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Abstract: The purpose of this study is to address two major issues: (1) the spread of epidemics such
as COVID-19 due to long waiting times caused by a large number of waiting for customers, and
(2) excessive energy consumption resulting from the elevator patterns used by various customers.
The first issue is addressed through the development of a mobile application, while the second
issue is tackled by implementing two strategies: (1) determining optimal stopping strategies for
elevators based on registered passengers and (2) assigning passengers to elevators in a way that
minimizes the number of floors the elevators need to stop at. The mobile application serves as an
input parameter for the optimization toolbox, which employs the exact method and multi-objective
variable neighborhood strategy adaptive search (M-VaNSAS) to find the optimal plan for passenger
assignment and elevator scheduling. The proposed method, which adopts an even-odd floor strategy,
outperforms the currently practiced procedure and leads to a 42.44% reduction in waiting time and a
29.61% reduction in energy consumption. Computational results confirmed the effectiveness of the
proposed approach.

Keywords: vertical transportation system; optimization; multi-objectives variable neighborhood
strategy adaptive search

MSC: 90-10; 90B06

1. Introduction
1.1. Background

The COVID-19 pandemic has underlined the need for maintaining a healthy environ-
ment in order to prevent the spread of infectious illnesses. One of the most critical issues in
many public locations is managing the flow of people, especially in restricted spaces, such
as elevators. Long lines and crowded elevators might promote the spread of diseases such
as COVID-19, resulting in higher infection rates and potentially overwhelming healthcare
systems [1]. The waiting areas for elevators have always been bottlenecks for crowd control,
and with the pandemic, it has become an even more significant issue. Elevator waiting
areas are often small and confined, and with the need for social distancing, the number of
people allowed in these areas has decreased, leading to long waiting times. This increased
waiting time can lead to crowds gathering in the waiting area, which could lead to the
spread of the disease. Moreover, as people wait in these areas, they may touch the same
surfaces, such as elevator buttons, which could be contaminated with the virus, and thus
contribute to its spread, especially during rush hours [2–4]. Kwon and Kim [5] introduced a
mobile application for managing lift passengers that can offer real-time information on lift
occupancy, forecast the number of people waiting in the lift area using machine learning,
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and guide passengers to their destination floors. It can also be used to limit the number of
people allowed in the waiting area and provide touchless lift access via QR codes or other
technologies. Several academic sources [6–9] have suggested using mobile applications to
manage elevator passengers during non-rush hours. These apps can effectively reduce the
number of people waiting in elevator areas, facilitating social distancing and preventing
overcrowding in the elevators. Some of these apps employ algorithms to assign passengers
to elevators based on their destination floors and can also monitor and control elevator
capacity. Other features of these apps include touchless access, voice-activated controls,
and real-time elevator status updates. The use of mobile apps in elevator management is
seen as a promising approach for preventing the spread of COVID-19 while also enhancing
elevator efficiency and safety [10]. These applications are mainly focused on reducing
the chance of the disease spreading throughout working offices through elevator use, but
none of these applications take into account energy consumption or lift load, such as the
elevator’s makespan. This research aims to develop an application to manage an elevator’s
passengers and the lift operation. The application will manage the passengers to reduce
the chance of the disease spreading while keeping the lower operating cost of the lift.

The energy consumption of a lift is influenced by a number of factors, including
elevator speed, weight, frequency of use, motor, and control system efficiency, building
design, and maintenance and modernization [11–13]. In addition, the stopping pattern of
the elevator can significantly impact its energy consumption. A lift that stops on every floor
will consume more energy than one that only stops on every other floor [14]. Therefore,
optimizing the stopping pattern of the elevator can lead to significant energy savings.

The optimization of elevator management has been explored in several studies using
mathematical models and optimization techniques, such as integer programming, genetic
algorithms, and multi-objective optimization [15–17]. While these studies have made
significant progress in finding optimal elevator operation strategies, there are still some
research gaps that need to be addressed. This paper aims to identify and address these gaps.

(1) While much research has been devoted to exploring the use of mobile applications
and other technologies to manage elevator traffic and improve passenger safety, there
remains a notable gap in the literature with regard to optimizing elevator energy consump-
tion. This paper aims to address this gap by exploring optimal elevator operations to reduce
energy usage.

(2) Despite a wealth of research on elevator systems, many studies have relied solely
on simulations or theoretical models, neglecting the importance of real-world testing.
To address this shortcoming, this paper presents a comprehensive analysis of elevator
energy consumption, drawing on both theoretical models and empirical data from actual
elevator systems.

(3) Despite the widespread use of elevators, there remains a lack of rigorous mathemat-
ical proof and empirical evidence regarding elevator-stopping patterns and their impacts
on energy consumption. This paper seeks to fill this gap by presenting a detailed analysis
of these factors, supported by both theoretical proofs and empirical data.

This research aims to develop an application for managing elevator passenger flow
while minimizing energy consumption and makespan, the two main objectives of the study.
To address these objectives, a multi-objective mathematical model will be presented, and
effective heuristic approaches will be employed to identify optimal operating schedules
for elevators, balancing the need to limit the spread of disease while maintaining efficient
elevator operation. The resulting solutions offer important insights into the effective
management of elevator traffic and may prove valuable in addressing the challenges posed
by current and future public health crises.

The proposed mathematical model can be viewed as a particular instance of the
combinatorial optimization problem, involving a multi-objective task capacity assignment
problem (for assigning passengers to elevators) and a parallel machine scheduling problem.
Both of these problems are recognized as NP-hard, rendering exact solutions infeasible for
larger problem sizes [17]. In this study, the variable neighborhood strategy adaptive search
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(VaNSAS) is utilized to tackle the problem and provide an effective solution approach.
The proposed heuristic approach promises to offer valuable insights into the optimization
of elevator traffic while minimizing energy consumption and makespan. VaNSAS was
first published by Pitakaso et al. [18], and it has been successfully applied to solve many
types of problems, such as the multi-echelon vehicle routing problem [19], the assembly
line balancing problem [20], multiple parallel machine scheduling [21], and parameter
optimization for friction stir welding [22]. In this study, we propose modifications to the
variable neighborhood search adaptive search (VaNSAS) algorithm by introducing novel
black box improvements that augment its solution-finding capability. Our modifications
are based on the fundamental principles of local search methods, as presented in previous
articles [23–25]. Additionally, we introduce new selection methods that are developed based
on historical data obtained during the simulation of the algorithm. These improvements are
expected to enhance the effectiveness of VaNSAS and contribute to the body of knowledge
on optimization algorithms.

1.2. Related Literature

Elevators are a key factor for high-rise building success and popularity, with various
factors to consider for an efficient vertical transportation strategy. Jetter and Gersten-
meyer [26] stated that super-high-speed elevators are not necessary for good travel times
and handling capacity. The interrupted flow of elevator cabins enables short waiting times
for continuous passenger flow. A vertical transportation system (VTS) is important for
efficient building operation and occupant comfort, affecting project costs and transportation
demands. Various techniques have been proposed to address VTS issues, such as opti-
mization models developed by Koo et al. [27] and Markov chain Monte Carlo evaluations
by Al-Sharif and Hammoudeh [28]. Kuusinen et al. [29] proposed linear programming
to reduce costs during lift trips, while the vertical logistics planning system (VLPS) was
developed to optimize the vertical logistics strategy at 22 Bishopsgate, London [30]. The
efficient operation of elevators is necessary to minimize costs and waiting times. However,
energy consumption and long queues may occur without proper problem-solving. To
achieve overall efficiency, energy efficiency concepts and criteria should be implemented
for architects, designers, planners, and customers when projecting the energy consumption
of elevators from various manufacturers in Switzerland under real-world conditions [31].

No published research verifies that the stopping strategy affects the lowest consump-
tion cost, making the optimal total cost under the energy consumption function with
selective stopping strategies an interesting area of study. Other factors, such as worker
assignment, capacity, and floor, are also crucial for minimizing the total cost of eleva-
tor movement. The integration of human management during rush hours during the
COVID-19 pandemic era poses a new challenge for elevator scheduling. Due to the com-
plexity of this problem, an exact method is not feasible, and a heuristic approach, such as
VaNSAS, is necessary. VaNSAS is a flexible population-based heuristic that can solve a
variety of problems, including this multi-objective decision problem. It is known for its
fast computation, intensive search, and ability to escape local optima. VaNSAS is similar
to other popular population-based heuristics, such as genetic algorithms [32], differential
evolution algorithms (DE) [33], and particle swarm optimization [34].

VaNSAS can form different types of local search or improvement methods within the
same algorithm. This allows for intensive or diverse searching as needed. Multi-objective
VaNSAS (M-VaNSAS), a modified version of VaNSAS that can solve multi-objective decision
problems, is used in this research. Khonjun et al. [35] implemented a mobile application
and the Internet of Things to reduce the number of passengers waiting for an elevator
and waiting time, aiming to reduce the spread of COVID-19, but the application requires
passengers to download it, which is a weakness. Several articles have aimed to minimize
elevator energy usage, including using different power distribution systems, implementing
LQG regulators, and utilizing DC micro-grids and energy-efficiency devices [36–38]. This
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study will focus on two strategies to reduce energy usage: optimizing elevator-stopping
strategies and combining passenger assignment with scheduling.

The most recently published articles from the year 2023 presented five studies related
to engineering and transportation [39–43]. Shi and Zhu [39] proposed a dual-phase control
strategy for cargo transportation using a partial space elevator, which effectively balances
multiple control objectives and achieves a stable equilibrium state. Chen et al. [41] investi-
gated the association between the operation parameters and the finished product quality
in large-scale vertical mill systems, proposing a multi-objective optimization framework
that increases yield and specific surface area. Gu et al. [42] analyzed the seismic response
of a 26-story-frame shear wall structure before and after the installation of elevators and
optimized the design scheme. Maleki et al. [43] proposed a method to predict the risk of
passengers being trapped in elevators during earthquakes, which could help with virtual
drills and emergency plans. Finally, a further study proposed an efficient approach for
elevator scheduling in smart buildings to reduce energy usage and enhance user experience,
resulting in significant improvements in energy consumption and service time.

The rush hour elevator operating strategy has received limited attention in the lit-
erature. At this time, passengers tend to use the elevators simultaneously, leading to
overcrowding in the elevator waiting for the area and multiple stops for the same elevator.
These can result in increased waiting and energy consumption times. The study aims to cre-
ate a mobile application for passengers to reserve elevators during rush hours. Passengers’
input will be used to optimize energy usage and elevators’ makespan. The multi-objective
variable neighborhood strategy adaptive search (M-VaNSAS) will be used to optimize both
objectives. The results will be sent to the elevator control system for automatic operation
and to passengers for information on elevator arrival time.

This paper is organized as follows: Section 2 explains the mathematical formulations
which illustrate the proposed problem. Sections 3 and 4 outline the designed methodology
and its computational results, while Section 5 provides the conclusion and outlook of
this paper.

2. The Modified Mathematical Model

The mixed-integer nonlinear program (MINLP) has been proposed for a variety of
important scientific applications, encompassing diverse areas such as optimal management
of electricity transmission [44], power system contingency planning and blackout mitiga-
tion [45], the design of water distribution networks [46], nuclear reactor recharging and
servicing [47], and the reduction of environmental impact from utility plants [48].

The mathematical model was formulated by Pitakaso et al. [18] for the optimization of
the total cost of vertical transportation in elevators, with a strategy that allows all elevators
to stop on every floor that is requested by the user (passenger), was studied. In this
article, two major factors, namely electric consumption ( f1 f2

υ Moj Mjk) and stopping (Pjl)
parameters, such as odd/even and high/low floors, are added to the model as part of
the elevator allocation strategy based on floor parity. This strategy leads to a reduction in
energy consumption; however, in order to optimize the total cost, some of the workers have
to use stairs for walking up or down. The modified mixed-integer nonlinear programming
(MINLP) models can be expressed as

Strategy 1: To minimize the total cost of elevator movement with the energy consump-
tion function and set the conditions for necessities of the odd/even floor stoppage policy
for each half of the elevators.

Strategy 2: To minimize the total cost of elevator movement with electric consumption
function and set conditions for the elevator to stop on the low/high floors of the building.
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Notation Used in MINLP for Assignment of the Elevator Problem

Sets:
I set of passengers/elevator users;
J set of elevators;
K set of rounds of passenger transportation in an elevator;
L set of building floors.

Parameters:
f1 average load factor (technology factor);
f2 hoist height factor;
e1 electric consumption cost when elevator moves up or down;
e2 electric consumption cost when elevator stops (opening and closing the door);
υ speed in meters per second;
Li required floor of building as the stop for the i-th passenger;

Gil

{
1
0

;
;

the i-th passenger wants to stop on the l-th floor of the building
otherwise

Pjl

{
1
0

;
;

the j-th elevator stop on the l-th floor of the building
otherwise

Wi weight of the i-th passenger;
Cj capacity of the j-th elevator;
Moj motor output of the j-th elevator (kilowatts);
D time required for passenger boarding/alighting;
R elevator travel speed (in minutes per floor);
Q elevator usage duration limit (in minutes).

Decision variables:
Yijk

{
1
0

;
;

the i-th passenger is assigned to the j-th elevator in the k-th round
otherwise

Xjk

{
1
0

;
;

the j-th elevator in the k-th roundis in use
otherwise

Tijkl
{

1
0

;
;

the i-th passenger that is assigned to the j-th elevator
in the k-th round stop in the l-th floor of the building

otherwise

Bjkl

{
1
0

;
;

the j-th elevator in the k-th round stop in the l-th floor of the building
otherwise

Mjk Maximum floors that the j-th elevator travels in the k-th round;
Njk Starting time of the j-th elevator in the k-th round;
Fjk Finish time of the j-th elevator in the k-th round.

Objective functions:

Min Z1 =
K

∑
k=1

J

∑
j=1

e1
f1 f2

υ
Moj Mjk +

L

∑
l=1

K

∑
k=1

J

∑
j=1

e2Bjkl (1a)

Min Z2 = max
jk

(
Fjk

)
(1b)

Constraints:
K

∑
k=1

J

∑
j=1

Yijk = 1; ∀i (2)

Xjk ≤ Xj,k−1; ∀j, ∀k=2,...,K (3)

J

∑
j=1

I

∑
i=1

YijkXjk −
J

∑
j=1

I

∑
i=1

Yij,k−1Xj,k−1 ≤ 1; ∀k=2,...,K (4)

Yijk ≤ Xjk; ∀i, ∀j, ∀k (5)

Mjk ≤ Maxi

(
YijkLi

)
; ∀j, ∀k (6)
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Tijkl ≤ GilYijk; ∀i, ∀j, ∀k, ∀l (7)

L

∑
l=1

K

∑
k=1

J

∑
j=1

Tijkl = 1; ∀i (8)

Bjkl ≤ PjlXjk; ∀j, ∀k, ∀l (9)

Tijkl ≤ Bjkl ; ∀i, ∀j, ∀k, ∀l (10)

I

∑
i=1

WiYijk ≤ CjXjk; ∀j, ∀k (11)

Nj1 = 0; ∀j (12)

Fj1 = Nj1 + RMj1 +
L

∑
l=1

DBj1l ; ∀j (13)

Njk =
(

Fj,k−1 + RMj,k−1 + D
)

Xjk; ∀j, ∀k=2,...,K (14)

Fjk = Njk + RMjk +
L

∑
l=1

DBjkl ; ∀j, ∀k=2,...,K (15)

Fjk ≤ Q; ∀j, ∀k=2,...,K (16)

Equation (1a) is an objective function that comprises two energy consumption costs,
namely the moving cost and the stopping cost, while the second objective (1b) is to minimize
the makespan of the elevators. Equation (2) guarantees that each passenger is assigned
to elevator j in round k no more than once. Equations (3) and (4) stipulate that elevator
j in round k is only permitted to operate if it was operated in the previous round, k− 1.
Equation (5) illustrates that passenger i cannot be assigned to an elevator that is not
operated. As shown in Equation (6), elevator j during round k must ascend to the maximum
floor assigned to any passenger it transports. Equation (7) is used to calculate the floor
l for elevator j in round k, which has to stop as passenger i is assigned to that elevator.
Equation (8) stipulates that a customer can be assigned to exactly one j, k, and l. Equation (9)
is modified to ensure that the elevator round will stop on the floor only when that elevator
is in use, with conditions for the elevator to stop on even/odd floors or high/low floors of
the building. Equation (10) enables passenger i to get off the elevator on floor l only when
elevator j in round k has stopped on floor l. As per Equation (11), the maximum allowable
weight for the left elevator cannot be exceeded by the total weight of passengers assigned
to it. Equation (12) shows that the start time of elevator j in round 1 is the loading in time
of the passengers to all elevators, while Equation (13) shows that the finish time of elevator
j in round 1 is the start time of round 1 plus the total loading time of all floors that the
elevator stops at, plus the transportation time from floor l to floor Mjk. Equation (14) shows
that the start time of elevator j in round k is the finish time of elevator j in round k− 1 plus
transportation time from Mj,k−1 to floor l, plus the loading time of passengers in round k.
Equation (15) shows that the finish time of elevator j in round k is the start time of round k
plus the total loading time of all floors that the elevator stops at, plus the transportation
time from floor l to floor Mjk. Equation (16) shows that all elevators must finish moving
in the last round within the limited operating time. The parameters’ details are displayed
in Table 1.
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Table 1. Parameters used in the MINLP model.

Parameters Value Unit

Average load factor (technology factor) * 0.35 -
Hoist height factor * 1 -
Speed * 2 m/s
Electric consumption cost when the elevator moves up or down 3.5088 THB/kw
Electric consumption cost when the elevator stops (opening and closing the door) 5 THB/time
Moving speed of the elevator 0.5 min/floor
Time required for opening and closing the door 0.2 min/floor
Maximum working time of the elevator 40 min
Capacity of elevator 900, 1000, 1100 kg
Motor output of elevator * 21, 25 kw
Weight of passengers 1 to 20 45–91 kg

* The factors from Nipkow and Schalcher [31].

3. The Proposed Method

In this article, the multi-objective vertical transportation problem will be solved using
the multi-objective variable neighborhood strategy adaptive search (M-VaNSAS), which
was first proposed by Pitakaso et al. [19]. The four steps of the VaNSAS algorithm for
single-objective optimization consist of: (1) generating an initial set of tracks, (2) executing
the track touring process, (3) updating heuristic information, and (4) repeating steps (2)–(3)
until the termination condition is reached. For the multi-objective, step 3 has been modified
in order to select the correct track to be the parent track for the next iteration of step (2). The
random weight sum method will be used as the criteria of the selection process, while the
Pareto points are collected during the simulation execution. M-VaNSAS can be explained
stepwise as follows:

3.1. Generate the Set of Initial Tracks

NT number track will be uniformly and randomly generated using Equation (17).
Each track has a dimension of 1× D, where D represents the number of passengers and
is set to 10. The initial tracks used in this paper are the integer numbers, and they are
randomly generated using Equation (17).

Eni1 = U(0, J) (17)

Enm1 refers to the value of track n at position m during the first iteration, with n and
m representing the predetermined track and position indices, respectively. I denotes the
number of passengers, and N represents the total number of tracks. J is the number of
available elevators. The other two sets of tracks are also randomly generated in the first
iteration, named here as the set of best tracks (BT) and random tracks (RT).

Bni1 = U(0, J) (18)

Rni1 = U(0, J) (19)

Bnmt is the collection of the N highest-quality solutions obtained from iterations 1 to t,
as per Equation (18), and Rnmt is randomly selected through Equation (19). Equation (20) is
used to update Enmt, and Table 2 shows an example of four randomly generated tracks.

Eij,t+1 = Eijt =⇒ Track execution process using designed operators (20)
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Table 2. Four initial tracks with 10 dimensions, and the building has five elevators.

n\m 1 2 3 4 5 6 7 8 9 10

1 5 2 3 3 2 1 4 3 1 5

2 1 4 2 1 4 4 5 4 3 1

3 3 1 2 5 4 2 2 2 5 3

4 3 4 3 5 4 4 2 3 1 3

The value in position m of track n represents the number of elevators that passenger
m will ride. The maximum number of values in position m equals the maximum number of
elevators that are available. For example, passengers 1, 2, 3, and 4 will take elevators 5, 2, 3,
and 3, respectively. The passengers that are assigned to the same elevator will be assigned
one by one until the capacity of the elevator in each round is full, then the next round of
that elevator be separated by the traveling round of the elevator. The second objective will
increase by 1 if a passenger takes the elevator that does not stop at their desired floor. Both
objectives can be calculated using Equations (1a) and (1b).

3.2. Track Touring Process

Utilizing black boxes iteratively will enable the improvement of the quality of the initial
solution and the continuous search for better solutions. A black box can be designed freely
with no limit rule and their use also has no limit rule. In selecting the track, Equation (21)
incorporates various components, including random-transit (RT), best-transit (BT), inter-
transit (IT), scaling factor (SF), differential scaling factor (DSF), and restart (RS). A roulette
wheel selection approach was employed to select the preferred black box for the track.
The “Roulette Wheel Selection” technique is frequently employed in metaheuristic se-
lection processes owing to its capacity to effectively identify individuals for subsequent
generations while ensuring a higher likelihood of the selection of individuals that exhibit
superior fitness values. The technique involves assigning a probability of selection to each
member of the population based on their individual fitness value, followed by a stochastic
selection process using a “roulette wheel” mechanism that assigns greater probabilities
of selection to individuals with superior fitness. This approach is known for its intuitive
nature, computational efficiency, and potential to expedite the convergence toward optimal
solutions. The selection of the black box is controlled by Equation (21).

Pbt =
FNb,t−1+(1−F)Ab,t−1+KIb,t−1+ρ|Ab,t−1−Abest

t−1|
∑B

b=1 FNb,t−1+(1−F)Ab,t−1+KIb,t−1+ρ|Ab,t−1−Abest
t−1|

(21)

The probability of selecting the black box in iteration t is represented Pbt, with Nb,t−1
indicating the total number of tracks that selected a black box in the previous iterations,
and Ab,t−1 denoting the average objective value of all tracks that selected black box b in
all preceding iterations. In this context, Abest

t−1 represents the globally optimal solution
discovered before iteration t, while Ib,t−1 denotes a reward value that increases by 1 if a
black box identifies the optimal solution in the previous iteration but remains constant
otherwise, and B signifies the total number of black boxes. The scaling factor is denoted
by F, where F = 0.5, and K represents the parameter factor, where K = 1. Additionally, ρ
signifies a predetermined parameter set to 0.05, which has been determined through the
preliminary test.

3.3. The Black Box

Let us define the set of tracks in a single iteration, where B represents the number of
tracks included in each iteration. Define set A as the collection of tracks that selected black
box b and set Z as the collection of tracks that did not, such that the sum of the number of
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tracks in A and Z is equal to B. Let m denote the track randomly chosen from the set of
tracks Z, and let n denote the track in the set of tracks A.

Random-Transit(RT) Eniq =

{
Eni,q−1 ; Rij ≤ C
Rniq ; otherwise

(22)

Best-Transit(BT) Eijq =

{
Eni,q−1 ; Rij ≤ C
Bgbest

j ; otherwise
(23)

Inter-Transit(IT) Eniq =

{
Eni,q−1 ; Rij ≤ C
Emiq ; otherwise

(24)

Scaling Factor(SF) Eniq =

{
Eni,q−1 ; Rij ≤ C

RniEni,q−1 ; otherwise
(25)

Differential Scaling Factor(DSF) Eniq = Eriq + F(Emit − Enit) (26)
Restart(RS) Eniq = Rni (27)

Bgbest
j is the set of tracks that gives the global best solution and the best solution

obtained from black box b. Rni denotes a randomly generated number at position i of track
n. Equation (28) is utilized to execute the sub-iteration update of the position of Yni,q+1.
The variable q denotes the number of sub-iterations executed by black box b, a parameter
set in advance. As stated in [10], the values of C and F are set to 0.5 and 0.7, respectively.

The evaluation of the solution that will iteratively search can be seen in Equation (28).

Eni,q+1 =

{
Eniq ; fnt ≤ fnq and update fnt = fnq and Enit = Eniq
Yrjq ; otherwise

(28)

The objective function of track n at iteration t is denoted by fnt, while fnq represents the
objective function of track n at sub-iteration q. The objective function used in Equation (28)
is derived from Equation (29)

fiq = w1 f
1
iq + w2 f

2
iq (29)

when w1 is the random weight for objective 1 and w2 =
(
1− w1) and w1 = U(0, 1). f 1

iq

and f 2
iq is the objective function of objective Z1 and Z2, respectively. The Pareto front of the

proposed objectives is collected separately from the objective function Equation (28) and
the objectives shown in Section 2 are modified to Equation (30).

Max Z = −w1
T

∑
t=1

J

∑
j=1

I

∑
i=1

BTijtXijt +
L

∑
l=1

I

∑
i=1

Cl + w2max
jk

Fjk (30)

The set of non-dominated solutions will be preserved using the Pareto front. Let f 1(er)
and f 2(er) represent the objective function for objectives 1 and 2 of track r, respectively. Let
R denote a set of feasible solutions. The decision vector set e = (e 1, e2, . . . , ei) represents the
feasible solutions and f v(e) =

(
f 1(e), f 2(e), . . . , f V(e)

)
represents the objective functions

of the feasible solutions. An element e dominates e′ if and only if f v(e) ≤ f v(e′) for all
v ∈ {1, 2, ..., V}.

Upon the completion of the M-VaNSAS algorithm and the acquisition of the Pareto
front, the technique for order preference by similarity to the ideal solution (TOPSIS) can
be employed for further analysis, as described in the works of Hwang and Yoon [49] or
Tzeng and Huang [50]. Utilizing the technique for order preference by similarity to the
ideal solution (TOPSIS), a promising set of parameters will be identified, followed by the
construction of the normal decision matrix. This process involves transforming the various
attributes’ dimensions into non-dimensional attributes using Equations (31)–(37).

rlv =
xlv√

∑L
l=1 X2

lv

(31)
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Ulv = wvrlv (32)

U∗v = {max
L

Ulv if v ∈ V; min
L

Ulv if v ∈ V∗} (33)

U
′
v = {min

L
Ulv if v ∈ V; max

L
Ulv if v ∈ V

′} (34)

S∗l =

√√√√ V

∑
v=1

(U ∗v −Ulv
)2 (35)

S
′
l =

√√√√ V

∑
v=1

(U
′
v −Ulv

)2
(36)

C∗l =
S
′
l

S∗l + S′l
(37)

when xlv represents the objective function value of point l for objective v, where L is the
number of points in the Pareto front. V∗ denotes the set of positive objective functions,
while V′ represents the set of negative objective functions. The parameter wv is pre-
defined and represents the weight associated with each objective function. U∗ (U∗ ={

U∗1 , U∗2 , . . . , U∗n
}

) and U′ (U
′
=
{

U
′
1, U

′
2, . . . , U

′
n

}
) denote the positive and negative ideal

solutions, respectively. S∗l and S
′
l represent the separation measures for each alternative

from both the positive and negative ideal solutions, which are utilized in computing the
relative closeness to the ideal solution (C∗l ). The set of parameters that has a value of C∗l
closest to 1 will be selected as the promising solution.

3.4. Revise the Probability of the Black Box

In this stage, certain heuristic information utilized in Equation (21) must be revised,
and the variables requiring updates are presented in Table 3.

Table 3. Enumerated set of variables requiring iterative updates.

Explanatory Variables Adjustment Protocol

Nbt The cumulative count of tracks that selected black box b from the first iteration up to iteration t.

Abt

Abt =
Nbt
Tbt

when Tbt denotes the aggregate cost incurred by all tracks that have selected the black box b, starting
from iteration 1 up to iteration t.

Ibt
Ibt = Ibt−1 + G

when G =

{
1 ; if in iteration t,the global best solution is contained within black box b
0 ; otherwise

Bgbest
j

Update the track containing the globally optimal solution

Rijq Select values at random for all positions across all tracks

3.5. Pseudocode of M-VaNSAS

The previous steps are iteratively repeated until the termination condition is met.
The M-VaNSAS’s pseudocode is shown in Algorithm 1.
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Algorithm 1: Multi-Objective Variable Neighborhood Strategy Adaptive Search (M-VaNSAS).

Input: Number of tracks (NT), Number of Parameters (D), Scaling factor (F),
Improvement factor (K), Value of C, Number of improvement box (IBPop)
Output: Best_Track_Solution

Begin
Population = Initialize Population (NT, D)
IBPop = Initialize Informatiom IB (NIB)
Encode Population to WP
While the stopping criterion is not met do

For i = 1: NT
// selected improvement box by
RouletteWheelSelection
selected_IB = RouletteWheelSelection(IBPop)
If (selected_IB = 1) Then

new_u = RT (u)
Perform RT

Else if (selected_IB = 2)
new_u = BT (u)
Perform BT

Else if (selected_IB = 3)
new_u = IT (u)
Perform IT

Else if (selected_IB = 4)
new_u = SF (u)
Perform SF

Else if (selected_IB = 5)
new_u = RS (u)
Perform RS

Else if (selected_IB = 6)
new_u = DSF (u)
Perform DSF

Perform Decoding Method, Weight Sum Method
If (CostFuntion(new_u)) ≤ CostFuntion(Vi) Then

Vi = new_u
Update Pareto Front
End For Loop // end update heuristics information

End While Loop
End
Return Best_Vector_Solution

3.6. The Comparison Methods

In this research, a comparative analysis was conducted using the proposed techniques
and a well-known metaheuristic algorithm called differential evolution (DE). The DE al-
gorithm is inspired by nature and comprises four major steps: (1) generating an initial
solution; (2) executing a mutation process; (3) performing a crossover process; (4) exe-
cuting a selection process. For our problem, we modified the DE algorithm proposed by
Srichok et al. [51]. The selection process in DE was revised using Equation (29).

3.7. Application and IoT for Elevator System Control Design

To evaluate the waiting lines, a HIKVISION DS-2CD1123G0E-I camera was installed,
while IoT devices with infrared sensors were installed on each floor of the building to
monitor the elevator’s movement. The movement and operation of the elevators were
controlled using a PLC system programmed with C language. Figure 1 illustrates the
operational design framework of the proposed method.
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The system architecture design when the mobile client requests the server, which
records the daily elevator requests of users, is illustrated in Figure 1. Subsequently, the
system queries all elevator bookings to schedule the use of elevators. To minimize energy
consumption during the scheduling process, this system utilizes an optimization algorithm.
The results of elevator booking are then relayed to each mobile client by the system.
The proposed system includes an IoT controller for elevators, which transmits the real-
time status information of elevators through the internet to the server for mobile client
responses. The Android platform hosts the application, while PHP scripts are utilized for
mobile client requests and responses on the server. The optimization algorithm, written in
Python, is executed every time a mobile client makes an elevator booking. Moreover, the
elevator booking system is installed on the touch screen panels of kiosks at the entrances of
elevator zones to serve one-time visitors who do not have access to the booking system on
their smartphones.

The user interface of the elevator booking system is depicted in Figure 2. To book
an elevator, the user needs to click on “New Booking Floor”, then provide their weight
information and select the floor they want to go to. After confirmation by clicking on “Go”,
the system displays the resulting information, including the number of elevators assigned
and the estimated usage time. Furthermore, real-time information on the current status of
elevators on each floor is also displayed.
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4. The Computational Framework and Results

In this section, three groups are mentioned: (1) the computational results that reveal
the effective stopping patterns of the elevator; (2) the computational results that reveal the
effectiveness of M-VaNSAS compared with DE; and (3) the computational results of the
designed system applied to the real case problem.

4.1. Best Elevator Stopping Strategy (Patterns)

The threshold for tall buildings is 14 floors, or over 50 m in height, which is defined
by the Council for Tall Buildings and Urban Habitats. In this section, the outcomes for
the proposed problems, which are (1) the minimization of energy consumption and (2)
the minimization of the makespan of the elevators, will be solved by LINGO; thus, the
best strategy will be revealed subjected to different objectives. The sets, i.e., the number of
passengers (I), the number of elevators (J), the number of rounds for moving up/moving
down (K), and the number of floors (L), are varied for computation. L is designed with
two groups of buildings of normal and tall height. The varied sets are designed by I = 20,
J = 2, 4, 6, 8, K = 10, and L = 10, 15, 20, 25. Two elevators are assigned, and each assigned
elevator moves only one round. The workers are assigned to each elevator with a total
weight of no more than its capacity. The number of stopping floors and the highest travel
floor of the relevant problems are reported.

4.1.1. Minimize Energy Consumption

The optimal total costs for each strategy are shown as (285, 461, 603, 742) and (266, 352,
506, 602), respectively. Strategy 2 shows a better performance regarding the lower total cost
than the results from strategy 1 (Figure 3), and the higher value of total cost is dependent
on the number of floors. The extended computation experiments were also studied for
the number of elevators (J = 2, 4, 6, 8) and are reported in Table 4. The total cost of energy
consumption for each strategy is reported, from which can be seen that the majority of
energy consumption costs from strategy 2 perform better than those of strategy 1. To
execute the comparison of the two methods in this study a Wilcoxon signed-rank test was
used. The Wilcoxon signed-rank test is often used in comparing the performance of two
methods when the data are not normally distributed or when the sample size is small.
The test is a non-parametric statistical test that does not make any assumptions about the
underlying distribution of the data, making it a robust method for analyzing data that
may not meet the assumptions of parametric tests, such as the t-test. Furthermore, the
Wilcoxon signed-rank test is suitable for paired data, where each datapoint in a sample is
directly related to a corresponding datapoint in another sample, such as when comparing
the performance of two methods on the same dataset. This makes it a useful tool in various
fields of research, including medical studies and engineering, where the performance of two
or more methods needs to be compared to determine which method is more effective. The
Wilcoxon signed-rank test indicated that energy consumption costs are better in strategy 2
(Mdn2 = 413.687) than in strategy 1 (Mdn1 = 465.881), T = 18.00, Z = −2.585, and
p < 0.009. As a result, strategy 2 is suited to minimizing the objective function (1a)
regarding energy consumption cost.

As can be seen from Table 4, the odd/even elevator system is more intricate and
demands more resources to operate compared to the low/high system. There are specific
reasons why the odd/even system is more costly. Firstly, in the odd/even system, each
elevator can only stop on half of the floors in the building, requiring more elevators to
cover all the floors than in the low/high system. This results in higher equipment, mainte-
nance, and repair costs. Secondly, the odd/even system may require passengers to transfer
elevators frequently to reach their desired floor, causing slower elevator operations, longer
wait times, and frustrating experiences that can discourage building usage. Thirdly, to
coordinate the odd/even elevator system, a more complex control system is required, with
programmed elevators to alternate between odd and even floors and a control system to
track the availability of elevators and the floors they stop at, driving up programming and
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maintenance costs. Lastly, the odd/even elevator system has more elevators, resulting
in more components requiring maintenance and repair. Malfunctions and breakdowns
may also be more difficult to identify and fix, leading to longer elevator downtime, in-
conveniencing users, and reducing the building’s efficiency. In conclusion, the odd/even
elevator system, while seemingly a smart approach to distributing passenger traffic, is more
expensive to operate due to several drawbacks. The low/high system is a more direct and
efficient approach to elevator operation, which can result in cost savings in the long run.
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Figure 3. The minimization of the total cost of energy consumption against the number of floors
(I = 20, J = 4, K = 10).

Table 4. Total cost of energy consumption for strategy 1 and 2 in different problem instances.

Problem
Instances

Number of
Elevators (J) Number of Floors (L)

Total Cost of Energy Consumption (THB)

Strategy 1 Strategy 2

1 2 10 285.967 262.984
2 2 15 410.003 383.424
3 2 20 480.354 530.968
4 2 25 512.109 638.513
5 4 10 285.002 266.054
6 4 15 460.793 351.581
7 4 20 602.899 506.407
8 4 25 741.847 602.109
9 6 10 418.950 243.423
10 6 15 453.863 371.581
11 6 20 470.968 476.845
12 6 25 674.742 483.425
13 8 10 446.494 238.423
14 8 15 402.635 368.424
15 8 20 599.566 504.828
16 8 25 587.285 443.950

Median 465.881 413.687

4.1.2. Minimize Makespan

In this section, the majority of the results from strategy 1 reveal a lower makespan than
those of strategy 2 (Table 5), but there is no significant difference between the two strategies
(Mdn1 = 5.0, Mdn2 = 5.4, T = 86.0, Z = 0.935, and p = 0.35, respectively) according to
the Wilcoxon signed-rank test. So, to find optimal values or minimize makespan could
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be either strategy 1 or strategy 2. Figure 4 displays the graph depicting the correlation
between the number of floors and makespan.

Table 5. Makespan for strategy 1 and 2 in different problem instances.

Problem
Instances

Number of
Elevators (J) Number of Floors (L)

Makespan (Mins)

Strategy 1 Strategy 2

1 2 10 3.5 4.5
2 2 15 4.5 6.5
3 2 20 5.1 9.5
4 2 25 7.0 10.8
5 4 10 4.0 4.5
6 4 15 4.1 4.6
7 4 20 5.0 6.0
8 4 25 6.0 8.5
9 6 10 7.6 3.1
10 6 15 5.0 4.0
11 6 20 5.0 8.0
12 6 25 6.8 5.8
13 8 10 3.0 3.5
14 8 15 4.0 5.0
15 8 20 6.0 4.9
16 8 25 9.8 6.5

Median 5.0 5.4
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Figure 4. Makespan against number of floors (I = 20, J = 4, K = 10).

According to the computation results, the second strategy shows the best performance
for the first objective when minimizing energy consumption; on the other hand, both
strategies display the same ability for the second objective function, namely minimizing
the makespan. The stopping pattern of an elevator can impact its makespan. A stopping
pattern that divides the elevator’s stops between odd and even numbered floors can result
in longer travel times due to the elevator stopping on every floor. Alternatively, a pattern
that stops at the floors on either the lower or higher half of the building and skips the floors
in the other half can reduce the total operating time. Therefore, the low/high stopping
pattern can be more efficient than the odd/even stopping pattern.
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4.2. The Effectiveness of the M-VaNSAS and the Differential Evolution Algorithm (DE)

In this section, M-VaNSAS and DE were coded with Python and tested using an
Intel®Core™ i5-2467M PC with a 1.6 GHz CPU. The testing was executed using the medium
and large test instances, which LINGO v.11 cannot solve optimally. The number of elevators
ranged from four to eight. The number of passengers ranged from 100 to 297. All cases
were executed using M-VaNSAS and DE five times. The best solution among all runs
was used as the representative of the methods. The stopping criterion for the simulation
was the computational time, which was set to 45 min for all proposed methods. The first
comparison was the number of Pareto points obtained from M-VaNSAS and DE when the
number of iterations changed. The ratio of the number of points divided by the number of
iterations is shown in Table 6.

Table 6. Comparing the Pareto ratio of DE and M-VaNSAS.

Iteration
DE M-VaNSAS

Number of
Pareto Points Ratio Number of

Pareto Points Ratio

200 280 1.40 340 1.70
500 601 1.20 891 1.78
800 933 1.17 1023 1.28

1000 1284 1.28 1506 1.51
1200 1490 1.24 1701 1.41
1500 1680 1.12 2014 1.34

Average 1044.67 1.24 1245.83 1.50

From the computational result shown in Table 6, it is revealed that M-VaNSAS found
78.18% more Pareto points than DE; thus, we can conclude that in finding more solutions,
M-VaNSAS is better than DE. Figures 5 and 6 show the comparison of the Pareto front
formed by VaNSAS and DE. Tables 7–9 show the computational results of DE and VaNSAS,
in cases of w1 = 0.5, 0.7, and0.3, respectively. TOPSIS was used to reveal the solution. From
Tables 7–9, we can see that in all cases, M-VaNSAS is able to generate a better solution
than DE.
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Figure 6. Pareto front of M-VaNSAS.

Table 7. Energy used and the makespan of the elevator using w1 = 0.5 and w2 = 0.5.

Problem
Instances

Number of
Elevators (J)

Number of
Floors (L)

Number of
Passengers (I)

Total Energy Used Makespan

DE M-VaNSAS DE M-VaNSAS

1 5 20 220 2331.36 2301.25 29.47 27.21
2 4 20 220 2398.60 2354.53 30.13 27.95
3 5 22 250 2460.08 2395.13 32.74 28.87
4 4 22 250 2538.98 2480.15 35.27 29.42
5 6 24 255 2687.09 2677.40 37.39 29.71
6 4 26 255 2852.98 2768.57 39.27 30.24
7 6 24 260 2952.72 2838.72 41.12 31.37
8 4 26 260 3218.64 3032.87 42.48 31.83
9 6 28 280 3350.38 3146.00 45.24 32.67
10 4 28 280 3406.57 3195.17 47.38 32.90
11 6 31 298 3467.74 3200.64 48.62 33.18
12 4 31 318 3525.17 3255.58 51.28 34.75

Median 2932.53 2803.83 40.03 30.84

Table 8. Energy used and makespan of the elevator using w1 = 0.3 and w2 = 0.7.

Problem
Instances

Number of
Elevators (J)

Number of
Floors (L)

Number of
Passengers (I)

Total Energy Used Makespan

DE M-VaNSAS DE M-VaNSAS

1 5 20 220 2463.81 2395.89 28.48 27.18
2 4 20 220 2480.30 2446.30 29.18 27.45
3 5 22 250 2564.23 2487.85 31.23 28.01
4 4 22 250 2652.11 2577.13 34.12 28.91
5 6 24 255 2912.91 2823.66 36.45 29.30
6 4 26 255 2975.55 2878.45 38.58 30.12
7 6 24 260 3029.47 2975.40 39.13 30.58
8 4 26 260 3314.23 3108.94 40.48 30.97
9 6 28 280 3372.98 3191.74 42.33 31.23
10 4 28 280 3442.91 3233.47 43.81 31.28
11 6 31 298 3544.08 3256.00 45.74 33.31
12 4 31 318 3557.77 3327.62 49.76 32.91

Median 3025.86 2891.87 38.27 30.10
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Table 9. Energy used and makespan of the elevator using w1 = 0.7 and w2 = 0.3.

Problem
Instances

Number of
Elevators (J)

Number of
Floors (L)

Number of
Passengers (I)

Total Energy Used Makespan

DE M-VaNSAS DE M-VaNSAS

1 5 20 220 2282.68 2268.23 31.23 28.98
2 4 20 220 2370.72 2336.49 32.89 29.84
3 5 22 250 2415.40 2381.17 35.87 30.46
4 4 22 250 2496.11 2437.25 38.40 30.68
5 6 24 255 2670.72 2638.42 39.91 31.04
6 4 26 255 2824.04 2754.91 41.08 32.47
7 6 24 260 2940.08 2803.06 44.47 33.05
8 4 26 260 3174.30 3019.55 47.29 33.42
9 6 28 280 3301.25 3108.94 48.74 35.38
10 4 28 280 3376.26 3141.09 49.20 36.74
11 6 31 298 3397.62 3177.06 52.19 38.16
12 4 31 318 3508.72 3217.89 54.81 39.47

Median 2896.49 2773.67 43.93 33.31

From the result obtained in Tables 7–9, we can see that M-VaNSAS has better total
energy used (4.55%) than DE, as revealed from the average energy used for all the weights
of w1 and w2. M-VaNSAS shows an average lower makespan than DE (29.61%). Thus, we
can conclude that using M-VaNSAS provides a better solution than DE while using TOPSIS
to evaluate the solution obtained from the Pareto analysis. M-VaNSAS provides better
solutions in all differential weights of the objective functions. Figures 5 and 6 show the
Pareto front of the DE and M-VaNSAS to uncover the real Pareto solutions obtained from
DE and M-VaNSAS.

As can be seen from Figures 5 and 6, the Pareto front of M-VaNSAS can fill in the gap
of the points better than DE. This result corresponds to that of the result shown in Table 6,
where it is revealed that M-VaNSAS has a higher Pareto ratio than DE. This is the reason
M-VaNSAS can fill the Pareto gap better than DE.

4.3. Results of the Real-World Case Study

We applied the designed application which used M-VaNSAS to decide the passenger
assignment and the elevator’s schedule for 30 days in an office building with 32 floors, six
elevators, and 320 daily passengers. Rush hour operations using the designed application
began at 7.30 and lasted until 8.15 am. The results collected for the 30 days compared the
current situation and the results obtained using the application. The results are shown in
Table 10.

Table 10. Compared results of the current situation and the proposed method.

Average
Waiting Time

(Minutes)

Average
Number of

Waiting
Passenger
(Person)

Energy Used
(30 Days)

(THB)

Average
Makespan
(Minutes)

Current situation 22.45 41.63 149,871 45.98
M-VaNSAS 4.81 8.59 86,273 34.75

From Table 10, we can conclude that the M-VaNSAS uses less energy than the current
situation (42.44%), and the makespan was reduced from 45.98 to 34.75 min. Moreover,
the average waiting time of a passenger and the average number of passengers that are
waiting in line was reduced by 78.57% and 79.36%, respectively. M-VaNSAS is the result of
considerable study, experimentation, and refining targeted at establishing the most efficient
and effective vertical transportation method to achieve a minimum waiting time, number



Mathematics 2023, 11, 1948 19 of 22

of waiting for passengers, energy utilized, and average makespan. It includes advanced
technology, efficient processes, or specialized skills and knowledge, such as the designed
lift booking application, IoT devices utilized as supporting tools to control the lift, and
so on. The current practice, on the other hand, was developed or occurred over time
without being subjected to a thorough review of its effectiveness. Such practices may be
based on customs, habits, or a lack of resources and they may fail to take advantage of
available technologies or information. Individuals can freely enter the waiting area; thus,
the number of passengers waiting is undoubtedly far greater than the booking system of
the produced software. When passengers utilize the program, their waiting time decreases
dramatically because they are advised of their approximate arrival time. The number of
people waiting has also fallen for the same reason. Since the effectiveness of M-VaNSAS to
manage the elevator is considerably greater than that of the existing technique, the average
makespan and energy required are reduced from those seen in current practice. Due to
the uncontrollable arrival time of the passengers, the elevator will halt on every floor and
must frequent the lowest floor. According to the newly produced system, the number of
people waiting in the lift’s waiting area is determined by the arrival time of people who are
notified by the developed system. Although the newly designed system will coordinate
the arrival time according to the lift’s operation schedule, the number of waiting for people
and the average waiting time of passengers in the new system will be significantly different
from the current practice. This explanation has also resulted in the newly created system’s
lifespan and the energy consumption being significantly lowered in comparison to current
practice.

5. Conclusions and Discussion

This study aims to address two major challenges that arise in the context of eleva-
tor operation: (1) the spread of epidemics, such as COVID-19, caused by long waiting
times resulting from a large number of waiting for customers; and (2) excessive energy
consumption due to the elevator usage patterns of various customers. The former is ad-
dressed through the development of a novel mobile application, while the latter is tackled
by implementing two innovative strategies: (1) optimizing elevator-stopping strategies
based on registered passenger information; (2) assigning passengers to elevators in a way
that minimizes the number of floors that the elevators need to stop at. The optimization
toolbox developed in this study integrates the mobile application with advanced search
algorithms to solve the complex problem of elevator scheduling and passenger assignment.
Specifically, the toolbox employs both exact methods and state-of-the-art metaheuristic
algorithms, such as the multi-objective variable neighborhood strategy adaptive search
(M-VaNSAS), to find the optimal method. The M-VaNSAS algorithm is a powerful tool
that can handle multiple objectives simultaneously and can explore different search spaces
efficiently. By integrating the mobile application with these advanced search algorithms,
this study provides a novel and effective approach to optimize elevator operations and
improve passenger experience, which is of great significance to the elevator industry and
urban transportation management.

To ensure the effectiveness of the proposed approach in solving the complex multi-
objective elevator scheduling problems, we designed and modified the multi-objective
variable neighborhood strategy adaptive search (M-VaNSAS) algorithm. To enhance the
search process, we incorporated various types of local search methods into the M-VaNSAS
algorithm. These methods include random-transit (RT), best-transit (BT), inter-transit
(IT), scaling factor (SF), differential scaling factor (DSF), and restart (RS), which allow the
algorithm to explore different search spaces and converge on the optimal solution efficiently.
The solutions obtained by the M-VaNSAS algorithm are then evaluated using the Pareto
front and TOPSIS concepts, which enable the selection of the most optimal solutions based
on their efficiency, accuracy, and robustness.

The results of the computational analysis demonstrate the superiority of the proposed
approach, which incorporates an even/odd floor strategy, over the conventional approach
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in terms of reducing both waiting time and energy consumption. Specifically, the proposed
method achieved a reduction of 42.44% in waiting time and 29.61% in energy consumption.
These results validate the effectiveness of the proposed approach and support its practical
application in elevator systems. Furthermore, the computational analysis demonstrates the
following findings:

(1) In terms of optimizing the elevator’s stopping strategy to minimize energy con-
sumption, strategy 2 outperforms strategy 1 by achieving an 11.2% improvement, while
both strategies have the same makespan.

(2) The proposed M-VaNSAS algorithm yields a 4.55% reduction in energy consump-
tion and a 29.61% reduction in makespans compared to the differential evolution (DE)
algorithm, due to the more efficient local search procedure employed.

(3) The application and M-VaNSAS result in a significant reduction in energy usage
by 42.44% compared to the current practice, along with a 78.57% and 79.36% reduction in
the average passenger waiting time and waiting for line, respectively. Additionally, the
proposed approach achieves a 24.42% reduction in makespan compared to the current
situation in the building.

Numerous categories of elevators exist, including hydraulic elevators, traction el-
evators, machine-room-less (MRL) elevators, gearless elevators, double-deck elevators,
and pneumatic elevators, which vary in their operating systems, energy usage rates, and
suitability for different building types. For instance, hydraulic elevators are suitable for
low-rise buildings, while traction elevators are appropriate for mid-rise and high-rise build-
ings. In this study, which focused on a building with 20–31 floors, traction elevators were
exclusively employed. Traction elevators, designed for high-rise buildings, are capable of
transporting passengers and goods swiftly and efficiently over long distances, thanks to
the employment of hoists comprising steel ropes or belts to move the elevator car up and
down the elevator shaft. This category of elevator typically boasts a high load capacity
and can accommodate large numbers of passengers at once. It is worth noting that the
mathematical model and M-VaNSAS suggested in this research can be utilized for other
types of elevators. The parameter set required may include the operating cost, travel speed,
and capacity of the elevators. Additionally, some constraints may be necessary, such as
the operating regulations of specific lift categories. This represents an interesting research
direction based on this study.

Many domains could be investigated in future studies to meet the goal of reducing
energy consumption and increasing the efficacy of vertical transportation systems. One
such path is to investigate the development and deployment of more capable and advanced
control systems for elevators and escalators. This could include using machine learning
algorithms to improve energy consumption and performance, as well as implementing
smart sensors and monitoring systems to detect and adapt to changes in usage patterns.
Another area of study might be the development of novel materials and technology for
more energy-efficient and sustainable elevators and escalators. For example, new materials
could be used to lower lift weight, leading to increased energy efficiency, or regenerative
braking systems could be introduced to capture energy during operation. Finally, studies
might focus on building design and construction to improve the performance of vertical
transit networks. Using computer simulations to analyze the flow of people through a
building and find areas where elevators and escalators could be placed most effectively to
minimize energy consumption and increase efficiency is one example.
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