessary to reduce the amount of computation while
maintaining high accuracy.

Some measurements can hardly provide valuable information and need not be trans-
mitted and processed. The event-triggered mechanism is intermittent aperiodic sampled
data, devoted to a desirable compromise between the real-time performance and accu-
racy of navigation [17–20]. It was first introduced into state estimation in Ref. [21] and
was shown to outperform periodic sampling at the same sampling rate. For nonlinear
systems, the event-triggered extended Kalman filter [22,23], the event-triggered unscented
Kalman filter [24], and the event-triggered cubature Kalman filter [25,26] were succes-
sively proposed. Ref. [27] proposed a distributed UKF algorithm based on consensus with
an event-triggering communication mechanism for multiple unmanned aerial vehicles.
Ref. [28] proposed a nonlinear stochastic event-triggered estimator based on UKF for con-
trollable and uncontrollable systems. Ref. [29] designed an event-triggered orbit estimator
for a spacecraft with intermittent sensor measurements. To deal with the implicit mea-
surement model, an event-triggered IUKF is presented for celestial navigation using time
delay measurement [30]. However, the efficiency of the aforementioned event-triggered
mechanism is influenced by the constant threshold. If the threshold is not set properly, a
serious decrease in navigation accuracy or less computation load decrease will occur. This
forms the incentive for our work.

To sum up, this paper proposes a parameter-independent event-triggered implicit
UKF and implements it for celestial navigation using time delay measurement. Compared
with the existing works, the main contributions have the following two aspects:

(1) The dynamic threshold related to previous moments is substituted for the constant
threshold. By comparing the innovation at the current moment and the updated
estimate covariance at the last moment with the previous value, the event is auto-
matically triggered when the accuracy of the state estimate is low. Different from the
traditional event-triggered mechanisms, the performance of the proposed mechanism
is not affected by any parameter.

(2) Considering that large measurement errors will lead to large innovation, we introduce
the updated estimate covariance at the previous time in the event-triggered condition.
The parameter-independent event-triggered mechanism considering both innovation
and updated estimate covariance can get higher navigation accuracy and less running
time than the parameter-independent event-triggered mechanism only considering
innovation, which will be verified by the simulation given below.

The rest of this paper is organized as follows: Section 2 shows the basic principle
of celestial navigation using time delay measurement. The parameter-dependent event-
triggered mechanism and the proposed parameter-independent event-triggered IUKF are
introduced in Section 3. Section 4 compares the simulation results of the proposed method
and other existing methods. The conclusions are given in Section 5.
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2. Celestial Navigation Using Time Delay Measurement

It has been known that solar oscillations occur frequently, which causes dramatic
changes in the solar spectral wavelength. This can be regarded as a feature in acquiring
the difference between the arrival time of direct sunlight and that of reflected sunlight.
The time delay of the reflected sunlight is related to the relative position of the spacecraft,
the reflecting celestial body, and the Sun. Therefore, it can be adopted as a navigation
measurement to provide the distance information of the spacecraft relative to the target
celestial body.

2.1. State Model

The state model of the navigation system is constructed based on the orbital dynamics
of the Mars probe. When the Mars probe is in the Mars approach stage, its motion can be
described as a perturbed three-body model with Mars as the central body. The state model
in the Mars-centered inertial coordinate system (J2000.0) can be written as follows:{ .

r = v
.
v = −µm

r
r3 − µs

[
rts
r3

ts
+ rsm

r3
sm

]
+ wv

, (1)

where µm and µs are the gravitational constants of Mars and the Sun, respectively; r and rts
are the position vectors of the spacecraft with respect to Mars and the Sun, respectively; r
and rts are the magnitude of r and rts, respectively; v is the velocity vector of the spacecraft
with respect to Mars; rsm is the position vector of the Sun with respect to Mars; rsm is the
magnitude of rsm; and wv is the process noise that comes from miscellaneous perturbations.
Equation (1) can be shown as follows:

.
X(t) = f (X(t), t) + W(t), (2)

where X = [r, v]T and W = [0, wv]
T.

2.2. Measurement Model

Mars is surrounded by an atmosphere, which changes the speed and path of sunlight.
Thus, Phobos is adopted as the reflective celestial body for the Mars probe. Two atomic res-
onance spectrometers are employed simultaneously to record the solar spectral wavelength.
One is aimed at the Sun to observe the direct sunlight, and the other is aimed at Phobos
to observe the reflected sunlight. By comparing the wavelength features of the sunlight
propagating along different paths, the time delay measurement can be acquired:

Z = [∆t] = [t2 − t1], (3)

where t2 is the feature’s moment of the reflected sunlight, and t1 is the feature’s moment of
the direct sunlight.

The basic principle of celestial navigation using time delay measurement is given in
Figure 1. Solar photons eject at t0. Some of them transmit along path 1 and are captured by
the spectrometer at t1. Some other photons transmit along path 2 and reach the reflective
celestial body at tr. The position and velocity of Phobos related to the Sun are rpsr and
vpsr, respectively. They are captured by the spectrometer at t2. The position vectors of the
Mars probe with respect to the Sun are rts1 and rts2 when the time is t1 and t2. The position
vectors of the Mars probe with respect to Mars are r1 and r2 when the time is t1 and t2. The
velocity vectors of the Mars probe with respect to the Sun are vts1 and vts2 when the time is
t1 and t2. The measurement model of time delay can be established based on the relative
position relationship [13]

∆t = t2 − t1 =

∥∥rpsr
∥∥+ ∥∥rts2 − rpsr

∥∥− ‖rts1‖
c

, (4)
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where c is the speed of light and ‖ · ‖ represents the norm operator. Based on vector
relationships, Equation (4) can be written as follows:

∆t =

∥∥rpmr − rsmr
∥∥+ ∥∥r2 − rsm2 − rpmr + rsmr

∥∥− ‖r1 − rsm1‖
c

, (5)

where rpmr and rsmr are the position vectors of Phobos and the Sun with respect to Mars at
tr, respectively; rsm1 and rsm2 are the position vectors of the Sun with respect to Mars at t1
and t2, respectively.
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Figure 1. Measurement model of solar oscillation time delay.

Because filtering is executed at t2, rts1 and rpsr have to be represented by rts2. This
process is given in Ref. [13]. The calculations of rts1 and rpsr are related to the measurement
∆t, and thus the measurement model is an implicit function. Equation (5) can be written
as follows:

0 =

∥∥rpmr − rsmr
∥∥+ ∥∥r2 − rsm2 − rpmr + rsmr

∥∥− ‖r1 − rsm1‖
c

− ∆t, (6)

Equation (6) can also be shown as follows:

0 = h(X(t), Z(t) + V(t)), (7)

where 0 is the equivalent measurement and V is the measurement error. The implicit
unscented Kalman filter (IUKF) [16] is employed to achieve the optimal estimate.

3. Parameter-Independent Event-Triggered Implicit Unscented Kalman Filter

The calculation process of the celestial navigation system using time delay measure-
ment is time-consuming: tr is obtained by solving the equation set with a numerical method;
the equivalent measurement noise covariance needs to be worked out through unscented
transformation (UT) [31]. Due to the limited computing resources on the Mars probe
and high real-time requirements for navigation, it makes sense to reduce the unnecessary
computational load.
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3.1. Traditional Parameter-Dependent Event-Trigger Method
3.1.1. Parameter-Dependent Event-Triggered Mechanism Based on Measurement

The event-triggered mechanism intends to achieve an advisable compromise between
the navigation real-time requirement and navigation accuracy. Commonly, the difference
between the last released sensor measurement and the instantaneous sensor measurement
is predefined as the update error. If the instantaneous sensor measurement is not much
different from the last released sensor measurement, the predicted state estimate and
the predicted estimate covariance are directly treated as output. IUKF is run only if the
instantaneous sensor measurement is significantly different from the last released sensor
measurement. The event-triggered condition is given as follows [24,27]:

γk =

1,
(

Z̃− Zk

)T
·
(

Z̃− Zk

)
> δ

0,
(

Z̃− Zk

)T
·
(

Z̃− Zk

)
6 δ

, (8)

where Z̃ denotes the last released time delay measurement and δ ∈ R+ is the constant
threshold that needs to be set appropriately. δ can also be replaced with a function de-
pendent on the last released sensor measurements, and the corresponding event-triggered
condition can be set as follows [32,33]:

γk =

1,
(

Z̃− Zk

)T
·
(

Z̃− Zk

)
> σZ̃

T · Z̃

0,
(

Z̃− Zk

)T
·
(

Z̃− Zk

)
6 σZ̃

T · Z̃
, (9)

where σ ∈ R+ denotes the threshold parameter.

3.1.2. Parameter-Dependent Event-Triggered Mechanism Based on Innovation

In the above cases, an event is triggered once the update error
(

Z̃− Zk

)T
·
(

Z̃− Zk

)
exceeds the constant threshold δ or the released measurement-dependent threshold σZ̃

T · Z̃,
which essentially makes judgments based on changes in measurements. Another event-
triggered condition makes judgments based on the accuracy of the state estimate. The
innovation in the Kalman filter is the difference between the predicted measurement
calculated by the predicted state estimation and the actual measurement, which reflects
the information quantity of the measurement. Thus, the event-triggered condition can be
designed as follows [25,34,35]:

γk =

{
1, υT

k · υk > δ

0, υT
k · υk 6 δ

, (10)

where υk = Zk − Ẑk|k−1 is the innovation in the Kalman filter. Ẑk|k−1 is the predicted
measurement obtained by predicted state estimate and measurement model. For the
implicit measurement model, the innovation can be written as follows:

υk = h
(

X̂k|k−1, Zk

)
, (11)

where X̂k|k−1 is the predicted state estimate. Then, the event-triggered condition for the
implicit measurement model can be written as follows [30]:

γk =

1, hT
(

X̂k|k−1, Zk

)
· h
(

X̂k|k−1, Zk

)
> δ

0, hT
(

X̂k|k−1, Zk

)
· h
(

X̂k|k−1, Zk

)
6 δ

, (12)
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3.2. Parameter-Independent Event-Trigger Method

It can be seen from the above section that the threshold is either related to δ or σ. The
setting of the parameter will affect the efficiency of the event-triggered mechanism. If the
parameter is too large, the measurement update runs too few times, resulting in a serious
decrease in navigation accuracy. When the parameter is set too small, the measurement
update runs too many times. The computational load increased significantly without any
significant improvement in navigation accuracy.

The parameter-independent event-triggered mechanism is expected to be set to au-
tomatically trigger an event when the accuracy of the state estimate is low. To get rid of
the influence of the parameter value, the dynamic threshold is substituted for the constant
threshold. The idea of a sliding window is applied. The innovation at the current moment
is compared with the maximum value of the innovations at the previous M moments. M
denotes the window size. When the innovation at the current moment exceeds the dynamic
threshold, the measurement update needs to be run. The event-triggered condition can be
set as follows:

γk =

{
1, υT

k · υk > max
{

υT
k−i · υk−i

}
0, Otherwise

, (13)

where i = 1, 2, . . . , M.
It is worth noting that large measurement errors will also cause innovation to increase,

and the event should not be triggered at this time. Updated estimate covariance can reflect
the deviation of the state estimate. When the updated estimate covariance at the previous
time is small and the innovation at the next time is large, it can be considered that the
large innovation is caused by the large measurement noise. Thus, the updated estimate
covariance at the previous time can be introduced in the judgment to eliminate the influence
of large measurement errors. The parameter-independent event-triggered condition can be
set as follows:

γk =

{
1, υT

k · υk > max
{

υT
k−i · υk−i

}
&Pr,k−1 > max

{
Pr,k−1−i

}
0, Otherwise

, (14)

where i = 1, 2, . . . , M. Pr,k−1 denotes the position estimate error calculated from the updated
estimate covariance Pk−1:

Pr,k−1 =
√

Pk−1,11 + Pk−1,22 + Pk−1,33 (15)

Pk−1,11, Pk−1,22 and Pk−1,33 represent the first three elements on the main diagonal of
Pk−1. When υk satisfies the condition in Equation (14) and Pr,k−1 does not, it may be caused
by too large measurement errors, and the event is not triggered. When both conditions
in Equation (14) are met, it signifies that the large innovation is caused by the large state
estimate error, and an event is triggered.

3.3. Filtering Process of the Parameter-Independent Event-Triggered IUKF

Calculate Sigma Points

χ0,k−1 = X̂k−1, ω0 = τ/(n + τ)
χi,k−1 = X̂k−1 +

√
n + τ(

√
Pk−1)i, ωi = 1/[2(n + τ)]

χi+n,k−1 = X̂k−1 −
√

n + τ(
√

Pk−1)i, ωi+n = 1/[2(n + τ)]
, (16)

where τ ∈ R. n is the dimension of the state vector; χi,k−1 is the 2n + 1 sigma points whose
mean and covariance are X̂k−1 and Pk−1, respectively; and (

√
Pk−1)i is the ith row of the

matrix square root.
Time Update

χi,k|k−1 = f (χi,k−1, k− 1), (17)
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X̂k|k−1 =
2n

∑
i=0

ωiχi,k|k−1, (18)

Pk|k−1 =
2n

∑
i=0

ωi

(
χi,k|k−1 − X̂k|k−1

)(
χi,k|k−1 − X̂k|k−1

)T
+ Qk, (19)

where χi,k|k−1 is the propagated sigma points; Pk|k−1 is the predicted estimate covariance;
and Qk is the covariance of the process noise.

Measurement Update
The sigma points of the predicted measurement are calculated as follows:

zi,k|k−1 = h
(

χi,k|k−1, Zk

)
(20)

The predicted measurement can be obtained as

Ẑk|k−1 =
2n

∑
i=0

ωizi,k|k−1 (21)

The predicted error covariance of the measurement and the cross-covariance of the
state and measurement are calculated as follows:

Pzz,k =
2n

∑
i=0

ωi

(
zi,k|k−1 − Ẑk|k−1

)(
zi,k|k−1 − Ẑk|k−1

)T
+ Sk (22)

Pxz,k =
2n

∑
i=0

ωi

(
χi,k|k−1 − X̂k|k−1

)(
zi,k|k−1 − Ẑk|k−1

)T
(23)

where Sk is the covariance of the equivalent measurement noise, whose detailed computa-
tion process is given in Ref. [16].

The updated state estimate and the updated estimate covariance can be acquired
as follows:

X̂k =

{
X̂k|k−1, γk = 0
X̂k|k−1 − KkẐk|k−1, γk = 1 ‖ k ≤ M

, (24)

Pk =

{
Pk|k−1, γk = 0
Pk|k−1 −KkPzz,kKT

k , γk = 1 ‖ k ≤ M
, (25)

where Kk = Pxz,kP−1
zz,k is the Kalman gain.

Remark

The main improvement of the parameter-independent event-triggered IUKF is the
event-triggered condition. Its proof can refer to Ref. [30].

The process of the parameter-independent event-triggered IUKF is given in Figure 2
For the first M filtering cycles, X̂k and Pk are figured out by the time update and the
measurement update. After M filtering cycles, Pr,k−1 is compared with the maximum
value at the last M moments. If Pr,k−1 does not exceed the maximum value, the predicted
state estimate and predicted estimate covariance are regarded as the updated value and
input to the next filtering cycle. If Pr,k−1 exceeds the maximum value, υk is calculated from
Equation (11) and compared with the maximum value at the last M moments. If υk does not
exceed the maximum value, the predicted state estimate and predicted estimate covariance
are regarded as the updated value and input to the next filtering cycle. If υk exceeds the
maximum value, the measurement update is run, and the updated state estimate and
updated estimate covariance are input to the next filtering cycle.
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4. Simulation Results

In this section, the navigation performance of the proposed method is compared with
some existing methods through simulation to demonstrate its effectiveness and superiority.

4.1. Simulation Conditions

A desktop is employed in the simulation, whose processor is 3.50 GHz Intel Core
i7-9700K and RAM is 16 GB. The Systems Tool Kit (STK) astrogator is adopted to generate
the spacecraft’s trajectory data. Table 1 gives the initial orbital parameters.

Table 1. Initial orbital parameters.

Parameter Value

Launch date 20 July 2020
Arrival date 8 March 2021
C3 energy 18.2287 km2/s2

Right ascension of outgoing asymptote 6.80876◦

Declination of outgoing asymptote 45.9439◦

The orbit data of planets are set up based on JPL DE421 [36], and the orbit data of
Phobos are built based on SPICE ephemeris [37]. The standard deviation of the time delay
measurement error is set as 1× 10−7 s. Other filter parameters are given in Table 2.

Table 2. Filter Parameters.

Parameter Value

Initial state errors δX0 = [δx1, δx1, δx1, δx2, δx2, δx2]
T

δx1 = 5 km, δx2 = 0.1 m/s

Initial estimation error covariance P0 = diag[p1, p1, p1, p2, p2, p2]
T

p1 = 25 km2, p2 = (0.1 m/s)2

Covariance matrix of process noise Q = diag[q1, q1, q1, q2, q2, q2]
T

q1 = 10−3 m2, q2 = 10−7 (m/s)2



Mathematics 2023, 11, 1952 9 of 14

4.2. Results and Analysis
4.2.1. Results of the Celestial Navigation Using Time Delay

The navigation results of the celestial navigation using time delay measurement with
different sampling periods are given in Figure 3 and Table 3. The data given in Table III and
the following parts are the navigation results of the second half of the simulation. It can be
seen that the highest navigation accuracy is achieved when the filtering period is 1 min.
The highest navigation accuracy also results in the longest run time. The position error
and velocity error of the celestial navigation with a period of 10 min is similar to that of
the celestial navigation with a period of 1 min, while the running time is reduced by about
72%. When the filtering period exceeds 100 min, the navigation error increases significantly
and even diverges while the running speed is not significantly improved. It can be seen
from the results that the filtering period affects the navigation performance. Too short a
filtering period leads to excessive running time, while too long a filtering period leads to
poor navigation accuracy.
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Figure 3. Navigation results of the celestial navigation using time delay measurement with different
sampling periods. (a) Position error. (b) Velocity error.

Table 3. Navigation results with different sampling periods.

Sampling Period
(min)

Mean Position Error
(km)

Mean Velocity Error
(m/s)

Number of Measurement
Update Runs Running Time (s)

1 1.09 0.02 5760 123
5 1.59 0.02 1152 62

10 1.73 0.02 576 35
100 3.99 0.03 57 26
300 8.01 0.03 19 25

4.2.2. Results of the Parameter-Dependent Event-Triggered Mechanism Based on
Measurement

Figure 4 and Table 4 show the navigation results of the parameter-dependent event-
triggered mechanism based on measurement. Although the highest navigation accuracy can
be obtained when σ = 1× 10−4, it is also the most time-consuming. When σ = 1× 10−1,
the calculation takes the least time, but the navigation error diverges due to too few
measurement update runs. When σ = 1× 10−2 or σ = 1× 10−3, the running speed is
improved while maintaining high navigation accuracy. Thus, the parameter σ has a great
influence on the effect of the event-triggered mechanism. It is difficult and crucial to choose
an accurate parameter in practice.
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Figure 4. Navigation results of the parameter-dependent event-triggered mechanism based on
measurement. (a) Position error. (b) Velocity error.

Table 4. Navigation results with different σ.

σ
Mean Position Error

(km)
Mean Velocity Error

(m/s)
Number of Measurement

Update Runs Running Time (s)

σ = 1× 10−4 1.13 0.02 4326 103
σ = 1× 10−3 1.38 0.02 949 42
σ = 1× 10−2 1.86 0.03 110 28
σ = 1× 10−1 19.59 0.08 15 24

4.2.3. Results of the Parameter-Dependent Event-Triggered Mechanism Based on
Innovation

The navigation results of the parameter-dependent event-triggered mechanism based
on innovation with different δ are compared in Figure 5. Table 5 gives the detailed nav-
igation results and running time. Its navigation results are similar to those of the event-
triggered mechanism based on measurement. The parameter δ has a great impact on the
effect of the event-triggered mechanism. When δ = 1× 10−7, many unnecessary measure-
ment updates are run in the filtering process and the running time is too long. On the
contrary, the measurement updates are run too few times and the navigation error is too
large when δ = 1× 10−6. When δ = 5× 10−7, the running time is reduced while maintain-
ing high navigation accuracy. It is worth noting that the mean position error of the celestial
navigation with a period of 100 min is about 1.7 times larger than that of the event-triggered
mechanism when δ = 8× 10−7. This indicates that higher navigation accuracy can be
achieved by the event-triggered mechanism when the number of measurement update
runs is the same.

Table 5. Navigation results with different δ.

δ
Mean Position Error

(km)
Mean Velocity Error

(m/s)
Number of Measurement

Update Runs Running Time (s)

δ= 1× 10−7 1.09 0.02 4812 117
δ= 3× 10−7 1.10 0.02 2854 80
δ= 5× 10−7 1.23 0.02 1010 50
δ= 8× 10−7 2.37 0.04 59 33
δ= 1× 10−6 6.38 0.04 22 31
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Figure 5. Navigation results of the parameter-dependent event-triggered mechanism based on
innovation. (a) Position error. (b) Velocity error.

4.2.4. Results of the Parameter-Independent Event-Triggered Mechanism Only
Considering Innovation

To verify the effect of introducing the updated estimate covariance in the event-triggered
condition, we first investigate the navigation performance of the parameter-independent
event-triggered mechanism only considering innovation (whose event-triggered condition
is Equation (13)). Its navigation results are given in Figure 6 and Table 6. From Figure 6
it can be seen that the position errors and velocity errors with different M are not much
different, which demonstrates that the navigation accuracy of the parameter-independent
event-triggered mechanism is also robust to the window size. Comparing Table 6 with
Tables 4 and 5, it can be seen that the navigation accuracy and running time can achieve a
desirable compromise no matter what M is taken. Different from the constant threshold
in the traditional event-triggered mechanisms, the dynamic threshold related to previous
moments is applied to automatically trigger an event when the innovation is large. When
M= 10, the mean position error of the parameter-independent event-triggered mechanism
is about 1.2 times larger than that of the celestial navigation with a period of 1 min, while
the running time is reduced by about 70%.
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Table 6. Navigation results of the parameter-independent event-triggered mechanism only consider-
ing innovation, with different M.

M Mean Position Error
(km)

Mean Velocity Error
(m/s)

Number of Measurement
Update Runs Running Time (s)

3 1.09 0.02 1438 55
5 1.13 0.02 972 46
10 1.29 0.02 528 40
20 1.50 0.02 301 35
30 2.27 0.02 217 33

4.2.5. Results of the Parameter-Independent Event-Triggered Mechanism

Then, we investigate the navigation performance of the parameter-independent event-
triggered mechanism considering both innovation and updated estimate covariance (whose
event-triggered condition is Equation (14)). The navigation results of the parameter-
independent event-triggered mechanism with different M are given in Figure 7 and Table 7.
Comparing Tables 6 and 7, it can be seen that the parameter-independent event-triggered
mechanism considering both innovation and updated estimate covariance can get higher
navigation accuracy and shorter running time than the parameter-independent event-
triggered mechanism only considering innovation when M is the same. The time delay
measurement error is random noise. When the updated estimate covariance at the previous
time is small and the innovation at the next time is large, it can be considered that the
large innovation is caused by the large measurement noise. The measurement update
will not be triggered in this case after introducing the updated estimate covariance in the
event-triggered condition. In other words, the measurement update is triggered only when
large innovation is caused by large state estimation errors. By eliminating the measurement
update trigger caused by large measurement noise, the running time is further reduced
while ensuring navigation accuracy. Comparing Tables 3 and 7, it can be seen that the
parameter-independent event-triggered mechanism has a longer running time than the
uniform periodic sampling mechanism at the same number of measurement update runs.
The reason is that determining whether the event-triggered conditions are met takes a
certain amount of running time.
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Table 7. Navigation results of the parameter-independent event-triggered mechanism with different M.

M Mean Position Error
(km)

Mean Velocity Error
(m/s)

Number of Measurement
Update Runs Running Time (s)

3 0.88 0.02 1024 50
5 1.11 0.02 632 42
10 1.19 0.03 342 37
20 1.24 0.03 183 35
30 2.21 0.02 148 29

5. Conclusions

This paper proposes a parameter-independent event-triggered implicit UKF for ce-
lestial navigation using time delay measurement. Parameter-independent event-triggered
implicit UKF automatically triggers an event when the accuracy of the state estimate is low.
To get rid of the influence of the parameter value, the innovation at the current moment
and the updated estimate covariance at the last moment are compared with the previous
value. Simulation results indicate that parameter value has a great effect on the navigation
performance of the traditional parameter-dependent event-triggered mechanism, which
is difficult and crucial to choose in practice. The proposed parameter-independent event-
triggered implicit UKF can reduce the running time while maintaining high navigation
accuracy. Meanwhile, its performance will not be affected by any parameter value or
window size. It is notable that the following aspects deserve future study: (1) The proposed
parameter-independent event-triggered mechanism is based on the system model of the
celestial navigation using time delay measurement in this paper. Extending the proposed
method to the general class of nonlinear systems with order n or strict-feedback systems re-
quires future research. (2) A stability analysis of the parameter-independent event-triggered
implicit UKF needs to be performed in the future. (3) It is worthy of follow-up research to
verify the effectiveness of the proposed method through more scenarios.
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