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Abstract: Modern requirements dictate the need for sustainable transportation systems, given the
substantial growth in transportation activities over recent years that is predicted to persist. This
surge in transportation has brought about environmental concerns such as air pollution and noise. To
deal with this crisis, municipal administrations are investing in sustainable, reliable, economical, and
environmentally friendly transportation systems. This review examines the latest developments in
fuzzy decision systems for sustainable transport supplements. By reviewing the literature, we assess
the serviceability of the entire supply chain to maintain transport quality, remove degradation, and
meet customer demands. The link between fuzzy decision systems and supply chain serviceability
may not be immediately obvious, but there are many reasons why putting them together can be a
valuable focus for companies. By leveraging the capabilities of fuzzy decision systems to optimize
supply chain processes and improve service levels, companies can gain a competitive advantage and
better meet customer demand.

Keywords: sustainable transportation systems; fuzzy decision systems; supply chain; environmental
impact; customer demands
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1. Introduction

The transport sector has significantly affected the environmental, social, and economic
aspects of human life. The analysis and planning practices of transport policies that sup-
port sustainable development are called sustainable transport planning [1–3]. Sustainable
transportation systems are widely recognized to require the balance of current and fu-
ture transportation quality, environmental preservation, and economic development [4–6].
In other words, sustainable transport aims to bring a careful balance between pollution, en-
ergy consumption, and accidents while improving the city’s living and economic well-being
as well. This is the goal of a city’s sustainable transport [7,8]. In assessing transportation
sustainability, measures are described regarding linguistic variables characterized by ambi-
guity and multi-possibility. Consequently, conventional assessment methods cannot handle
such measurements efficiently and effectively [9]. Energy-efficient vehicles and clean fuel
vehicles, including biodiesel and electric cars, are just a few examples of sustainable trans-
portation methods. In 1997, the Center for Sustainable Transport defined a sustainable
transportation system as one that safely and consistently meets the primary access needs
of individuals and society, while also considering the health of humans and ecosystems
and promoting intergenerational equity. Other sustainable transportation methods include
carsharing, park and ride systems, and other environmentally friendly alternatives to tradi-
tional modes of transportation. Limiting emissions and waste based on the planet’s ability
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to absorb emissions recycles its components and minimizes land use, noise production,
and the use of non-renewable resources. Efficient decision-making methods are required
to identify, compare, and select sustainable transportation systems. Intelligent decision
making with real-time information processing is a valuable tool for companies to respond
to changing sustainable transport conditions quickly. Inspection of fuzzy approaches is
still underway in all this. This review aims to provide an overview of what has been done
in the field so far, focusing on fuzzy-based processes, their restrictions, and their potential.
Here, approaches based on fuzzy logic enter the picture. Fuzzy logic is a valuable tool for
dealing with ambiguity, vagueness, and uncertainty. Recently, a survey on the technologies
employed in modern decision systems for sustainable transport appeared, but some papers
use a fuzzy approach. Therefore, the present mini-review aims to complement the Fuzzy
Decision Systems for Sustainable Transport (FDSST) supplement. The remainder of the
current study is structured as follows. In Section 2, a review of the literature on briefs is
presented in this field. Section 3 offers commonly used approaches for sustainability assess-
ment models and issues. An outline of the literature review is shown in Table 1. Section 4
will cover a discussion of the pros and cons of three decision-making methods: Analytic
Hierarchy Process (AHP), Decision-Making Trial and Evaluation Laboratory (DEMATEL),
and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). Section 5
is devoted to fuzzy-based techniques for FDSST. The Section 6 anticipates an exploration
of fuzzy approaches against non-fuzzy approaches and the list of acronyms (see Table 2).
Criteria for evaluating the sustainability of transportation systems are shown in Table 3.
Section 7 covers the main discussion and perspectives of this research area. Following are
the conclusion remarks provided in Section 8.

Table 1. An outline of the literature review.

Authors Year Contribution Reference

Pourghasemi et al. 2012 Fuzzy theory and AHP [10]

Ligmann-Zielinska and Jankowski 2014 Monte Carlo simulation and AHP [11]

Razandi et al. 2015 ANP and frequency ratio [12]

Fan et al. 2016 Fuzzy theory and AHP [13]

Rajak et al. 2016 Fuzzy theory [14]

Ha et al. 2017 Fuzzy theory and TOPSIS [15]

Ghorbanzadeh et al. 2018 Geographic information system and ANP [16]

Prasetyo et al. 2018 Fuzzy theory and AHP [17]

Chen et al. 2018 Fuzzy theory and AHP [18]

Grošelj and Zadnik Stirn 2018 Fuzzy Theory and AHP [19]

Ghorbanzadeh et al. 2018 ANP and Monte Carlo simulation [20]

Nazmfar et al. 2019 Fuzzy theory and ANP [21]

Moslem et al. 2019 Fuzzy AHP [22]

Awasthi and Omrani 2019 Fuzzy axiomatic design [23]

Cabrera-Barona and Ghorbanzadeh 2019 Interval Calculus and AHP [24]

Moslem et al. 2019 Fuzzy AHP and interval AHP [25]

Tsang et al. 2020 Life cycle prediction based on fuzzy products [26]

Pamucar et al. 2021 Neutrosophic fuzzy based measurement alternative options and
ranking according to compromise solution

[27]
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Table 1. Cont.

Authors Year Contribution Reference

Ziemba 2021 Fuzzy TOPSIS, Fuzzy Simple Additive Weighting Method (SAW),
and fuzzy preference ranking organism method for enrichment
assessment

[28]

Zhang et.al. 2020 MAGDM fuzzy multi-granulation probabilistic models [29]

Table 2. List of acronyms.

Acronym Definition

AHP Analytic Hierarchy Process

AIM Assessment indicator models
AI Artificial Intelligence

ANP Analytic Network Process

BMW Best-Worst Method

CBA Cost-benefit analysis

CEA Cost-effectiveness analysis

DEMATEL The Decision Making Trial and Evaluation Laboratory

EIA Environmental Impact Assessment

FDSST Fuzzy Decision Systems for Sustainable Transport

FAHP Fuzzy Analytic Hierarchy Process

AIM Assessment indicator models

LCA Life Cycle Analysis

OM Optimization Model

MADM Multiple Attribute Decision Making

MCDM Multi-Criteria Decision Making

MAVT Multi-Attribute Value Function Theory

MAUT Multi-Attribute Utility Function Theory

SDM System Dynamics Model

TOPSIS Technique for Order of Preference by Similarity to Ideal Solution

Table 3. I (cost), II (benefit). Criteria for evaluating the sustainability of transportation systems.

Criteria Definition Category

Operating costs Costs to administer the transport service for the service I

Safety Safety of transportation system II

Security Reliability of the transportation system II

Reliability Ability to perform the assured service accurately II

Air pollutants Transportation system’s air pollution II

Noise Transportation system’s environmental noise II

GHG emissions GHG emissions from the transportation system II

Usage of fossil fuels Use of hydrocarbon-containing material II

Travel costs Costs for travel between any given stations II
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Table 3. Cont.

Criteria Definition Category

Waste from road transport Waste from transport on roads II

Energy consumption Energy consumption by the transportation system II

Land usage Land space used for running the transportation service II

Accessibility Access to residential areas I

Benefits to economy Benefits to the economy from the transportation model I

Competency State-of-the-art technology I

Equity Equal opportunity for dissimilar people I

Possibility of expansion Capacity to expand the service if required I

Mobility Ability to service over the transportation area I

Productivity Ability to achieve thresholds I

Rate of occupation Capacity usage of transportation mode I

Share in public transit Public transport’s share I

Convenience to use Satisfaction in using the service of transport I

Quality of service Quality of service supplied by the transportation staff I

2. Literature Review

Up to now, several research studies have been dedicated to developing principles,
definitions, and evaluations of sustainable transportation [30–32]. Furthermore, a barrier as-
sessment to achieving sustainable transportation has been offered in [33,34]. Richardson [6]
proposed a framework to interact with the factors that influence indicators of the sustain-
ability of transport. In [35], four critical pillars are defined for sustainable transportation,
including effective land use and transportation; financial considerations; infrastructures;
and interaction between neighborhoods. Black and Sato [36] investigated the effects of
global warming and other factors that make transport unsustainable, including injuries and
deaths from vehicle incidents, air quality problems, and depletion of petroleum resources.
Bongardt et al. [37] reviewed the key challenges in the transport sector and the existing
set of sustainable roles to address them [37]. In their study, Boschmann and Kwan [38]
conducted a review of research on social sustainable urban transportation (SSUT) and
concluded that urban transportation has a significant impact on achieving social sustain-
ability in urban areas, including issues related to social justice, social exclusion, and overall
quality of life. Castillo and Pitfield [39], on the other hand, developed a framework to aid in
selecting a small subset of indicators for sustainable transportation. Lastly, Shay and Khat-
tak [40] classified and discussed a range of transportation-related tools and strategies across
several domains, including finance, technology, policies, and social groups. Rajak et al. [14]
proposed a fuzzy approach to assess the sustainability performance of urban transporta-
tion by considering 60 attributes. Considering geographically based socioeconomic data
and demand flow, Ignaccolo et al. [41] offered a methodology to assess an indicator of
’transportation energy dependence’ of an urban area. Industry [4] prepared the context for
cyber-physical systems. Within cyber-physical systems, a priority is developing smart cities
that have as one of their goals sustainable transport. Cyber-physical systems also suppose
the development of a digital twin, a cyber representation of the physical system that must
be controlled. The models presented in this paper help the decision-making process in
sustainable transportation, being useful in the cyber representation of the transportation
specific to a smart city. This fits with the process of achieving complete autonomy. AHP
is an effective way to solve complex decision problems. As a pioneer study, fuzzy AHP
has been conducted in [42], where fuzzy ratios are described and compared by triangular
membership functions. The Decision Making Trial and Evaluation Laboratory (DEMATEL)
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is considered a methodical method to identify the cause–effect relationship of multiplex
systems and was first introduced in [43].

In the real world, multi-attribute group decision making (MAGDM) and granular
computing (GrC) are complicated cognitive processes that involve presentation, fusion,
and analysis of multi-source uncertain information [29,44,45]. GrC is a soft computing tool
that efficiently handles multi-source uncertain information. Still, it often needs more con-
vincing semantic interpretations for MAGDM due to information fusion rules and analysis
mechanism instability. The proposed approach in [29,45] uses a GrC framework called
multi-granulation probabilistic models to construct MAGDM-oriented models that use dual
hesitant fuzzy (DHF) information. The approach is designed using the MULTIMOORA
method and is applied in the context of person–job (P–J) fit.

A fuzzy decision system is a mathematical model that uses fuzzy logic to make
decisions based on uncertain or vague data. It is commonly used in decision-making
situations where traditional binary logic may not be sufficient to represent the complex
relationships and uncertainties involved. On the other hand, supply chain serviceability
refers to the ability of a supply chain to meet customer demand for a product or service
while maintaining certain levels of efficiency and cost-effectiveness. There are several
ways in which fuzzy decision systems can be used to improve supply chain serviceability.
For example:

1. Demand forecasting: Fuzzy decision systems can be used to forecast product demand,
taking into account factors such as seasonality, customer preferences, and market
trends. This can help supply chain managers plan production and inventory levels
more accurately, improving serviceability by ensuring that products are available
when customers need them.

2. Inventory management: Fuzzy decision systems can be used to optimize inventory
levels based on factors such as lead time, demand variability, and cost. This can help
to reduce stockouts and overstocking, which can both have a negative impact on
serviceability.

3. Supplier selection: Fuzzy decision systems can evaluate potential suppliers based
on various criteria, such as quality, reliability, and cost. This can help supply chain
managers make more informed decisions about which suppliers to use, improving
serviceability by ensuring that high-quality materials and components are delivered
on time.

Overall, fuzzy decision systems can help to improve supply chain serviceability by
providing more accurate and reliable decision-making tools in situations where traditional
binary logic may not be sufficient.

3. Commonly Used Approaches for Sustainability Evaluation: Models and Issues

The techniques commonly used for evaluating sustainability can be categorized into
the following groups:

• Life cycle analysis (LCA) was initially developed for evaluating industrial processes
but has increasingly been used to assess the environmental impact of transportation
systems [46]. The core concept of LCA is to combine a range of criteria, such as
polluting emissions and resource usage, into a few metrics that reflect the overall
impact of the system over its entire life cycle. The method has undergone significant
efforts to standardize impact assessment and interpretation of the results.

• Cost–benefit analysis (CBA) and cost-effectiveness analysis (CEA) are based on consid-
ering the budgetary equivalent of all positive and negative effects of a business project.
Cost-effectiveness analysis is used when the value of the project is unmeasurable
economically or when a degree of realization of the achieved result is given. With the
CBA and CEA [47] approaches, it is challenging to quantify external and social costs
directly (e.g., air pollution, noise pollution, accidents, congestion, and fuel costs).

• Environmental impact assessment (EIA) is a method designed to evaluate the eco-
logical impact of new localized polluters, such as industries or highways, and their
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surrounding areas [48–50]. When applied to transportation, EIA is utilized to investi-
gate the environmental effects of specific transportation methods.

• Optimization models (OM) are mathematical models that consist of an objective
function and a set of constraints represented in an equation or inequality network.
Linear programming is commonly used to find an optimal solution that aligns with
social, economic, and environmental objectives. An example of the application of OM
in urban transport can be found in [51].

• System dynamics models (SDM) are used to model complex systems by representing
the dynamics of the system. These models show the relationships between system
elements over time through stocks, flows, and a feedback mechanism.

• Assessment indicator models (AIM) use indicators to assess the sustainability of
transportation systems. These models can be classified into composite index models
and multi-dimensional matrix models. Composite index models output a single index
that represents the degree of satisfaction with economic, social, and environmental
objectives. Examples of these models include ecological footprint and green gross
national product. However, it is difficult to obtain a single universal composite index
for sustainable transportation.

• Data analysis is a category of models that involves using statistical data and applying
techniques such as surveys, hypothesis testing, and structural equation modeling to
investigate sustainable transportation systems.

• Multi-Criteria Decision Analysis (MCDA) comprises various methods such as Multi-
Attribute Value Function Theory (MATT), Multi-Attribute Utility Function Theory
(MAUT), and Analytic Hierarchy Process (AHP). These methods offer a framework for
integrating information from different disciplines to support decision making. MCDA
has found numerous applications in the management environment for selecting the
best alternative from a set of options. However, as multiple criteria are often involved,
there is no single optimal solution. Therefore, trade-offs and compromises must be
made to maximize the benefits of multiple criteria.

4. AHP, DEMATEL, TOPSIS, and Their Applications

The existing methods can be categorized based on the role of the methods in either cal-
culating the weight of criteria or prioritizing alternatives. Pairwise comparison weighting
methods are used to calculate the relative importance or weight of different criteria, while
distance-based ranking methods are used to rank or prioritize different alternatives based
on their similarity or distance to an ideal solution. AHP and DEMATEL are both pairwise
comparison weighting methods. AHP is used to derive weights of criteria and alterna-
tives through a pairwise comparison of criteria and alternatives against a common goal.
On the other hand, DEMATEL is used to evaluate the interrelationships between criteria
and identify the key criteria that have the most significant impact on the decision-making
process. TOPSIS is a distance-based ranking method used to rank alternatives based on
their closeness to the ideal solution. In summary, AHP and DEMATEL are weighting
methods, while TOPSIS is a ranking method. Each method has its strengths and limitations,
and the choice of appropriate method depends on the specific decision-making context
and the decision-maker’s preferences. In this section, AHP, DEMATEL, and TOPSIS are
investigated, and in the next section, the fuzzy versions of these methods are studied.

4.1. AHP

AHP decomposes complex problems into several subproblems using hierarchical
levels, each of which embodies a set of criteria or attributes relative to each subproblem.
In this kind of multicriteria analysis method, the relative importance of several relevant
characteristics is represented based on an additive weighing process. Through a paired
comparison process, the extent of several features is determined. However, the AHP
model suffers from various deficiencies [52]. The AHP is applicable in nearly crisp in-
formation decision applications; it makes and deals with a poorly balanced judgment
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scale; the uncertainty associated with human mapping judgment into a natural language
is not considered in the AHP method; the classification of the AHP method is somewhat
imprecise, and the results of the AHP are considerably affected by selection based on
the preferences of the decision-maker [53]. To remedy some of these problems, the fuzzy
theory has been integrated with AHP to improve uncertainty [54]. In recent research [25],
the authors applied a methodology using the FAHP approach to assess the sustainability
of the transportation system in Mersin city. The FAHP approach allowed for the use of
fuzzy numbers in pairwise comparisons of stakeholders, including users, potential users,
and decision-makers. The decision-makers, who were experts in the transportation field
and officials in the Mersin municipality, established a hierarchy tree to compare the main
three criteria and 21 sub-criteria. The resulting scores from the FAHP were aggregated
using the geometric mean approach and prioritized.

Apart from AHP, other methods have been developed, such as the Analytical Network
Process (ANP) method, which is a generalization of AHP. ANP can evaluate the interre-
lations and influences between the elements that make up the decision-making process
and has been shown to provide excellent results when decision alternatives and criteria are
strongly correlated [55,56].

4.2. DEMATEL

Although ANP allows us to assess influence and interdependence, it is sometimes not
understandable by decision-makers. As a result, DEMATEL begins to play an important
role. DEMATEL is a valuable technique that aims to develop and analyze a structural
model based on causal relationships between complicated factors. It depicts a fundamental
concept of textual relationships among the system’s elements. DEMATEL is able to clearly
understand the cause–effect relationship in a wide variety of problems [57]. Compared
to AHP and ANP, DEMATEL, by examining elements in cause and effect relationships,
provides a better understanding of influences [58,59]. Even though DEMATEL is a valuable
and practical technique for evaluating problems, in this process of establishing a structural
model, the interactions of the components of the system are generally given by crisp values.
However, because in real-world applications evaluation criteria are integrated through
uncertain factors, crisp values are inadequate. In other words, conveying human judgment
about preferences using exact numerical values will result in inaccurate estimations and
conclusions. One way to handle uncertainties is to apply fuzzy theory to the DEMATEL
method; motivated by this, many researchers in this field of study have developed a fuzzy
DEMATEL method to solve various problems [60–63].

4.3. TOPSIS

The multicriteria decision analysis method, known as the Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS), was initially developed by Hwang
and Yoon in 1981. Hwang, C.L. and Yoon, K. (1981), Multiple Attribute Decision-Making
Methods and Application. New York: Springer-Verlag, with further developments in 1993.
The advantages of TOPSIS are simplicity of use, consideration of distances to an ideal
solution, and universality. The traditional TOPSIS model has some main disadvantages
such as correlations between criteria, uncertainty in obtaining the weights using only
objective or subjective methods, and the possibility of an alternative being close to the ideal
point and the nadir point simultaneously [64]. To address these issues, several versions of
TOPSIS have been proposed in the literature.

4.4. Advantages and Disadvantages of AHP, DEMATEL, and TOPSIS

In Table 4, pros and cons of this methods are summarized and mentioned. However,
it is important to note that the comparison between these methods should not be based
solely on their roles in MCDM but also on their ability to handle different types of data and
decision-making scenarios. For instance, while DEMATEL is useful in identifying causal
relationships, it may not be appropriate for situations where there are many criteria and
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alternatives. Similarly, while TOPSIS is effective in ranking alternatives, it may not be ap-
propriate for situations where there are complex relationships between criteria. Ultimately,
the choice of method should be based on the specific needs of the decision-making problem
at hand.

Table 4. Pros and cons of AHP, DEMATEL, and TOPSIS Methods.

Method Pros Cons

AHP

• Simple to understand and use
• Can handle complex decision-

making problems with multiple
criteria

• Provides a systematic approach
to prioritize alternatives

• Requires the use of pairwise com-
parisons, which can be time-
consuming and subject to bias

• Does not account for interactions
between criteria

• The results can be sensitive to the
input data and decision-makers’
preferences

DEMATEL

• Accounts for interactions be-
tween criteria

• Provides a visual representation
of the problem structure

• Can handle both qualitative and
quantitative data

• Requires the use of expert knowl-
edge to define the causal relation-
ships between criteria

• Can be difficult to interpret the
results

• The number of iterations needed
to achieve convergence can be
high

TOPSIS

• Accounts for both positive and
negative deviations from the
ideal solution

• Provides a simple and intuitive
way to rank alternatives

• Can handle both quantitative
and qualitative data

• Assumes that the criteria are
equally important and indepen-
dent

• Does not account for interactions
between criteria

• The results can be sensitive to the
choice of weights and the normal-
ization method

5. Fuzzy Based Techniques: State of the Art

In the context of FDSST, sustainability issues were tackled using fuzzy techniques as
described in [48], where the implementation of sustainable initiatives was investigated.
The primary decision-making techniques used to solve transport selection problems, includ-
ing those in other sectors, are the fuzzy Analytical Hierarchy Process (FAHP) and Fuzzy
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [65]. However,
like other methods, these have their pros and cons, as outlined in [15]. The process of
analytical hierarchy is considered one of the most robust decision-making methodologies,
developed by Saaty in the 1980s to simplify complex decision-making problems [66]. AHP
is based on an additive weighting process that represents several relevant criteria by their
correlative importance. AHP has been extensively applied in various areas and prob-
lems, particularly in engineering fields such as transport engineering [67,68], construction
engineering, accuracy evaluation, and many other engineering fields [69–71]. However,
AHP has limitations, which researchers have attempted to overcome by integrating fuzzy
theories to improve its results [18,72].

Fuzzy logic and fuzzy set theory are used to mimic human reasoning and deal with un-
certainty and imprecise knowledge in decision making [73]. Unlike Boolean logic, where an
element is either true or false, fuzzy logic assigns a degree of truth between 0 and 1. This al-
lows each element to also belong to its complement to a certain degree, which makes it more
flexible and realistic [74]. Fuzzy sets were introduced by Zadeh to handle vague concepts
precisely, and they have been successfully applied to complex problems in various fields
due to their ability to handle vagueness [74]. When mapping out criteria based on their
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importance in a decision-making problem, decision-makers’ perceptions are the primary
source, and these perceptions can be represented using linguistic variables. To quantify
these perceptions, a fuzzy set is needed along with its respective membership function.

To calculate the relative closeness of each alternative to the ideal solution, TOPSIS
uses a similarity measure, which can be the Euclidean distance or the Manhattan distance.
The alternatives are then ranked based on their relative closeness to the ideal solution. One
of the advantages of TOPSIS is that it is a simple and easy-to-use method that can handle
both quantitative and qualitative criteria. However, as mentioned earlier, there are some
limitations to the traditional TOPSIS method, which have led to the development of various
modified versions of the method in the literature.

Additionally, one of the advantages of Fuzzy AHP over Fuzzy TOPSIS is that Fuzzy
AHP allows for the allocation of weights to the criteria using both objective and subjective
methods. This helps to address the uncertainty in obtaining weights in a more comprehen-
sive manner. However, Fuzzy AHP also has some limitations, such as the assumption of
independence between criteria, which may not always hold in real-world decision-making
problems. Another disadvantage of Fuzzy AHP is that it requires pairwise comparison
between criteria, which can be time-consuming and complex (Figure 1).
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Figure 1. Comparison of the scores derived from FAHP for the first level of decision elements.

The FAHP approach was used as a technique in [25] to apply the TOPSIS model in
the city of Mersin. The FAHP approach allowed the hierarchical analysis to be ’fuzzified’
by incorporating fuzzy numbers in the pairwise comparisons (PC) conducted by collabo-
rators such as users, potential users, and decision-makers. The hierarchical tree included
three main criteria and twenty-one sub-criteria, and the data were collected through PC.
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The geometric mean approach was then used to aggregate the analyzer responses, and the
final scores were compiled and prioritized.

6. Fuzzy Decision-Making Techniques

This section begins with an overview of the different fuzzy structures that can be used
in decision-making techniques, followed by a discussion of the fuzzy versions of the three
techniques mentioned earlier.

6.1. Choice of Fuzzy Structure

The choice of fuzzy structure depends on the specific characteristics of the decision
problem and the quality of data available [75]. Triangular and trapezoidal fuzzy structures
are suitable for representing imprecise or vague data, where the degree of membership
of an alternative to a criterion is represented by a triangular or trapezoidal membership
function [76,77]. Spherical and ellipsoidal fuzzy structures are useful for dealing with more
complex and uncertain data, where the degree of membership is represented by a spherical
or ellipsoidal membership function [78]. The selection of the appropriate fuzzy structure
for a specific problem requires careful consideration of the problem characteristics and the
available data. In general, triangular and trapezoidal fuzzy structures are preferred for
decision problems where the data are relatively simple and the degree of uncertainty is
low, while spherical and ellipsoidal fuzzy structures are more suitable for complex decision
problems with high levels of uncertainty and ambiguity. The choice between different fuzzy
structures should be based on the specific requirements and constraints of the decision
problem, as well as the available data and the degree of uncertainty involved. Below is a
list of the advantages and disadvantages of each fuzzy set.

Advantages of Triangle Fuzzy Sets:

• Simplicity: Triangle fuzzy sets are simple to understand and easy to work with. They
only require three parameters to define their shape: the left edge, the peak, and the
right edge.

• Intuitive interpretation: The triangular shape of the membership function is intuitive
and can be easily understood by non-experts.

• Useful for modeling gradual change: Triangle fuzzy sets are useful for modeling gradual
change in a system, such as temperature or humidity levels.

Disadvantages of Triangle Fuzzy Sets:

• Limited flexibility: The triangular shape is restrictive and may not be suitable for
modeling complex or nonlinear systems.

• Limited accuracy: The triangular shape may not accurately capture the degree of
membership of an element in the set, especially if the shape of the data distribution is
not triangular.

Advantages of Spherical Fuzzy Sets:

• Flexibility: Spherical fuzzy sets can take on any shape, making them more flexible for
modeling complex and nonlinear systems.

• Higher accuracy: The spherical shape can accurately capture the degree of membership
of an element in the set, even for non-triangular data distributions.

Disadvantages of Spherical Fuzzy Sets:

• Complexity: Spherical fuzzy sets require more parameters to define their shape, which
can make them more difficult to work with.

• Less intuitive interpretation: The spherical shape is less intuitive than the triangular
shape, which may make it more difficult for non-experts to understand.

While each setting has its own advantages, as mentioned above, the current study
focuses specifically on triangle fuzzy sets. In the following, Fuzzy AHP, Fuzzy DEMATEL,
and Fuzzy TOPSIS based on triangle fuzzy sets are delineated.
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6.2. Fuzzy AHP

Fuzzy Analytic Hierarchy Process (Fuzzy-AHP) is a decision-making tool for various
problems. Fuzzy AHP appeared in [42] for the first time, which compared fuzzy ratios
described by triangular membership functions. As mentioned in Section 6.1, the choice of
fuzzy set and membership function can have a significant impact on the results. For ex-
ample, in the case of AHP, variants such as the triangular fuzzy AHP and the spherical
fuzzy AHP use different types of membership functions and calculation procedures, re-
sulting in different weights for criteria and rankings for alternatives. The triangular fuzzy
AHP [79] assigns triangular membership functions to each criterion, while the spherical
fuzzy AHP [80] assigns spherical membership functions. The choice of membership func-
tion can have implications for the sensitivity of the method to changes in input values,
as well as the robustness of the results. Thus, it is important to carefully consider the
choice of fuzzy set and membership function when integrating fuzzy theory with MADM
methods. Here, we continue with triangular membership functions. Let Ci = {c1, . . . , ci}
be the set of criteria and P = [P̂ij] be the pairwise comparison matrix.

P̂ij =


P̂11 · · · P̂1n

...
. . .

...
P̂n1 · · · P̂nn

 (1)

The method follows the following steps.

• step 1 Compute Fk = (Fk,l , Fk,m, Fk,u) values for each row as follows:

Fk =
n

∑
j=1

Pkj × [
n

∑
i=1

n

∑
j=1

Pij]
−1 f or k = 1, . . . , n; (2)

• step 2 The following equations will determine the degree of possibility of Fk ≥ F′k and
k 6= k′. Let F1 = (F1,l , F1,m, F1,u) and F2 = (F2,l , F2,m, F2,u), then:{

D(F1 ≥ F2) i f F1,m ≥ F2,m

D(F1 ≥ F2) =
F1,u−F2,l

(F1,u−F2,l)+(F2,m−F1,m)

(3)

• step 3 Calculate the weight of the criteria by

W ′(ci) = min{D(Fi ≥ Fk)} k = 1, . . . , n and k 6= i. (4)

and arranged in a vector;

W ′ = [W ′(c1), . . . , W ′(cn)] (5)

• step 4 Compute the normalized weight.

Wi =
W ′(ci)

∑n
i=1 W ′(ci)

. (6)

6.3. Fuzzy DEMATEL

Decision-Making Trial and Evaluation Laboratories (DEMATELs) are considered
effective methods to identify the causes and effects of complex systems. These are efficient
methods. Additionally, they are used to assign importance weights to each variable. If a
problem consists of n criteria, C = {C12, . . . , Cn}, by following the steps, we can calculate
the weights of each criterion by DEMATELs.
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• step 1 The pairs of criteria that influence the matrix are as follows.

ÎPkh =


ÎP11 · · · ÎP1n

...
. . .

...
ÎPn1 · · · ÎPnn

 (7)

• step 2 Normalizing the IP influence matrix by equation and obtaining the NP normal-
ized influence matrix:

N̂Pkh =


N̂P11 · · · N̂P1n

...
. . .

...
N̂Pn1 · · · N̂Pnn

 (8)

where, N̂Pkh = ÎPkh
R̂

= (
ÎPkh,l

R̂l
, ÎPkh,m

R̂m
, ÎPkh,u

R̂u
) and

R̂ = (max( ÎPkh,l), max( ÎPkh,m), max( ÎPkh,u)).

• step 3 Obtain the fuzzy matrix of the total relation Û by:

Ûkh = lim
w→∞

(N̂P
1
kh + N̂P

2
kh + · · ·+ N̂P

w
kh) =

N̂Pkh(1− N̂Pkh)
−1

(9)

where Ûkh is a fuzzy number;

Ûkh =


Û11 · · · Û1n

...
. . .

...
Ûn1 · · · Ûnn.

 (10)

• step 4 Computing the sum of rows and columns of the total relation matrix and calling
them D̂iandR̂i.

• step 5 Obtaining the weights ŵi = (wi,l , wi,m, wi,u) through

wi,l =
√
(D̂i,l + R̂i,l)2 + (D̂i,l − R̂i,l)2 (11)

wi,m =
√
(D̂i,m + R̂i,m)2 + (D̂i,m − R̂i,m)2 (12)

wi,u =
√
(D̂i,u + R̂i,u)2 + (D̂i,u − R̂i,u)2 (13)

• step 6 Defuzzification of fuzzy weights using the equation:

wi =
wi,l + 2wi,m + wi,u

4
. (14)

6.4. Fuzzy TOPSIS

The fuzzy TOPSIS approach involves fuzzy assessment evaluations of the criteria and
alternatives in TOPSIS (Hwang and Yoon et al., 1981). The TOPSIS approach chooses the
option that is closest to the positive ideal solution and farthest from the negative perfect
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solution [81]. Positive ideal solutions are made up of excellent performance values for each
criterion, and negative ideal solutions are made up of the worst performance values.

• step 1 Rating assignments to criteria and alternatives. Assume that there are possi-
ble alternatives called A = {A1, · · · , Aj} that will be assessed against the n criteria
B = {B1, · · · , Bn}. The weights of the criteria are indicated by W = {w1, · · · , wm}.
The performance grading of each decision maker Dk(k = 1, 2, · · · , p) for each al-
ternative Aj(j = 1, 2, · · · , n) with respect to criteria C are denoted by R̂k = x̂ijk,
(i = 1, · · · , m, j = 1, · · · , n, k = 1, · · · , p) with the membership function µR̂k(x).

• step 2 The total fuzzy rating is calculated and computed for criteria and alternatives.
If the fuzzy rating of all decision makers is described as a triangular fuzzy number
R̂k = (xk, yk, yk), k = 1, · · · , p, then the total fuzzy rating is given by R̂ = (x, y, z),
k = 1, 2, · · · , p, where

x = min
k
{xk}, y =

1
p

p

∑
k=1

yk, z = max
k
{zk}.

If the fuzzy rating and importance weight of the kth decision maker are x̂ijk =
(xijk, yijk, zijk) and ŵijk = (wjk1, wjk2, wjk3), i = 1, · · · , m, j = 1, · · · n, respectively, then
the aggregated fuzzy rating (x̂ij) of alternatives with respect to each criterion is given
by x̂ij = (xij, yij, zij), where

xij = min
k
{xijk}, yij =

1
p

p

∑
k=1

yijk, zij = max
k
{zijk}. (15)

The aggregated fuzzy weights (ŵij) of each criterion are calculated as ŵj = (wj1, wj2, wj3),
where

wj1 = min
k
{wjk1}, wj2 =

1
p

p

∑
k=1

bjk2, wj3 = max
k
{wjk3}. (16)

• step 3 Determine the fuzzy decision matrix. The fuzzy decision matrix for alternatives
(D̂) and criteria (ŵ) is constructed as follows:

D̂ =

 x̂11 · · · x̂1n
...

. . .
...

x̂m1 · · · x̂mn

 (17)

i = 1, . . . , m; j = 1, . . . , n, ŵ = (ŵ1, · · · , ŵn).
• step 4 Normalization of the fuzzy decision matrix. By using linear scale transformation,

the raw data can be normalized to various criteria scale. The normalized fuzzy decision
matrix N̂ is given by:

N̂ = [n̂ij]m×n, i = 1, · · · , m, j = 1, · · · , n, (18)

where
n̂ij = (

xij

z∗j
,

yij

z∗j
,

zij

z∗j
) (19)

and c∗j = maxi{cij}, (benefit)

n̂ij = (
x−j
zij

,
x−j
yij

,
x−j
xij

) (20)

and x−j = mini{xij}, (cost criteria)

• step 5 Compute the weighted normalized matrix. The weighted normalized matrix V̂
for the criteria is calculated by multiplying the weights (ŵj) of the evaluation criteria
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with the normalized fuzzy decision matrix n̂ij V̂ = [v̂ij]m×n, i = 1, . . . , m, j = 1, . . . , n,
where v̂ij = n̂ij.ŵj.

• step 6 Determine the ideal fuzzy positive and negative solutions. These are computed
as follows: A+ = (v̂1

+, v̂2
+, . . . , v̂n

+) where

v̂j
+ = max

i
vij3, i = 1, . . . , m, j = 1, . . . , n. (21)

A− = (v̂1
−, v̂2

−, . . . , v̂n
−)

v̂j
− = min

i
vij1, i = 1, . . . , m, j = 1, . . . , n. (22)

• step 7 Compute the distance of each alternative from positive and negative solutions.
The distance (d+, d−) of each weighted alternative i = 1, . . . , m is calculated as follows:
d+i = ∑n

j=1 dv(v̂ij, v̂+j ), i = 1, . . . , m, d−i = ∑n
j=1 dv(v̂ij, v̂−j ), i = 1, . . . , m, where dv(â, b̂)

is the distance measurement between two fuzzy numbers â and b̂.
• step 8 Compute the closeness coefficient (CCi) of each alternative. The closeness

coefficient CCi represents the distances between the fuzzy positive ideal solution (A−)
and the fuzzy negative ideal solution (A+) simultaneously. The closeness coefficient

of each alternative is calculated as: CCi =
d−i

d−i +d+i
, i = 1, . . . , m.

• step 9 The different alternatives are ranked according to the closeness coefficient (CCi)
in decreasing order. The best choice is closest to the positive and farthest from the
negative.

6.5. Hybrid Fuzzy Approaches

The trend of integrating or combining classical MADM methods has become more
popular in recent studies. This approach has been shown to increase the effectiveness and
accuracy of decision-making processes. For instance, the combination of DEMATEL and
TOPSIS has been utilized to determine the weight of criteria and rank alternatives in a
variety of decision-making contexts [82–84]. Another combination that has been explored
is AHP and DEMATEL. This integration has been used to calculate the importance of
criteria and to identify the causal relationships between criteria [85–87]. Additionally,
the combination of AHP and TOPSIS has also been studied, which allows for the calculation
of criteria weights and alternative ranking simultaneously [88,89]. Overall, the integration
or combination of classical methods provides a more comprehensive approach to decision-
making and should be considered in future MADM research.

7. Discussion and Future Directions

To summarize the literature review, Fuzzy TOPSIS is generally more agile than Fuzzy
AHP in the decision-making process, except for situations with few criteria and suppli-
ers. However, Fuzzy TOPSIS lacks the ability to integrate requirements into sub-criteria,
which limits its use in supplier selection. Fuzzy AHP has a lower time complexity, but the
advantage is reduced if a decision matrix consistency test is performed. Fuzzy decision-
making techniques are commonly used for FDSSTs due to their complexity and uncertainty,
and fuzzy set theory is well-suited for solving problems in uncertain environments. How-
ever, there is a lack of comparison between fuzzy and classical techniques in the FDSST
domain. In most fuzzy controllers, trial and error are considered a stable structure. Apply-
ing self-regulated fuzzy structures and efficient training algorithms requires more research.
The number of publications dealing with the design of Type-2 fuzzy systems has recently
increased significantly. Since Type-2 fuzzy systems are stronger than their Type-1 counter-
parts, this trend could continue in the future [90–102]. On the contrary, research studies
on type-2 fuzzy sustainable transport are rare. From this point of view, the advantages
of type-2 fuzzy engines are completely ignored in sustainable transportation applications.
Therefore, an open direction in this field is to study the application of type-2 fuzzy systems
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for sustainable transportation. Figure 2 displays the hierarchical structure of the supply
quality criteria in relation to public bus transportation. To automatically implement fuzzy
systems, research should focus on using bioinspired algorithms to find optimal values of
membership functions and the number of alpha planes. Some recent studies have explored
the use of artificial neural networks in sustainable transport systems, but combining them
with fuzzy systems can lead to complex and challenging results. It is recommended to use
combinations of both approaches to enhance sustainable transport systems. Additionally,
more applications of fuzzy techniques at the data-driven model level are needed to im-
prove decision-making and productivity, although challenges related to data storage and
collection may arise.

Quality

Transport 

Adjustability

Safety Service 

ReliabilityDirectnessApproachability

Detectable

Insrtuctivity

Transparency

Time
availability Speed

Figure 2. The hierarchical architecture of the supply quality in public transport [68].

To achieve sustainable transportation, several strategies can be adopted, including:

• Promoting the use of public transportation: Encouraging people to use buses, trains,
and subways instead of private cars can reduce congestion, air pollution, and car-
bon emissions. Governments can also invest in expanding public transportation
infrastructure to improve its accessibility and convenience.

• Encouraging cycling and walking: Encouraging people to cycle or walk instead of
driving can reduce greenhouse gas emissions, improve public health, and reduce
traffic congestion. Governments can invest in building cycling and walking paths,
improving pedestrian infrastructure, and creating incentives for people to use these
modes of transportation.

• Promoting electric vehicles: Electric vehicles emit fewer greenhouse gases than tradi-
tional gasoline-powered vehicles. Governments can incentivize people to purchase
electric cars and invest in charging infrastructure to support their use.

• Implementing smart mobility solutions: Smart mobility solutions such as car-sharing,
ride-sharing, and on-demand public transportation can improve accessibility and
reduce the need for private cars. Governments can also invest in intelligent transporta-
tion systems to improve traffic flow and reduce congestion.

• Adopting sustainable urban planning: Sustainable urban planning can reduce the
need for transportation by creating mixed-use developments that integrate residen-
tial, commercial, and recreational areas. This can reduce the need for long-distance
commuting and promote sustainable transportation modes.

The future of sustainable transportation will require a combination of these strategies
and others that emerge as technology advances. For example, autonomous vehicles may
reduce traffic congestion and improve safety, but their environmental impact and impact on
urban form still need to be made clear. Additionally, using renewable energy sources such
as solar, wind, and geothermal for transportation may become more prevalent. To ensure a
sustainable transportation future, governments, businesses, and individuals must work
together to reduce the negative impacts of transportation on the environment, economy,
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and society. This will require policy and regulatory changes, investment in sustainable
infrastructure, and a shift towards more sustainable modes of transportation.

8. Conclusions

Up to now, many researchers have tried to develop decision algorithms for sustainable
transportation. The current study includes a review of essential studies applying fuzzy
decision systems for sustainable transport. In this regard, the role of decision systems in
sustainable transportation was investigated, including the most critical steps taken to date,
their limits, and their potential to solve the most vital problems and issues. The present
models and commonly used approaches for sustainability evaluation were delineated.
Then, fuzzy-based techniques for FDSST were investigated. Finally, a discussion of existing
fuzzy methods against non-fuzzy practices was presented, and possible future directions
were listed. Our literature review illustrates many areas for improving the fuzzy decision
algorithm applied to sustainable transportation. The focus of the current study was on
AHP, DEMATEL, and TOPSIS methods due to their widespread usage and popularity in
the MCDM literature. These methods have been extensively researched and applied in
various fields, demonstrating their effectiveness in decision-making processes. However,
in recent years, newer methods such as the Best-Worst Method (BWM), an extension of AHP
designed to address its limitations, have emerged. In future studies, we aim to explore the
effectiveness and limitations of these advanced methods to provide a more comprehensive
analysis of the latest developments in MCDM techniques.
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